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The following items are included in the supplementary material:

— Results on the test split, computation comparison of different fusion modules
and additional ablation study in Section A.

— Pre-training configuration in Section B.

— Fine-tuning architecture and configuration in Section C.

— Reconstruction visualization results in Section D.

A Additional Experiments

A.1 Additional Results on the Nuscenes Test Split

The 3D object detection results on
test set of the nuScenes are re-
ported in Table A. In the multi-
modal setting, our UniM2AE boosts
the BEVFusion [12] by 0.4 NDS
and achieve competitive results com-
pared with the SOTA multi-modal
detectors. For the detectors that
are solely single-modal, our LiDAR-
only UniM2AE-L outperforms the
baseline model TransFusion-L [1] by
2.4/2.0 mAP/NDS improvement, in-
dicating the generalization of our self-
supervised methods. Concerning that
our MAE framework isn’t specifically
designed for the LiDAR~only detector,
the UniM2AE lags slightly behind Ge-
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Fig. A: 3D object detection results
on the nuScenes validation split. Our
UniM2AE accerlerates the model conver-
gence and ultimately improve the perfor-
mance.

oMAE [13], which introduces extra loss functions for the characteristics of the

point cloud.

A.2 Additional Abalation Study

As shown in Fig. A, we compare the performance of detectors trained from
scratch and pre-trained with our UniM?AE for 10 epochs. Our pre-training
method significantly accelerates model convergence and finally stabilises it at
a higher score when utilizing the entire dataset.



Table A: Performance of the 3D object detection on the nuScenes dataset
test split. T means applying the pre-trained MMIM to the downstream task.

Method Modality mAP NDS
PointPillar [8] L 40.1 55.0
CenterPoint [15] L 60.3 67.3
VoxelNeXt [3] L 64.5 70.0
LargeKernel3D [2] L 65.4 70.6
GeoMAE [13] L 67.8 72.5
TransFusion-L [1] L 65.5 70.2
UniM’AE-L L 67.9 72.2
UVTR-M [9] C+L 67.1 71.1
TransFusion [1] C+L 68.9 71.7
VFF [10] C+L 68.4 72.4
DSVT [14] C+L 68.4 72.7
BEVFusion [12] C+L 70.2 72.9
UniM’AE! C+L 70.3 73.3

Table B: Computation comparison of fusion modules

Fusion modules Voxel Size(m) #param FLOPs mAP7T

Convolution (0.15, 0.15, 8) 0.24M 124.5G 68.2
MSMD (0.075, 0.075, 2) 5.61M 211.5G 69.3
MMIM (0.15, 0.15, 4) 0.36M 191.1G 69.7

A.3 Extra Computation in MMIM

Table B lists the mAP, FLOPs and module size(#param) for fusion modules in
BEVFusion-SST(Convolution) [12], MSMDFusion(MSMD) [7] and UniM2AET.
Compared to the convolution-based fusion module, MMIM does not double the
FLOPs accordingly, although the number of input voxels is twice as large, while
there is a large performance improvement. Meanwhile, MMIM achieves better
performance with less computational cost and fewer parameters compared to
MSMD, which validates the effectiveness of MMIM.

B Pre-training Details

To fairly compare UniM?AE with the single-modal MAE methods (i.e. Green-
MIM [6] and Voxel-MAE [5]), a consistent pre-training configuration shown in
Table C is adapted during the pre-training process, where point cloud is abbre-
viated as PC. The detailed hyperparameters of MAE methods we used in this
work are as follows.



Table C: Pre-training Configuration Table D: Fine-tuning Configuration

Config Value Value
Optimizer AdamW Config Detection Segmentation
Ease Ir Se-4 PC range -z [-54.0m, 54.0m] [-51.2m, 51.2m|
WBCI%hLd?C“W U'?()ng PC range -y [-54.0m, 54.0m] [-51.2m, 51.2m|
atch size ) . PC range -z [-3.0m, 5.0m|] [-3.0.m, 5.0m]
Lr schedule cosine annealing Optimi AdamW AdamW
Warmup iterations 1000 plimizer am am
PC augmentation random flip, resize Base Ir le-4 le-d
Image augmentation  crop, resize, random flip Weight decay 0.01 0.01

Total epochs 200 Batch size 4 4

B.1 UniMZ?AE Hyperparameters

Generally, we employ the configuration of the encoder and decoder presented
in GreenMIM [6] and Voxel-MAE [5] with adaptive modification to better suit
multi-modal self-supervised pre-training. The image size is set to [256, 704] and
the point cloud range is restrict in [-50m, 50m| for z-, y-axes, [-3m, 5m] for
z-axes. At the same time, the volume grid shape is set to [200, 200, 2]. Specifi-
cally, to align multi-view images and LiDAR point cloud, only random flipping,
resizing and cropping are used in the image augmentation, discarding other data
augmentation methods originally applied to Masked Image Modeling.

For the Spatial Cross-Attention during the image to 3D volume projection,
the number of deformable attention blocks is set to 6 with 256 hidden channels
and N,..s is set to 4. In the Multi-modal Interaction Module (MMIM), we stack
3 deformable self-attention blocks comprising 8 heads in each block and the
number of reference point is 4.

B.2 Baseline Hyperparameters

In the experiments on data efficiency, we compare our UniM?AE with single-
modal MAE methods, whose implementation follow their publicly released codes
with minimal changes. Since GreenMIM [6] doesn’t employ Swin-T [11] as their
backbone while pre-training, we replaced their original Swin-B with Swin-T [11],
and rigorously follow the other settings for pre-training. Additionally, for fair
comparison, we use the same data augmentation in the camera branch of UniM2AE.
For the Voxel-MAE [5], pre-training are done with intensity information in data
efficiency experiment. The rest of the setup is the same as the Voxel-MAE [5].

C Fine-tuning Detalils

In the pre-training phase, we first adhere to the process shown in Fig. 2 to ob-
tain the pre-trained backbone and MMIM. We then evaluate our multi-modal
self-supervised pre-training framework by fine-tuning two state-of-the-art detec-
tors [1,12], denoted as TransFusion-L-SST and BEVFusion-SST, whose LiDAR
backbones are replaced by SST [4], as illustrated in Fig. B. Detail configuration
is presented in Table D, where point cloud range is abbreviated as PC range.
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Fig. B: Fine-tuning overview. The LiDAR and camera backbone are initialized with
the weights pre-trained by UniM2AE in the finetuning phase. As for UniM?AET, the
fusion module is additionally replaced with our pre-trained MMIM. Depending on the
downstream task, different head as well as training settings are adopted accordingly.

In the 3D object detection task(denoted as Detection), we separately set the
voxel size to [0.5m, 0.5m, 8m| in the LiDAR-only method and [0.5m, 0.5m, 4m]
in the multi-modal method. During the pre-training we first transfer the weights
of UniM?AE LiDAR encoder to TransFusion-L-SST and fintune it. We follow
the TransFusion [1] training schedule and the results obtained by fine-tuning is
denoted as UniM?AE-L. As for the multi-modal strategies, the weights of LIDAR
encoder in UniM2AE-L and camera encoder pre-trained by UniM?AE are loaded
to finetune the BEVFusion-SST following the BEVFusion [12] training schedule.
Furthermore, we replace the fusion module in BEVFusion-SST by the pre-trained
MMIM and get UniM2AET.

In the BEV map segmentation task(denoted as Segmentation in Table D),
unlike the previous two-stage training schedule in the 3D object detection, we
directly fine-tune the multi-modal BEVFusion-SST with [0.2m, 0.2m, 4m| voxel
size for 24 epochs and the camera-only BEVFusion [12] for 20 epochs, The
changes regarding the backbone and fusion modules are the same as for the
3D detection task. For the camera-only detectors, all configuration is aligned
with camera-only BEVFusion [12].

D Visualization

In Fig. C, we provide examples of reconstruction visualizations. Our UniM?AE
is able to reconstruct the masked LiDAR point clouds and corresponding multi-
view images, accurately reflecting semantic and geometric understanding. For
ease of observation, part of the point cloud(framed by a red box) is zoomed in
and shown below.
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Fig. C: Visualization of reconstruction results. The reconstruction for two differ-
ent scenes is presented, including 6 images and a point cloud. For ease of observation,
we zoom in the point cloud at [0m, 15m]| for z-axes and [-7.5m, 7.5m]| for y-axes.
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