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Fig. 1: We propose GeoWizard, an innovative foundation model for jointly estimating
depth and surface normal from monocular images. Compared to prior discriminative
counterparts, our work not only achieves surprisingly robust generalization on various
types of real or unreal images but also faithfully captures intricate geometric details.
The generated depth and normal could enhance many applications such as 2D content
generation, 3D reconstruction and so on.

Abstract. We introduce Geo Wizard, a new generative foundation model
designed for estimating geometric attributes, e.g., depth and normals,
from single images. While significant research has already been conducted
in this area, the progress has been substantially limited by the low di-
versity and poor quality of publicly available datasets. As a result, the
prior works either are constrained to limited scenarios or suffer from the
inability to capture geometric details. In this paper, we demonstrate that
generative models, as opposed to traditional discriminative models (e.g.,
CNNs and Transformers), can effectively address the inherently ill-posed
problem. We further show that leveraging diffusion priors can markedly
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improve generalization, detail preservation, and efficiency in resource us-
age. Specifically, we extend the original stable diffusion model to jointly
predict depth and normal, allowing mutual information exchange and
high consistency between the two representations. More importantly, we
propose a simple yet effective strategy to segregate the complex data
distribution of various scenes into distinct sub-distributions. This strat-
egy enables our model to recognize different scene layouts, capturing
3D geometry with remarkable fidelity. Geo Wizard sets new benchmarks
for zero-shot depth and normal prediction, significantly enhancing many
downstream applications such as 3D reconstruction, 2D content creation,
and novel viewpoint synthesis.

Keywords: Monocular Images - Depth - Normal - Diffusion Models

1 Introduction

Estimating 3D geometry, e.g., depth and surface normal from monocular color
images, is a fundamental but challenging problem in 3D computer vision, which
plays essential roles in various downstream applications such as autonomous driv-
ing [12,[13], 3D surface reconstruction [31,59,[69], novel view synthesis [29,[37],
inverse rendering [51,/68|, and so on. Reverting the projection from a 3D environ-
ment to a 2D image presents a geometrically ambiguous challenge, necessitating
the aid of prior knowledge. This may include understanding typical object di-
mensions and shapes, probable scene arrangements, as well as occlusion patterns.

The recent advancements in deep learning have significantly propelled the
field of geometry estimation forward. Currently, this task is often approached
as a neural image-to-image translation problem, where supervised learning tech-
niques are employed. However, the progress in this area is constrained by two
major shortcomings in the publicly available datasets: 1) Low diversity. Lack-
ing efficient and reliable tools for data collection, most datasets are confined to
specific scenarios, such as autonomous driving and indoor environments. Mod-
els trained on these datasets typically exhibit poor generalization capabilities
when applied to out-of-domain images. 2) Poor accuracy. To enhance dataset
diversity, some works generate pseudo labels for unlabeled data using methods
like multi-view stereo (MVS) reconstruction or self-training techniques. Unfortu-
nately, these pseudo-labels often suffer from being incomplete or of low quality.
Consequently, while these approaches may improve model generalization, they
still struggle in accurately capturing geometric details and require significantly
more computational resources.

In this paper, our goal is to build a foundation model for monocular geometry
estimation capable of producing high-quality depth and normal information for
any images of any scenarios (even images generated by AIGC). Instead of em-
ploying straightforward data and computation scaling-up, our method proposes
to unleash the diffusion priors for this ill-posed problem. The intuition is that
stable diffusion models have been proven to inherently encode rich knowledge



GeoWizard 3

of the 3D world, and its strong diffusion priors pre-trained on billions of images
could significantly facilitate potential 3D tasks.

Instead of tackling depth or normal estimation separately, Geo Wizard jointly
estimates depth and normal within a unified framework. Inspired by Wonder3D [31],
we leverage geometry switcher to extend a single stable diffusion model to pro-
duce both depth and normal. The joint estimation allows mutual information
exchange and high consistency between the two representations. However, direct
training on mixed data encompassing various scenarios often leads to ambigu-
ities in geometry estimation, potentially skewing the estimated depth/normal
towards unintended layouts. To address this challenge, we propose a simple yet
effective strategy, scene distribution decoupler, to segregate the complex
data distribution of different scenes into distinct sub-distributions (e.g., out-
door, indoor, and background-free objects). This strategic approach enables the
diffusion model to discern different scene layouts, resulting in the capture of 3D
geometry with remarkable fidelity. Consequently, GeoWizard achieves state-of-
the-art performance in zero-shot depth and normal prediction, thereby signifi-
cantly enhancing numerous downstream applications such as 3D reconstruction,
2D content creation, and novel viewpoint synthesis.

Overall, our contributions are summarized as follows:

— We present GeoWizard, a new generative foundation model for joint depth
and normal estimation that faithfully captures intricate geometric details.

— We propose a simple yet effective scene distribution decoupler strategy, aimed
at guiding diffusion models to circumvent ambiguities that may otherwise
lead to the conflation of distinct scene layouts.

— GeoWizard achieves SOTA performance in zero-shot estimation of both
depth and normal, substantially enhancing a wide range of applications.

2 Related Work

Joint Depth and Normal Estimation. Estimating depth and normal from
images is an ill-posed but important task, where depth and surface normal en-
code the 3D geometry in different aspects. Some existing approaches propose
to explicitly acquire the surface normal from the depth map by using some
geometric constraints, such as Sobel-like operator [16}[23|, differentiable least
square [32[38], or randomly sampled point triplets [33,/63,/64]. IronDepth [2]
propagates depth on pre-computed local surface. Zhao et al. [74] proposes to
jointly refine depth and normal by a solver, but it conditions on multi-view prior
and tedious post-optimization. On the other hand, several works [10}/24}/61(73|
create multiple branches for depth and normal, and enforce information ex-
change through propagating latent features. However, all the prior works tackle
this problem using discriminative models and leverage limited scopes of training
datasets, and therefore present poor generalization and fail to capture geometric
details. In contrast, GeoWizard builds on generative models and fully leverage
diffusion priors to tackle this problem, showing significantly improved general-
ization and ability to capture geometric details.
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Diffusion Models for Geometry Estimation. Recently, diffusion models 15|
55| have shown supreme capabilities in 3D tasks, such as optical flow estima-
tion [8L/48], view synthesis [27,/47,/52], depth estimation [18,/21}|75], and normal
estimation [281/31,/39] (in contrast to GAN [4]). For depth estimation, DDP [1§]
first introduces a unified diffusion architecture that blends the traditional per-
ception pipeline to estimate the metric depth. DDVM [48] further boosts depth
quality by training on synthetic data. Although they leverage improved diffusion
process [56] or advanced perception backbone [26,30] to speed up training, they
still suffer from unaffordable low efficiency and slow convergence when scaled
up to internet-scale data. A concurrent method Marigold [21] fine-tune the pre-
trained stable diffusion model for depth estimation and also try to leverage the
diffusion priors. However, it suffers from ambiguities about mixed layouts of
various scenarios and tends to produce depth maps with unintended layouts.

Diffusion-based methods are also applied to normal estimation. JointNet |71]
attempts to connect multiple diffusion models to achieve multi-modality estima-
tion (e.g., depth and normal), however their model size and resource costs will
linearly increase depending on the number of modalities. Wonder3D [31] proposes
to model joint color and normal distribution with a domain switcher to enhance
geometric quality and consistency. Richdreamer [39] trains seperately depth and
normal diffusion model on the LAION-2B [50| dataset with predictions from Mi-
das [42]. However, these methods still struggle to capture geometric details. In
contrast, to the best of our knowledge, Geo Wizard reveals robust generalization
and a significant ability to capture intricate geometric details.

3 Methodology

Given an input image x, our goal is to generate its paired depth map d and
normal map n. Firstly, we delve into the problem with the diffusion paradigm
(see Section . Secondly, we present our geometric diffusion model (see Sec-
tion . The model uses a cross-domain geometry switcher to jointly generate
the depth and normal using a single diffusion model. The mutual information
exchange enhances geometric consistency. We further decouple the sophisticated
scene distribution into several distinct sub-distributions (e.g., outdoor, indoor,
and background-free objects) to avoid ambiguities of geometry estimation. The
overview of GeoWizard is presented in Fig.

3.1 Preliminaries on Geometric Distribution

Diffusion Probabilistic Models [15}/55] define a forward Markov chain that pro-
gressively transits the sample x drawn from data distribution p(x) into noisy
versions {x;,t € (1,T)|x; = ayXo + ot€}, where € ~ N(0,I), T is the train-
ing step, a; and o; are the noisy scheduler terms that control sample quality.
In the reverse Markov chain, it learns a denoising network €g(-) parameterized
by € usually structured as U-Net [45] to transform x; into x;—; from an initial
Gaussian sample x7 through iterative denoising.
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Fig. 2: The overall framework of GeoWizard. During fine-tuning, it first encodes
the image x, GT depth d, and GT normal n through the original stable diffusion VAE
¢ into latent space, yielding latents Z*, Z9, and Z™ respectively. The two geometric
latents are concatenated with Z* to form two groups, Z* o Z¢ and Z* o ZP. Each
group is fed into the U-Net to generate the output in depth or normal domain in the
guide of a geometry switcher. Additionally, the scene prompt s is introduced to pro-
duce results with one of three possible scene layouts (indoor/outdoor/object). During
inference, given an image x, a scene prompt s, initial depth noise €2 and normal noise
e, GeoWizard can generate high-quality depth d and normal f jointly.

Unlike prior works that adopt CNN or transformer as architecture, we employ
a diffusion-based scheme f(-) to model the joint depth and normal distribution
p(d,n). A 3D asset Z possesses various attributes, such as albedo, roughness,
and metalness, to describe its characteristics. We focus on depth and normal to
represent the 3D spatial structure, approximating it to the distribution of a 3D
asset p, ~ p(d,n). Given a conditional input image x, the depth map d and the
normal map f can be obtained by the generative formulation f(-) : x € R® —
(d € R*, i € R3), or in Markov probabilistic form:

f(x)=p (aTaﬁT) ﬁpo (at—l,flt—1 | &t,flt,X> (1)
=1

where dp, iy ~ N(0,1).

As shown in Fig. |2 the condition x is integrated into two ways: one is through
the image embedding from CLIP via cross-attention layers, and the other is
by concatenating it in the latent space with geometric latents for more precise
control. Our intuition is that the CLIP embeddings offer global-wise guidance,
enhancing the model robustness and expressiveness under various Gaussian ini-
tialization, while the latent-wise concatenation further reduces randomness when
generating é? and €. Our main challenge is to characterize the distribution pg
or specifically €g to generate high-quality depth and normal maps.
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3.2 Geometric Diffusion Model

We base our model on the pre-trained 2D latent diffusion model (Stable Diffu-
sion [44]) so as to 1) utilize the strong, generalizable image priors learned from
LAION-5B 2) efficiently learn geometric priors in a low-dimensional latent
space with minimum adjustments needed for U-Net architecture. However, this
problem is non-trivial with two potential challenges: 1) the naive LDM is trained
in the RGB domain, and thus may lack the capability to capture structural infor-
mation and even impede it with reverse resistance. 2) The structure distributions
are typically uniform, featuring similar values in localized areas, making them
challenging for diffusion models to learn .

Joint Depth and Normal Estimation. To incorporate depth and normal for
geometry estimation, one naive solution is to finetune two U-Nets (fq, fn) to
model depth and normal distributions separately, i.e., d = fa(x), i = fu(x).
However, this approach introduces extra parameters and overlooks the inherent
connections between depth and normal, as both contribute to the unified geo-
metric representation of a 3D shape. Normal describes surface variations and
undulations , while depth outlines the spatial arrangement, guiding the orienta-
tion of normal. Our empirical experiment finds that this naive solution leads to
geometric inconsistency in both depth and normal domain.

> (2) Cross-attention &
(3) Feed-forward Layer

(1.a) Self-attention (1.b) Cross-domain Geometric Self-attention

modify

rgb latent depth latent normal latent

Fig. 3: The Structure of Geometric Transformer Block. Differing from the tra-
ditional self-attention layer (1.a) applied to RGB latent, we adapt it to a cross-domain
geometric self-attention (1.b) that operates on depth latent and normal latent. This
modification allows for mutual guidance and ensures geometric consistency.

Inspired by , we leverage a geometry switcher to enable a single stable
diffusion model to generate depth or normal through indicators. Specifically,
d = f(x,84), B = f(x,sn), where sq and s, are one-dimensional vectors that
control depth and normal domain, respectively. The switchers are encoded by
the low-dimensional positional encoding and added with time embedding in the
U-Net. We find that using switchers converges faster than shared modeling
or sequential modeling , and leads to more stable results.

To further enable mutual-guided geometric optimization, we modify the self-
attention layer in U-Net to a cross-domain geometric self-attention layer to en-
courage spatial alignment, as shown in Fig. [3] This operator not only improves
geometric consistency between depth and normal but also leads to faster con-
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vergence. We compute queries, keys, and values as follows:

aa=Q 729 kg =K-(2403"),vqg =V - (2¢ ®2")

2)
dh=Q 2"k, =K (2"®2%),vp, =V (2" @29

where z4 and z™ are latent depth and normal embeddings in transformer blocks,
@ denotes concatenation, and Q, K and V are query, key and value embeddings
matrices. The cross-domain features are Att(q;,k;,v;),7 = {d,n}, where Att(-)
denotes softmax attention.

Scene Distribution Decoupler. As we explore diverse scenarios, we encounter
situations where the estimated geometry shows a bias towards unintended lay-
outs, leading to significant compression of foreground elements. This occurs be-
cause stable diffusion models may struggle with figuring out the correct spatial
layouts of the captured scenes due to the varied spatial structures depicted in
the training data. For example, outdoor scenes often feature an infinite depth
range, indoor scenes have a constrained depth range and background-free objects
exhibit even narrower depth ranges.

(a) indoor [1,0,0]—o
(b) outdoor [0,1,0]——o0

(c) object [0,0,1] o Positional Encoding

Scene Decoupler

Distribution (%)

0.4 0.6
Affine-invariant Depth

Fig. 4: Scene Distributions (left) and Decoupler Structure as Guider (right).
We analyze the distributions of affine-invariant depth across three types of scenarios:
indoor scenes, outdoor scenes, and background-free objects on our training dataset,
where ‘mixed’ refers to the mixture of the three types. To clarify, the black circle dot
indicates that the proportion of affine-invariant depth in [0.595, 0.605] is 1.5%. The
Scene Decoupler encodes the one-hot domain vectors into positional embedding, which
guides the stable diffusion to recognize the spatial layouts of different scene types.

A statistical analysis of scale-invariant depth distributions across different
scene types is presented in Fig. [d] which shows that three types of scenes present
different spatial structures. If we adopt Gaussian distribution to model the spa-
tial layouts, the depth distributions of the outdoor, indoor and object scenarios
have different means and variances (u1,0%), (u2,03) and (us3,03), respectively.
The depth distribution of the mixed-up scenes tends to be a unified and neutral-
ized distribution (red line) with (u1 + pa + p3, 0% + 05 + 03). However, directly
learning such a mixed distribution proves to be challenging.

To address the problem of layout ambiguity, we propose to learn the distinct
three sub-distributions separately instead of directly learning the whole mixed
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distribution. To achieve this, we introduce a Scene Distribution Decoupler to
guide the diffusion model toward learning different distributions. Specifically,
(d, n) = f(x,s;),i = {0,1,2}, where sg,s1,s2 denote the one-hot vectors of
indoor, outdoor, object scene types, respectively. Resembling geometry switcher,
these one-dimensional vectors are processed by positional encoding and are then
element-wisely added to the time embedding.

Loss Function. We adopt multi-resolution noises [20,21] to preserve low-frequency
details in the depth and normal maps, as similar values will frequently appear in
local geometric regions. This deviation proves to be more efficient than a single-
scale noise schedule. We perturb the two geometry branches with the same time-
step scheduler to decrease the difficulty when learning more modalities. Finally,
we utilize the v-prediction [46] as the learning objective:

L= Ex,d,n,e,t,s[HéB (Z?;x7sd7si) - V?H; + ||€o (Z}; %, 8n,8;) — v?||§] (3)
where vl = aed — 0,Z4 and vP = el — 0, Z"; €d and € are two Gaussian
noises independently sampled from multi-scale noise sets for depth and nor-
mal, respectively. The unified denoising network €9 with annealed noise sched-
uler generates the desired geometry noises conditioned by hierarchical switchers
(Sd,Sn,si) and input image x.

4 Experiment

4.1 Implementation Details and Datasets

Implementation Details. We finetune the whole U-Net from the pre-trained
Stable Diffusion V2 Model [44], which has been finetuned with image conditions.
We use an image size of 576 x 768 and train the model for 20,000 steps with a
total batch size of 256. This entire training procedure typically requires 2 days
on a cluster of 8 Nvidia Tesla A100-40GB GPUs. We use the Adam optimizer
with a learning rate of 1 x 1075, Additionally, to enhance dataset diversity, we
apply random horizontal flipping, crop, and photometric distortion (contrast,
brightness, saturation, and hue) to the 2D image collection during training.

Training Datasets. We train our model on three categories: 1)Indoor: Hyper-
sim [43] is a photorealistic synthetic dataset with 461 indoor scenes. We filter
out 191 scenes without tilt-shift photography. We further cull out incomplete im-
ages and finally obtain 25,463 samples. Replica |57] is a dataset of high-quality
reconstructions of 18 indoor spaces. We filter out 50,884 samples with complete
context. 2)Outdoor: 3D Ken Burns |36] provides a large-scale synthetic dataset
with 76,048 stereo pairs in 23 in-the-wild scenes. We further incorporate 39,630
synthetic city samples in 1440x3840 high resolutions from our own simulation
platform. The normal GT is derived from the depth maps. (See Supp. for visual-
ization) 3)Background-free Object: Objaverse |7,[39] is a massive dataset of over
10 million 3D objects. We filter out 85,997 high-quality objects as training data.
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4.2 Evaluation

Evaluation Datasets. We assess our model’s efficacy across six zero-shot rela-
tive depth benchmarks, including NYUv2 [54], KITTI |11], ETH3D [49], Scan-
Net [6], DIODE [58|, and OmniObject3D [60]. For surface normal estimation, we
employ in-total five benchmarks on NYUv2 [38)54], ScanNet [6,/17], iBim-1 [2}22],
DIODE-outdoor [58], and OmniObject3D [60] for zero-shot evaluation.
Baselines. For affine-invariant depth estimation, we select baselines from state-
of-the-art methods that demonstrate generalizability through training on di-
verse datasets. These methods are specialized in predicting either depth (Di-
verseDepth [65], LeReS [67], HDN [70], Marigold |21]) or disparity (MiDaS [42],
DPT |41], Omnidata [9]). For surface normal estimation, the field has seen fewer
works [9L/19,/71] addressing zero-shot estimation specifically. Hereby, We choose
both SoTA in-domain (EENSU [1]) and zero-shot methods (Omnidata v1 [9],
v2 19|, and the ultra-recent DSINE [3]) as the baselines.

Metrics. Building upon prior research [66], we assess the performance of depth
estimation methods using the absolute relative error (AbsRel) and accuracy
within a threshold 6! = 1.25. For surface normal estimation, we evaluate using
the Mean angular error and accuracy within 11.25°, aligning with established
methods [1]. We evaluate Geometric Consistency (GC) between depth and nor-
mal as follows: we first estimate the pseudo scale and shift of the estimated
depth using GT depth, and then convert the estimated depth into metric depth.
We calculate the Mean angular error of the normal difference between predicted
normal and normal calculated from the metric depth to evaluate the consistency
between estimated depth and normal.

4.3 Comparison

Depth Estimation. We present the quantitative evaluations of zero-shot affine-
invariant depth in Table |1l DepthAnything |62] achieves the best quantitative
numbers across three real datasets but presents a significant performance drop on
unreal images (see Fig. [p|and Fig. @ This may be because although DepthAny-
thing is trained on 63.5M images, its discriminative nature limits its ability to
generalize on images that significantly differ from training images. On the other
hand, its results fail to capture rich geometric details. Compared to the ro-
bust depth estimator Marigold [21], GeoWizard shows more correct foreground-
background relationships, especially in outdoor scenarios.

Normal Estimation. We present the quantitative evaluations of surface nor-
mal in Table 2] where our method achieves superior performance. When com-
pared with the SoTA normal approach DSINE |[3]|, our method recovers much
finer-grained details and is more robust to unseen terrain in the Fig. [5] We fur-
ther provide more out-of-domain comparisons in Fig. [ where GeoWizard sur-
prisingly generates astonishing details and correct spatial structures. DSINE 3]
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NYUv2 iBims-1 ScanNet KITTI DIODE ETH3D

Ours GT DepthAny, Marigold Ours Input
Normal Normal (-Large) Depth Depth

v2

DSINE Omnidata

Fig. 5: Qualitative comparison on zero-shot depth and normal benchmarks.

NYUv2 KITTI ETH3D ScanNet DIODE-Full OmniObject3D
Method

AbsRel | 611 AbsRel | 611 AbsRel | 611 AbsRel | 611 AbsRel | 611 AbsRel | 611
DiverseDepth 11.7 875 190 704 228 694 109 882 37.6 631 - =

MiDaS [42] 111 885 236 630 184 752 121 84.6 332 715 - -
LeReS 90 916 149 784 171 77.7 9.1 91.7 271 76.6 - -
Omnidata v2 74 945 149 835 166 778 7.5 93.6 339 742 3.0 99.9
HDN 69 948 115 86.7 121 833 80 939 246 78.0 - -
DPT 9.8 903 10.0 90.1 78 946 82 934 18.2 758 = =
Metric3D @ 58 963 5.8 97.0 6.6 96.0 74 941 224 785

43 981 7.6 947 127 882 4.2 98.0 277 759 18 99.9

5.5 96.4 9.9 91.6 6.5  96.0 6.4 95.1 308 77.3 3.0 99.8
52  96.6 9.7 921 6.4 96.1 6.1 953 297 79.2 1.7 99.9

DepthAnything
Marigold
GeoWizard (Ours)
Table 1: Quantitative comparison on 6 zero-shot affine-invariant depth benchmarks.
We mark the best results in bold and the second best underlined. Discriminative meth-

ods are colored in blue while generative ones in green . Please note that DepthAny-
thing is trained on 63.5M images while ours is only trained on 0.28 M images.
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Fig. 6: Geometry comparison on in-the-wild collections. As discriminative models,
DepthAnything and DSINE show significant performance drop on in-the-wild images,
especially for the unreal images that are barely included in the collected training
datasets. Please check more examples in the supplementary materials.

can recover rough shape, but it struggles to produce high-frequency details, such
as hairline, architectural texture, and limbs.

Method NYUv2 ScanNet iBims-1 DIODE-outdoor OmniObject3D
Mean | 11.25° 1+ Mean | 11.25° 1 Mean | 11.25° 1 Mean | 11.25° 1 Mean | 11.25° 1
EESNU 16.2 58.6 - - 20.0 58.5 29.5 26.8 31.9 18.8

Omnidata v1 [9] | 23.1 45.8 22.9 47.4 19.0 62.1 22.4 38.4 23.1 42.6
Omnidata v2 [19] | 17.2 55.5 16.2 60.2 18.2 63.9 20.6 40.6 21.4 46.1
DSINE 16.4 59.6 16.2 61.0 17.1 67.4 193 44.1 21.7 45.1

GeoWizard (Ours)‘ 17.0 56.5 15.4 61.6 13.0 65.3 20.6 38.9 20.8 47.8

- : EENSU is trained on ScanNet, thus the in-domain performance is omitted.
Table 2: Quantitative comparison across 5 zero-shot surface normal benchmarks.

4.4 Ablation Study

We collect zero-shot validation sets that incorporate depth and normal from
three scene distributions - the official test split of NYUv2 [54], consisting of
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654 images, and 138 high-quality samples from ScanNet ﬂ§| for indoor domain;
the 432 in-the-wild samples from our simulation platform and filtered 86 images
from DIODE for outdoor domain; 300 randomly selected real-world samples
(over 40 categories) of OmniObject3D for object domain.

Full Model

Fig. 7: Qualitative ablation. The geometric consistency decreases a lot, especially in far
regions, when removing the cross-domain geometry switcher. Without the distribution
decoupler, the estimated depth and normal mistakenly perceive the spatial layouts of
the input images, like the Earth in the first row and the Sky in the second row.

Joint Depth and Normal Estimation. We first investigate the effect of

the geometry switcher. When removing the cross-domain geometry switcher

(w/o Geometry Switcher), the overall geometric consistency drops significantly

(16.2—18.1, also as illustrated in Fig. E[), verifying that cross-domain self-attention
effectively correlates the two representations. We also train two diffusion models

to separately learn depth and normal (Separate models), but this significantly

reduces the performance across all evaluated metrics.

Indoor Outdoor Object Overall
AbsRel | Mean | GC ||AbsRel | Mean | GC ||AbsRel | Mean | GC ||AbsRel | Mean | GC |

7.4 15.1  18.2 12.5 26.2 279 5.2 18.2  20.1 8.5 16.9 19.1
5.7 13.1 173 9.8 223 271 3.3 15.8 18.5 6.9 15.0 18.1
w/0 Scene Decoupler 5.8 13.8 154 10.5 24.7 245 3.7 155 179 7.5 16.1  16.5

Full Model 5.5 12.6 14.7 9.6 22.1 23.5 3.5 15.4 17.6| 6.7 14.8 16.2

Table 3: Quantitative ablation on geometry estimation across three types of scenarios.

Method ‘

Separate models
w/0 Geometry Switcher

Decoupling Scene Distributions. As we decouple the complex scene distribu-
tion into several sub-domains, GeoWizard can concentrate on a specific domain
during in-the-wild inference. Therefore, it is not surprising that removing the
decouple (w/o Scene Decoupler) leads to a performance drop across all domains
(visually shown in Fig. E[) Interestingly, the impact on the object domain is
minimal, suggesting that object-level distribution is simpler to learn.

4.5 Application

GeoWizard enables a wide range of downstream applications, including 3D re-
construction, novel view synthesis, and 2D content creation.
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Input
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Omnidata

v2 [19]

Fig. 8: Geometry comparison on different scene domains. Ours consistently achieves
more fine-grained details and spatial structure over Omnidata v2.

3D Reconstruction with Geometric Cues. We can leverage the monocular
geometric cues for surface reconstruction. Using BiNI algorithm , we can ex-
tract the 3D mesh directly. In Fig. (8 compared to Omnidata v2 , GeoWizard
consistently generates finer details with higher fidelity and frequency detail (See
the beard of the stone lion, and the two men’s faces) and more accurate 3D
spatial structure (see the Last Supper). Additionally, we can condition these ge-
ometric cues to help surface reconstruction method to generate high-quality
geometry. We conduct experiments on 4 scenes from ScanNet and employ evalua-
tion metrics following . TableElillustrates that our geometric guidance
surpasses previous methods, particularly in terms of “Recall” and “F-score”.

Geometric Cues ‘ Acc] Compl C-L; | Prect Recall 1 F-scoret

Omnidata v2 [19] [0.035 0.048 0.042 799 681 733
DSINE (3] 0.036 0.045 0.040 80.1 70.2 747

GeoWizard (Ours)‘0.033 0.042 0.038 80.0 70.7 75.1
Table 4: Geometric guidance used for MonoSDF [l@] on the ScanNet @] dataset.

Depth-aware Novel View Synthesis. We can utilize the depth cue gener-
ated by our model to enhance depth-based inpainting methods . As shown
in Fig. @ compared to Midas V3.1 , GeoWizard achieves better novel view
synthesis results and enables more realistic 3D photography effect.

2D Content Generation. We adopt depth /normal conditioned ControlNet
(SD 1.5) that takes spatial structure as input to evaluate the geometry indirectly.
As depicted in Fig. the generated color images conditioned by our depth and



(a) Input (b) GeoWizard (Ours) (c) Midas V3.1

Fig. 9: Novel view synthesis comparison. GeoWizard guides the to generate more
coherent and plausible structures like the thin chair legs and doorways.

normal are more semantically coherent to the original input image. However, the
generated images conditioned on depth map of DepthAnything and normal
map of DSINE |[3] fail to keep similar 3D structures with the input image.

DepthAnything Dpth DSINE Normal

Fig. 10: Images generated by ControlNet conditioned on estimated depth maps and
normal maps using text prompt “futuristic technology”.

5 Conclusion

In this work, we present GeoWizard, a holistic diffusion model for geometry
estimation. We distill the rich knowledge in the pre-trained stable diffusion to
boost the task of high-fidelity depth and normal estimation. Using the proposed
geometry switcher, Geo Wizard jointly produces depth and normal using a single
model. By decoupling the mixed and sophisticated distribution of all scenes into
several distinct sub-distributions, our model could produce 3D geometry with
correct spatial layouts for various scene types. In the future, we plan to decrease
the number of denoising steps to speed up the inference of our method. The
latent consistency models may be leveraged to train a few-step diffusion
model so that the inference time may be decreased to less than 1 second.



GeoWizard 15

Acknowledgments

We thank the experimental help from Yichong Lu and valuable suggestions from
Yuwei Guo. Xiao Fu is supported by the Hong Kong PhD Fellowship Scheme
(HKPFS) 2023-2024.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bae, G., Budvytis, 1., Cipolla, R.: Estimating and exploiting the aleatoric uncer-
tainty in surface normal estimation. In: ICCV (2021)

Bae, G., Budvytis, 1., Cipolla, R.: Irondepth: Iterative refinement of single-view
depth using surface normal and its uncertainty. In: BMVC (2022)

Bae, G., Davison, A.J.: Rethinking inductive biases for surface normal estimation.
In: CVPR (2024)

Bhattad, A., McKee, D., Hoiem, D., Forsyth, D.: Stylegan knows normal, depth,
albedo, and more. In: NeurIPS. vol. 36 (2023)

Cao, X., Santo, H., Shi, B., Okura, F., Matsushita, Y.: Bilateral normal integration.
In: ECCV (2022)

Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nieffner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: CVPR (2017)

Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel, O., VanderBilt, E.,
Schmidt, L., Ehsani, K., Kembhavi, A., Farhadi, A.: Objaverse: A universe of
annotated 3d objects. In: CVPR (2023)

Dong, Q., Zhao, B., Fu, Y.: Open-ddvm: A reproduction and extension of diffusion
model for optical flow estimation. arXiv.org (2023)

Eftekhar, A., Sax, A., Malik, J., Zamir, A.: Omnidata: A scalable pipeline for
making multi-task mid-level vision datasets from 3d scans. In: ICCV (2021)
Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In: ICCV (2015)

Geiger, A., Lenz, P.; Stiller, C., Urtasun, R.: Vision meets robotics: The kitti
dataset. IJRR (2013)

Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth esti-
mation with left-right consistency. In: CVPR (2017)

Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-
supervised monocular depth estimation. In: ICCV (2019)

Guo, H., Peng, S., Lin, H., Wang, Q., Zhang, G., Bao, H., Zhou, X.: Neural 3d
scene reconstruction with the manhattan-world assumption. In: CVPR (2022)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS
(2020)

Hu, J., Ozay, M., Zhang, Y., Okatani, T.: Revisiting single image depth estimation:
Toward higher resolution maps with accurate object boundaries. In: WACV (2019)
Huang, J., Zhou, Y., Funkhouser, T., Guibas, L.J.: Framenet: Learning local canon-
ical frames of 3d surfaces from a single rgb image. In: ICCV (2019)

Ji, Y., Chen, Z., Xie, E., Hong, L., Liu, X., Liu, Z., Lu, T., Li, Z., Luo, P.: Ddp:
Diffusion model for dense visual prediction. arXiv.org (2023)

Kar, O.F., Yeo, T., Atanov, A., Zamir, A.: 3d common corruptions and data aug-
mentation. In: CVPR (2022)

Kasiopy: https://wandb.ai/johnowhitaker /multires noise/reports/multi-
resolution-noise-for-diffusion-model-training—vmlldzoznjyyotu2?s=31. arXiv.org
(2023)



16

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Fu. et al.

Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R.C., Schindler, K.: Re-
purposing diffusion-based image generators for monocular depth estimation. In:
CVPR (2024)

Koch, T., Liebel, L., Fraundorfer, F., Korner, M.: Evaluation of cnn-based single-
image depth estimation methods. In: ECCVW (2018)

Kusupati, U., Cheng, S., Chen, R., Su, H.: Normal assisted stereo depth estimation.
In: CVPR (2020)

Li, B., Shen, C., Dai, Y., Van Den Hengel, A., He, M.: Depth and surface normal es-
timation from monocular images using regression on deep features and hierarchical
crfs. In: CVPR (2015)

Lin, S., Liu, B., Li, J., Yang, X.: Common diffusion noise schedules and sample
steps are flawed. In: WACV (2024)

Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR (2017)

Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-
1-to-3: Zero-shot one image to 3d object. In: ICCV (2023)

Liu, X., Ren, J., Siarohin, A., Skorokhodov, 1., Li, Y., Lin, D., Liu, X., Liu, Z.,
Tulyakov, S.: Hyperhuman: Hyper-realistic human generation with latent struc-
tural diffusion. In: ICLR (2024)

Liu, Y., Peng, S., Liu, L., Wang, Q., Wang, P., Theobalt, C., Zhou, X., Wang, W.:
Neural rays for occlusion-aware image-based rendering. In: CVPR (2022)

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)
Long, X., Guo, Y.C., Lin, C., Liu, Y., Dou, Z., Liu, L., Ma, Y., Zhang, S.H.,
Habermann, M., Theobalt, C., et al.: Wonder3d: Single image to 3d using cross-
domain diffusion. arXiv.org (2023)

Long, X., Liu, L., Theobalt, C., Wang, W.: Occlusion-aware depth estimation with
adaptive normal constraints. In: ECCV (2020)

Long, X., Zheng, Y., Zheng, Y., Tian, B., Lin, C., Liu, L., Zhao, H., Zhou, G., Wang,
W.: Adaptive surface normal constraint for geometric estimation from monocular
images. arXiv.org (2024)

Luo, S., Tan, Y., Huang, L., Li, J., Zhao, H.: Latent consistency models: Synthe-
sizing high-resolution images with few-step inference. arXiv.org (2023)

Lyu, X., Dai, P., Li, Z., Yan, D., Lin, Y., Peng, Y., Qi, X.: Learning a room with
the occ-sdf hybrid: Signed distance function mingled with occupancy aids scene
representation. In: ICCV (2023)

Niklaus, S., Mai, L., Yang, J., Liu, F.: 3d ken burns effect from a single image. In:
ACM TOG (2019)

Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural ra-
diance fields for dynamic scenes. In: CVPR (2021)

Qi, X., Liao, R., Liu, Z., Urtasun, R., Jia, J.: Geonet: Geometric neural network
for joint depth and surface normal estimation. In: CVPR (2018)

Qiu, L., Chen, G., Gu, X., Zuo, Q., Xu, M., Wu, Y., Yuan, W., Dong, Z., Bo,
L., Han, X.: Richdreamer: A generalizable normal-depth diffusion model for detail
richness in text-to-3d. arXiv.org (2023)

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry,
G., Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models
from natural language supervision. In: ICML (2021)

Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction.
In: ICCV (2021)



42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

5.

56.

57.

58.

59.

60.

61.

GeoWizard 17

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer.
In: IEEE TPAMI (2022)

Roberts, M., Ramapuram, J., Ranjan, A., Kumar, A., Bautista, M.A., Paczan, N.,
Webb, R., Susskind, J.M.: Hypersim: A photorealistic synthetic dataset for holistic
indoor scene understanding. In: ICCV (2021)

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR (2022)

Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: MICCAT (2015)

Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models.
arXiv.org (2022)

Sargent, K., Li, Z., Shah, T., Herrmann, C., Yu, H.X., Zhang, Y., Chan, E.R.,
Lagun, D., Fei-Fei, L., Sun, D., et al.: Zeronvs: Zero-shot 360-degree view synthesis
from a single real image. arXiv.org (2023)

Saxena, S., Herrmann, C., Hur, J., Kar, A., Norouzi, M., Sun, D., Fleet, D.J.: The
surprising effectiveness of diffusion models for optical flow and monocular depth
estimation. In: NeurIPS (2023)

Schops, T., Schonberger, J.L., Galliani, S., Sattler, T., Schindler, K., Pollefeys,
M., Geiger, A.: A multi-view stereo benchmark with high-resolution images and
multi-camera videos. In: CVPR (2017)

Schuhmann, C.; Beaumont, R., Vencu, R., Gordon, C., Wightman, R., Cherti,
M., Coombes, T., Katta, A., Mullis, C., Wortsman, M., et al.: Laion-5b: An open
large-scale dataset for training next generation image-text models. In: NeurIPS
(2022)

Sengupta, S., Gu, J., Kim, K., Liu, G., Jacobs, D.W., Kautz, J.: Neural inverse
rendering of an indoor scene from a single image. In: ICCV (2019)

Shi, Y., Wang, P., Ye, J., Long, M., Li, K., Yang, X.: Mvdream: Multi-view diffusion
for 3d generation. arXiv.org (2023)

Shih, M.L., Su, S.Y., Kopf, J., Huang, J.B.: 3d photography using context-aware
layered depth inpainting. In: CVPR (2020)

Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from rgbhd images. In: ECCV (2012)

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: ICML (2015)

Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: ICLR (2021)
Straub, J., Whelan, T., Ma, L., Chen, Y., Wijmans, E., Green, S., Engel, J.J.,
Mur-Artal, R., Ren, C., Verma, S., et al.: The replica dataset: A digital replica of
indoor spaces. arXiv.org (2019)

Vasiljevic, 1., Kolkin, N., Zhang, S., Luo, R., Wang, H., Dai, F.Z., Daniele, A.F.,
Mostajabi, M., Basart, S., Walter, M.R., et al.: Diode: A dense indoor and outdoor
depth dataset. CoRR (2019)

Wang, J., Wang, P., Long, X., Theobalt, C., Komura, T., Liu, L., Wang, W.: Neuris:
Neural reconstruction of indoor scenes using normal priors. In: ECCV (2022)
Wu, T., Zhang, J., Fu, X., Wang, Y., Ren, J., Pan, L., Wu, W., Yang, L., Wang,
J., Qian, C., et al.: Omniobject3d: Large-vocabulary 3d object dataset for realistic
perception, reconstruction and generation. In: CVPR, (2023)

Xu, D., Ouyang, W., Wang, X., Sebe, N.: Pad-net: Multi-tasks guided prediction-
and-distillation network for simultaneous depth estimation and scene parsing. In:
CVPR (2018)



18

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

Fu. et al.

Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., Zhao, H.: Depth anything: Un-
leashing the power of large-scale unlabeled data. In: CVPR (2024)

Yin, W., Liu, Y., Shen, C.: Virtual normal: Enforcing geometric constraints for
accurate and robust depth prediction (2021)

Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints of virtual
normal for depth prediction. In: ICCV (2019)

Yin, W., Wang, X., Shen, C., Liu, Y., Tian, Z., Xu, S., Sun, C., Renyin, D.: Di-
versedepth: Affine-invariant depth prediction using diverse data. arXiv.org (2020)
Yin, W., Zhang, C., Chen, H., Cai, Z., Yu, G., Wang, K., Chen, X., Shen, C.:
Metric3d: Towards zero-shot metric 3d prediction from a single image. In: ICCV
(2023)

Yin, W., Zhang, J., Wang, O., Niklaus, S., Mai, L., Chen, S., Shen, C.: Learning
to recover 3d scene shape from a single image. In: CVPR (2021)

Yu, Y., Smith, W.A.: Inverserendernet: Learning single image inverse rendering.
In: CVPR (2019)

Yu, Z., Peng, S., Niemeyer, M., Sattler, T., Geiger, A.: Monosdf: Exploring monoc-
ular geometric cues for neural implicit surface reconstruction. In: NeurIPS (2022)
Zhang, C., Yin, W., Wang, B., Yu, G., Fu, B., Shen, C.: Hierarchical normalization
for robust monocular depth estimation. In: NeurIPS (2022)

Zhang, J., Li, S., Lu, Y., Fang, T., McKinnon, D.; Tsin, Y., Quan, L., Yao, Y.:
Jointnet: Extending text-to-image diffusion for dense distribution modeling. In:
ICLR (2024)

Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image
diffusion models. In: ICCV (2023)

Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propaga-
tion across depth, surface normal and semantic segmentation. In: CVPR (2019)
Zhao, W., Liu, S., Wei, Y., Guo, H., Liu, Y.J.: A confidence-based iterative solver
of depths and surface normals for deep multi-view stereo. In: ICCV (2021)

Zhao, W., Rao, Y., Liu, Z., Liu, B., Zhou, J., Lu, J.: Unleashing text-to-image
diffusion models for visual perception. In: ICCV (2023)



	GeoWizard: Unleashing the Diffusion Priors for 3D Geometry Estimation from a Single Image

