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Abstract. Masked Autoencoders (MAE) play a pivotal role in learning
potent representations, delivering outstanding results across various 3D
perception tasks essential for autonomous driving. In real-world driving
scenarios, it’s commonplace to deploy multiple sensors for comprehensive
environment perception. Despite integrating multi-modal features from
these sensors can produce rich and powerful features, there is a noticeable
challenge in MAE methods addressing this integration due to the sub-
stantial disparity between the different modalities. This research delves
into multi-modal Masked Autoencoders tailored for a unified represen-
tation space in autonomous driving, aiming to pioneer a more efficient
fusion of two distinct modalities. To intricately marry the semantics in-
herent in images with the geometric intricacies of LiDAR point clouds,
we propose UniM2AE. This model stands as a potent yet straightfor-
ward, multi-modal self-supervised pre-training framework, mainly con-
sisting of two designs. First, it projects the features from both modal-
ities into a cohesive 3D volume space to intricately marry the bird’s
eye view (BEV) with the height dimension. The extension allows for
a precise representation of objects and reduces information loss when
aligning multi-modal features. Second, the Multi-modal 3D Interactive
Module (MMIM) is invoked to facilitate the efficient inter-modal inter-
action during the interaction process. Extensive experiments conducted
on the nuScenes Dataset attest to the efficacy of UniM2AE, indicat-
ing enhancements in 3D object detection and BEV map segmentation
by 1.2% NDS and 6.5% mIoU, respectively. The code is available at
https://github.com/hollow-503/UniM2AE.
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Fig. 1: (a) Multi-modal frameworks [6] that align masked input before feature extrac-
tion but ignore feature characteristics from two branch. (b) UniM2AE that interacts
multi-modal features with unified representation.

1 Introduction

Autonomous driving marks a transformative leap in transportation, heralding
potential enhancements in safety, efficiency, and accessibility [23,25,41,45]. Fun-
damental to this progression is the vehicle’s capability to decode its surround-
ings [42,48,57]. To tackle the intricacies of real-world contexts, integration of var-
ious sensors is imperative: cameras yield detailed visual insights, LiDAR grants
exact geometric data, etc. Through this multi-sensor fusion, a comprehensive
grasp of the environment is achieved [1, 28]. Nonetheless, the reliance on exten-
sively labeled data for multi-sensor fusion poses a significant challenge due to
the high costs involved.

Masked Autoencoders (MAE) [15] have shown promise in reducing reliance
on labeled datasets, especially noted in 2D vision tasks. A natural extension of
this success in autonomous driving involves projecting LiDAR point clouds onto
the image plane, thereby masking image patches in conjunction with their corre-
sponding LiDAR data. However, this approach faces a significant challenge due
to geometric distortions when projecting LiDAR data onto the camera plane,
as depicted in Fig. 1(a). This distortion arises due to the inherent spatial dis-
crepancy within the same patch: point clouds that are physically distant or close
may appear next to each other on the pixel coordinates, making it impractical to
indiscriminately divide and mask these merged image and point cloud patches
for reconstruction. Moreover, the discrepancy in the operational range between
LiDAR sensors and cameras exacerbates this challenge. Due to the different sen-
sor setups, LiDAR may capture point clouds beyond the camera’s field of view,
as seen in datasets like Waymo Open Dataset [36], which provides 360-degree Li-
DAR views versus the camera’s limited frontal and lateral coverage. As a result,
a vast amount of LiDAR points are unprojectable. Alternatively, some sensor
fusion strategies [35, 39, 40, 53] attempt to interact image and point clouds by
employing the camera-to-LiDAR projection. However, this approach is hindered
by the inherent sparsity of LiDAR data, resulting in a substantial loss of camera
features and, consequently, a detrimental impact on effective feature fusion.

To address the above challenges, we introduce the UniM2AE, depicted in
Fig. 1(b), as an innovative self-supervised pre-training framework designed to
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harmonize the integration of two distinct modalities: images and LiDAR data.
UniM2AE endeavors to establish a unified representation space that enhances
the fusion of these modalities. By leveraging the semantic richness of images in
tandem with the precise geometric details captured by LiDAR, UniM2AE fa-
cilitates the generation of robust, cross-modal features. Central to UniM2AE is
the innovation of a 3D volume space, achieved by extending the z -axis of the
Bird’s Eye View (BEV) representation. This crucial expansion preserves height,
enabling a more faithful representation of objects that exhibit significant varia-
tion in height. It also mitigates the information loss that is typically encountered
when projecting features into or retrieving them from the representation space.
Unlike the traditional BEV representation [21] and the occupancy representa-
tion [37, 42], our unified 3D representation retains sufficient details along the
height dimension. This enables accurate re-projection to the original modalities
for reconstructing the multi-modal inputs. Moreover, within this enriched 3D
volume space, the information contained within each voxel can be derived either
from features of its native modality or from features of other modalities. Each
modality’s decoder then utilizes this unified feature set to reconstruct its specific
inputs, pushing the encoder to learn more generalized and cross-modal features
that encapsulate a comprehensive understanding of the scene or objects. This
architecture not only addresses the previously outlined limitations but also sets a
new benchmark for multi-modal integration, advancing the field of autonomous
driving by enabling more nuanced and effective utilization of sensor data.

In the expansive and dynamic environments characteristic of autonomous
driving, which feature a multitude of objects and intricate inter-instance rela-
tionships, a sophisticated approach is required for efficient feature amalgamation.
To this end, the Multi-modal 3D Interaction Module (MMIM) is employed to
further refine the fusion of modalities within our unified 3D volume space, signi-
fying a pivotal advancement in our framework’s capability to facilitate efficient
interaction between the dual branches of input data. The MMIM’s architec-
ture, built upon stacked 3D deformable self-attention blocks [43,59], enables the
modeling of global context at elevated resolutions. This feature is instrumental
in boosting the performance of downstream tasks, thereby addressing the com-
plexities inherent in autonomous driving scenarios. The deformable nature of the
self-attention mechanism allows for adaptive focus on the most salient features
within vast scenes, ensuring that the system is attuned to the nuanced dynamics
and relationships present [43]. Consequently, this leads to quicker model conver-
gence and improved pre-training efficiency, marking a significant leap forward in
our endeavor to enhance the functionality of autonomous driving systems.

To sum up, our contributions can be presented as follows:

– We propose UniM2AE, a multi-modal self-supervised pre-training framework
with unified representation in a cohesive 3D volume space. The correspond-
ing representation enables the alignment of the multi-modal features with
less information loss, facilitating the reconstruction of multi-modal masked
inputs.
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– To better interact semantics and geometries retained in unified 3D volume
space, we introduce a Multi-modal 3D Interaction Module (MMIM) to ef-
fectively obtain more informative and powerful features.

– We conduct extensive experiments on various 3D downstream tasks, where
UniM2AE notably promotes diverse detectors and shows competitive per-
formance.

2 Related Work

2.1 Multi-modal Representation

Multi-modal representation has raised significant interest recently, especially in
vision-language pre-training [33,51]. Some works [19,50,55] align point cloud data
to 2D vision by depth projection. As for unifying 3D with other modalities, the
bird’s-eye view (BEV) is a widely-used representation since the transformation
to BEV space retains both geometric structure and semantic density. Although
many SOTA methods [9,17,25,28] adopt BEV as the unified representation, the
lack of height information leads to a poor description of the shape and position of
objects, which makes it unsuitable for MAE. In this work, we introduce a unified
representation with height dimension in 3D volume space, which captures the
detailed height and position of objects.

2.2 Masked Autoencoders

Masked Autoencoders (MAE) [15] are a self-supervised pre-training method,
with a pre-text task of predicting masked pixels. With its success, a series of
3D representation learning methods apply masked modeling to 3D data. Some
works [26,31,54] reconstruct masked points of indoor objects. Some works [4,29,
38,46,49] predict the masked voxels in outdoor scenes. Recent methods propose
multi-modal MAE pre-training: Zhang [56] exploit 2D pre-trained knowledge to
the 3D point prediction but fail to exploit the full potential of LiDAR point
cloud and image datasets. Chen [6] attempt to tackle it in the indoor scene
and conduct a 2D-3D joint prediction by the projection of points but ignore
the characteristic of point clouds and images. To address these problems, we
propose to predict both masked 2D pixels and masked 3D voxels in a unified
representation, focusing on the autonomous driving scenario.

2.3 Multi-modal Fusion in 3D Perception

Recently, multi-modal fusion has been well-studied in 3D perception. Proposal-
level fusion methods adopt proposals in 3D and project the proposals to images
to extract RoI feature [7, 8, 30]. Point-level fusion methods usually paint image
semantic features onto foreground LiDAR points, which can be classified into
input-level decoration [39, 40, 53], and feature-level decoration [22, 24]. How-
ever, the camera-to-LiDAR projection is semantically lossy due to the different
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Fig. 2: Overview of UniM2AE. The LiDAR branch voxelize the point cloud, while
the camera branch divides multiple images into patches, both subsequently randomly
masking their inputs. The tokens from the two branches are individually embedded
and then passed through the Token-Volume projection, Multi-modal 3D Interaction
Module, Volume-Token projection, and eventually the modality-specific decoder. Ulti-
mately, we reconstruct the original inputs using the fused features.

densities of both modalities. Some BEV-based approaches [12] aim to mitigate
this problem, but their simple fusion modules fall short in retaining the height in-
formation and remain blurry along z -axis, which is disadvantageous for accurate
image reconstruction. Accordingly, we design the Multi-modal 3D Interaction
Module to effectively fuse the projected 3D volume features.

3 Proposed Method

3.1 Overview Architecture

As shown in Fig. 2, UniM2AE learns multi-modal representation by masking
inputs (I, V ) and jointly combine features projected to the 3D volume space
(F vol

V , F vol
I ) to accomplish the reconstruction. In our proposed pipeline, the point

cloud is first embeded into tokens after voxelization and similarly we embed
the images with position encoding after dividing the them into non-overlapping
patches. Following this, tokens from both modalities are randomly masked, pro-
ducing (MI ,MV ). Separate transformer-based encoders are then utilized to ex-
tract features (FI , FV ).

To align features from various modalities with the preservation of semantics
and geometrics, (FI , FV ) are separately projected into the unified 3D volume
space, which is extended BEV along the height dimension. Specifically, we build
a mapping of each voxel to 3D volume space based on its position in the ego-
vehicle coordinates, while for the image tokens, the spatial cross-attention is
employed for 2D to 3D conversion. The projected feature (F vol

V , F vol
I ) are sub-

sequently passed into the Multi-modal 3D Interaction Module (MMIM), aiming
at promoting powerful feature fusion.
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Following the cross-modal interaction, we project the fused feature F ′
c back

to the modality-specific token, denoted F sp
V for LiDAR and F proj

I ∈ (C,H,W )
(which is then reshaped to F sp

I ∈ (HW,C)) for camera. The camera decoder
and LiDAR decoder are finally used to reconstruct the original inputs.

3.2 Unified Representation in 3D Volume Space

Different sensors capture data that, while representing the same scene, often
provide distinct descriptions. For instance, camera-derived images emphasize
the color palette of the environment within their field of view, whereas point
clouds primarily capture object locations. Given these variations, selecting an
appropriate representation for fusing features from disparate modalities becomes
paramount. Such a representation must preserve the unique attributes of multi-
modal information sourced from various sensors.

In pursuit of capturing the full spectrum of object positioning and appear-
ance, the voxel feature in 3D volume space is adopted as the unified repre-
sentation, depicted in Fig. 1(b). The 3D volume space uniquely accommodates
the height dimension, enabling it to harbor more expansive geometric data and
achieve exacting precision in depicting object locations, exemplified by features
like elevated traffic signs. This enriched representation naturally amplifies the ac-
curacy of interactions between objects. A salient benefit of the 3D volume space
is its capacity for direct remapping to original modalities, cementing its position
as an optimal latent space for integrating features. Due to the intrinsic align-
ment of images and point clouds within the 3D volume space, the Multi-modal
3D Interaction Module can bolster representations across streams, sidestepping
the need for additional alignment mechanisms. Such alignment streamlines the
transition between pre-training and fine-tuning, producing favorable outcomes
for subsequent tasks. Additionally, the adaptability of the 3D volume space leaves
the door open for its extension to encompass three or even more modalities.

3.3 Multi-modal Interaction

Projection to 3D Volume Space In the projection of LiDAR to the 3D vol-
ume, the voxel embedding is directed to a predefined 3D volume using positions
from the ego car coordinate system. This method ensures no geometric distortion
is introduced. The resulting feature from this process is denoted as F vol

V . For the
image to 3D volume projection, the 2D-3D Spatial Cross-Attention method is
employed. Following prior works [23, 42], 3D volume queries for each image is
defined as Qvol ∈ RC×H×W×Z . The corresponding 3D points are then projected
to 2D views using the camera’s intrinsic and extrinsic parameters. During this
projection, the 3D points associate only with specific views, termed as Vhit. The
2D feature is then sampled from the view Vhit at the locations of those projected
3D reference points. The process unfolds as:

F vol
I =

1

|Vhit|
∑

i∈Vhit

Nref∑
j=1

DeformAttn
(
Qvol,P(p, i, j), F i

I

)
(1)
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(
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and reshape it for the subsequent stacking 3D de-

formable self-attention blocks. After interaction, we split the output and project them
back to feature token. This contributes more generalized and effective feature learning.

where i indexes the camera view, j indexes the 3D reference points, and Nref is
the total number of points for each 3D volume query. F i

I is the features of the
i-th camera view. P(p, i, j) is the project function that gets the j-th reference
point on the i-th view image.

Multi-modal 3D Interaction Module To fuse the projected 3D volume fea-
tures from the camera(F vol

I ∈ RC×H×W×Z) and the LiDAR(F vol
V ∈ RC×H×W×Z)

branches effectively, the Multi-modal 3D Interaction Module (MMIM) is intro-
duced. As depicted in Fig. 3, MMIM comprises L attention blocks, with L = 3
being the default setting.

Given the emphasis on high performance at high resolutions in downstream
tasks and the limited scale of token sequences in standard self-attention, de-
formable self-attention is selected to alleviate computational demands. Each
block is composed of deformable self-attention, a feed-forward network, and
normalization. Initially, the concatenation of F vol

V and F vol
I is performed along

the channel dimension, reshaping the result to form the query token F vol
c ∈

RHWZ×2C . This token is then inputted into the Multi-modal 3D Interaction
Module, an extension of [59], to promote effective modal interaction. The inter-
active process can be described as follows:

F ′
c =

M∑
m=1

Wm

K∑
k=1

Amk ·W ′
mF vol

c

(
pvol +∆pvolk

)
(2)

where m indexes the attention head, k indexes the sampled keys, and K is the to-
tal sampled key number. ∆pvolk and Amk denote the sampling offset and attention
weight of the k-th sampling point in the m-th attention head, respectively. The
attention weight Amk lies in the range [0, 1], normalized by

∑K
k=1 Amk = 1. At

the end, F ′
c is split along the channel dimension to obtain the modality-specific

3D volume features (F ′
V , F

′
I).
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Projection to Modality-specific Token By tapping into the advantages of
the 3D volume representation, the fused feature can be conveniently projected
onto the 2D image plane and 3D voxel token. For the LiDAR branch, the process
merely involves sampling the features located at the position of the masked voxel
token within the ego-vehicle coordinates. Notably, these features have already
been enriched by the fusion module with semantics from the camera branch.
Regarding the camera branch, the corresponding 2D coordinate (u, v) can be
determined using the projection function T . The 2D-plane feature F proj

I is then
obtained by mapping the 3D volume feature in (x, y, z) to the position (u, v).
The projection function Tproj is defined as :

z

u
v
1

 = Tproj(P ) = K ·Rt ·


x
y
z
1

 (3)

where P ∈ R3 is the position in 3D volume, K ∈ R3×4, Rt ∈ R4×4 are the
camera intrinsic and extrinsic matrices.

3.4 Prediction Target

Three distinct reconstruction tasks supervise each modal decoder. A single linear
layer is applied to the output of each decoder for each task. The dual-modal
reconstruction tasks and their respective loss functions are detailed below. In
alignment with Voxel-MAE [16], the prediction focuses on the number of points
within each voxel. Supervision for this reconstruction uses the Chamfer distance,
which gauges the disparity between two point sets of different scales. Let Gn

denote the masked LiDAR point cloud partitioned into voxels. The Chamfer
loss Lc can be presented as:

Lc = CD (DecV (F sp
V ) , Gn) (4)

where CD (·) stands for Chamfer distance function [13], DecV (·) denote voxel
decoder and F sp

V represents projected voxel features.
In addition to the aforementioned reconstruction task, there is a prediction

to ascertain if a voxel is empty. Supervision for this aspect employs the binary
cross entropy loss, denoted as Locc. The cumulative voxel reconstruction loss is
thus given as:

Lvoxel = Lc + Locc (5)

For the camera branch, the pixel reconstruction is supervised using the Mean
Squared Error (MSE) loss, represented as :

Limg = LMSE (DecI (F
sp
I ) , GI) (6)

where GI is the original images in pixel space, DecI(·) denotes the image decoder
and F sp

I represents projected image features.
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4 Experiments

4.1 Implementation Details

Dataset and Metrics The nuScenes Dataset [5], a comprehensive autonomous
driving dataset, serves as the primary dataset for both pre-training our model
and evaluating its performance on multiple downstream tasks. This dataset en-
compasses 1,000 sequences gathered from Boston and Singapore, with 700 desig-
nated for training and 300 split evenly for validation and testing. Each sequence,
recorded at 10Hz, spans 20 seconds and is annotated at a frequency of 2Hz. In
terms of 3D detection, the principal evaluation metrics employed are mean Av-
erage Precision (mAP) and the nuScenes detection score (NDS). For the task of
BEV map segmentation, the methodology aligns with the dataset’s map expan-
sion pack, using Intersection over Union (IoU) as the assessment metric.

Network Architectures The UniM2AE utilizes SST [14] and Swin-T [27]
as the backbones for the LiDAR Encoder and Camera Encoder, respectively.
In the Multi-modal 3D Interaction Module, 3 deformable self-attention blocks
are stacked, with each attention module comprising 128 input channels and 256
hidden channels. To facilitate the transfer of pre-trained weights for downstream
tasks, BEVFusion-SST and TransFusion-L-SST are introduced, with the LiDAR
backbone in these architectures being replaced by SST.

Pre-training During this stage, the perception ranges are restricted to [-50m,
50m] for x - and y-axes, [-5m, 3m] for z -axes. Each voxel has dimensions of
(0.5m, 0.5m, 4m). In terms of input data masking during the training phase, our
experiments have determined that a masking ratio of 70% for the LiDAR branch
and 75% for the camera branch yields optimal results. By default, all the MAE
methods are trained with a total of 200 epochs on 8 GPUs, a base learning rate
of 2.5e-5. Detailed configurations are reported in the supplemental material.

Fine-tuning Utilizing the encoders from UniM2AE for both camera and Li-
DAR, the process then involves fine-tuning and assessing the capabilities of the
features learned on tasks that are both single-modal and multi-modal in nature.
For tasks that are solely single-modal, one of the pre-trained encoder serves as
the feature extraction mechanism. When it comes to multi-modal tasks, which
include 3D object detection and BEV map segmentation, both the LiDAR en-
coder and the camera branch’s encoder are capitalized upon as the feature ex-
tractors pertinent to these downstream tasks. It’s pivotal to note that while
the decoder plays a role during the pre-training phase, it’s omitted during the
fine-tuning process. A comparison of the pre-trained feature extractors with a
variety of baselines across different tasks was conducted, ensuring the experi-
mental setup remained consistent. Notably, when integrated into fusion-based
methodologies, the pre-trained Multi-modal 3D Interaction Module showcases
competitive performance results. Detailed architectures and configurations are
in the supplemental material.
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Table 1: Data-efficient 3D object detection results of on the nuScenes validation set.
Backbones in single-modality and multi-modality are pre-trained using various MAE
methods. The model performances are reported using different amounts of fine-tuning
data. Random denotes training from scratch. MIM+Voxel-MAE: for the initialization of
the model, the image backbone loads the GreenMIM [18] pre-trained weights, whereas
the point cloud backbone loads the Voxel-MAE [16] pre-trained weight. L and C rep-
resent LiDAR and Camera, respectively. *: our re-implementation.

Data amount Modality Initialization mAP NDS Car Truck C.V. Bus Trailer Barrier Motor Bike Ped. T.C.

20%

L
Random 44.3 56.3 78.8 41.1 13.1 50.7 18.8 52.8 46.1 17.3 75.7 49.1

Voxel-MAE* 48.9 59.8 80.9 47.0 12.8 59.0 23.6 61.9 47.8 23.5 79.9 52.4
UniM2AE 50.0 60.0 81.0 47.8 12.0 57.3 24.0 62.3 51.2 26.8 81.4 55.8

C+L

Random 51.5 50.9 84.1 47.6 13.3 49.8 27.9 65.0 53.9 26.8 78.8 67.8
MIM+Voxel-MAE 54.3 51.2 84.3 50.8 18.9 52.3 28.9 68.4 57.4 32.1 80.3 69.2

PiMAE* [6] 52.5 52.0 84.1 48.9 17.5 50.0 28.0 66.2 51.6 26.8 80.8 70.9
UniM2AE 55.9 52.8 85.8 51.1 19.3 54.2 30.6 69.0 61.1 34.3 83.0 70.8

40%

L
Random 50.9 60.5 81.4 47.6 13.7 58.0 24.5 61.3 57.7 30.1 80.4 54.4

Voxel-MAE* 52.6 62.2 82.4 49.1 15.4 62.2 25.8 64.5 56.8 30.4 82.3 57.5
UniM2AE 52.9 62.6 82.7 49.2 15.8 60.1 23.7 65.5 58.4 31.2 83.8 58.9

C+L

Random 58.6 61.9 86.2 54.7 21.7 60.0 33.0 70.7 64.2 38.6 83.0 74.3
MIM+Voxel-MAE 60.2 63.5 86.6 56.5 22.5 64.1 33.5 72.2 66.1 41.9 83.8 74.8

PiMAE* [6] 61.4 64.0 86.9 57.8 25.2 64.6 36.2 70.6 69.8 44.3 83.0 75.5
UniM2AE 62.0 64.5 87.0 57.8 22.8 62.7 38.7 69.7 66.8 50.5 86.0 77.9

60%

L
Random 51.9 61.7 82.2 49.0 15.6 61.2 24.9 62.9 56.3 32.1 81.6 53.1

Voxel-MAE* 54.2 63.5 83.0 51.1 16.3 62.0 27.5 64.9 61.2 34.7 82.9 58.0
UniM2AE 54.7 63.8 83.1 51.0 17.3 62.5 26.9 65.1 62.2 35.7 83.4 59.9

C+L

Random 61.6 65.2 87.3 58.5 23.9 65.2 35.8 71.9 67.8 46.7 85.7 77.0
MIM+Voxel-MAE 62.1 65.7 87.2 56.7 23.0 65.4 37.0 71.7 70.6 47.3 85.6 76.7

PiMAE* [6] 62.3 65.5 87.3 58.8 24.9 61.6 38.7 72.7 68.5 45.7 86.0 79.1
UniM2AE 62.4 66.1 87.7 59.7 23.8 67.6 37.0 70.5 68.4 48.9 86.6 77.8

80%

L
Random 52.7 62.5 82.3 49.6 16.0 63.3 25.8 60.7 58.6 31.6 82.0 56.7

Voxel-MAE* 55.1 64.2 83.4 51.7 18.8 64.0 28.7 63.8 62.2 35.1 84.3 58.7
UniM2AE 55.6 64.6 83.4 52.9 18.2 64.2 29.4 64.7 63.1 36.1 84.5 58.8

C+L

Random 62.5 66.1 87.1 57.6 24.0 66.4 38.1 71.1 68.4 48.8 86.2 77.6
MIM+Voxel-MAE 63.0 66.4 87.6 59.6 24.1 66.1 38.0 71.3 70.2 48.8 86.5 78.1

PiMAE* [6] 63.7 66.6 87.0 61.9 25.3 71.2 38.6 70.3 73.9 49.3 84.6 74.7
UniM2AE 63.9 67.1 87.7 59.6 24.9 69.2 39.8 71.3 71.0 50.2 86.8 78.7

100%

L
Random 53.6 63.0 82.3 49.8 16.7 64.0 26.2 60.9 61.7 33.0 82.2 58.9

Voxel-MAE* 55.3 64.1 83.2 51.2 16.8 64.6 28.3 65.0 61.8 39.6 83.6 58.9
UniM2AE 55.8 64.6 83.3 51.3 17.6 63.7 28.6 65.4 62.8 40.8 83.9 60.3

C+L

Random 63.6 67.4 87.7 58.0 26.6 67.8 38.4 72.6 71.8 47.6 87.0 78.9
MIM+Voxel-MAE 63.7 67.7 87.6 58.3 25.3 67.1 38.8 70.8 71.7 51.5 86.7 78.9

PiMAE* [6] 63.9 67.9 87.3 58.7 27.0 67.6 38.7 69.7 71.4 55.4 86.8 76.6
UniM2AE 64.3 68.1 87.9 57.8 24.3 68.6 42.2 71.6 72.5 51.0 87.2 79.5

4.2 Data Efficiency

The primary motivation behind employing MAE is to minimize the dependency
on annotated data without compromising the efficiency and performance of
the model. In assessing the representation derived from the pre-training with
UniM2AE, experiments were conducted on datasets of varying sizes, utilizing
different proportions of the labeled data. Notably, for training both the single-
modal and multi-modal 3D Object Detection models, fractions of the annotated
dataset, namely {20%, 40%, 60%, 80%, 100%}, are used.
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Table 2: Performances of 3D object detection on the nuScenes validation split. †: Fine-
tuned with the pre-trained MMIM. *: Our re-implementation with SST backbone.

Method Modality Voxel Size(m) NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

CenterPoint [52] L [0.075, 0.075, 0.2] 66.8 59.6 29.2 25.5 30.2 25.9 19.4
LargeKernel3D [11] L [0.075, 0.075, 0.2] 69.1 63.9 28.6 25.0 35.1 21.1 18.7
TransFusion-L [2] L [0.075, 0.075, 0.2] 70.1 65.4 - - - - -
TransFusion-L-SST L [0.15, 0.15, 8] 69.9 65.0 28.0 25.3 30.1 24.1 19.0
TransFusion-L-SST+UniM2AE-L L [0.15, 0.15, 8] 70.4 65.7 28.0 25.2 29.5 23.5 18.6
FUTR3D [8] C+L [0.075, 0.075, 0.2] 68.3 64.5 - - - - -
Focals Conv [10] C+L [0.075, 0.075, 0.2] 69.2 64.0 33.2 25.4 27.8 26.8 19.3
MVP [53] C+L [0.075, 0.075, 0.2] 70.7 67.0 28.9 25.1 28.1 27.0 18.9
TransFusion [2] C+L [0.075, 0.075, 0.2] 71.2 67.3 27.2 25.2 27.4 25.4 19.0
MSMDFusion [20] C+L [0.075, 0.075, 0.2] 72.1 69.3 - - - - -
BEVFusion [28] C+L [0.075, 0.075, 0.2] 71.4 68.5 28.7 25.4 30.4 25.6 18.7
BEVFusion-SST C+L [0.15, 0.15, 8] 71.5 68.2 27.8 25.3 30.2 23.6 18.9
BEVFusion-SST+UniM2AE C+L [0.15, 0.15, 8] 71.9 68.4 27.2 25.2 28.8 23.2 18.7
BEVFusion-SST+UniM2AE† C+L [0.15, 0.15, 4] 72.7 69.7 26.9 25.2 27.3 23.2 18.9
FocalFormer3D [9] C+L [0.075, 0.075, 0.2] 73.1 70.5 - - - - -
FocalFormer3D*+UniM2AE† C+L [0.15, 0.15, 4] 73.8 71.1 26.9 25.0 26.7 19.6 18.9

In the realm of single-modal 3D self-supervised techniques, UniM2AE is jux-
taposed against Voxel-MAE [16] using an anchor-based detector. Following the
parameters set by Voxel-MAE, the detector undergoes training for 288 epochs
with a batch size of 4 and an initial learning rate pegged at 1e-5. On the other
hand, for multi-modal strategies, evaluations are conducted on a fusion-based de-
tector [28] equipped with a TransFusion head [2]. As per current understanding,
this is a pioneering attempt at implementing multi-modal MAE in autonomous
driving. For the sake of a comparative analysis, a combination of the pre-trained
Swin-T from GreenMIM [18] and SST from Voxel-MAE [16] is utilized.

According to the result in Table 1, the proposed UniM2AE presents a sub-
stantial enhancement to the detector, exhibiting an improvement of 4.4/1.9
mAP/NDS over random initialization and 1.6/1.6 mAP/NDS compared to the
basic amalgamation of GreenMIM and Voxel-MAE when trained on just 20%
of the labeled data. Impressively, even when utilizing the entirety of the labeled
dataset, UniM2AE continues to outperform, highlighting its superior ability to
integrate multi-modal features in the unified 3D volume space during the pre-
training phase. Moreover, it’s noteworthy to mention that while UniM2AE isn’t
specifically tailored for a LiDAR-only detector, it still yields competitive out-
comes across varying proportions of labeled data. This underscores the capability
of UniM2AE to derive more insightful representations.

PiMAE [6], as the first framework to explore multi-modal MAE in indoor sce-
narios, projects point clouds onto the image plane aligned and masked with the
image, followed by concatenation of dual modality tokens along the sequence
dimension to pre-train the ViT backbone. We compare the UniM2AE to the
previous SOTA multi-modal pre-training method i.e. PiMAE, on the nuScenes
benchmark [5]. As shown in Table 1, when trained with 20% labeled data, Pi-
MAE outperforms training from scratch with a marginal increase of 1.1/1.0
NDS/mAP due to the loss of depth information in aligning point clouds with
images in the pixel coordinates. Conversely, UniM2AE, aligning in the unified
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Table 3: Performances of the BEV map segmentation on the nuScenes validation split.
†: Fine-tuned with the pre-trained MMIM. *: re-implemented by training from scratch.

Method Modality Drivable Ped. Cross. Walkway Stop Line Carpark Divider mIoU

CVT [58] C 74.3 36.8 39.9 25.8 35.0 29.4 40.2
OFT [34] C 74.0 35.3 45.9 27.5 35.9 33.9 42.1
LSS [32] C 75.4 38.8 46.3 30.3 39.1 36.5 44.4
M2BEV [44] C 77.2 - - - - 40.5 -
BEVFusion* [28] C 78.2 48.0 53.5 40.4 45.3 41.7 51.2
BEVFusion*+UniM2AE-C C 79.5 50.5 54.9 42.4 47.3 42.9 52.9

MVP [53] C+L 76.1 48.7 57.0 36.9 33.0 42.2 49.0
PointPainting [39] C+L 75.9 48.5 57.7 36.9 34.5 41.9 49.1
BEVFusion [28] C+L 85.5 60.5 67.6 52.0 57.0 53.7 62.7
X-Align [3] C+L 86.8 65.2 70.0 58.3 57.1 58.2 65.7
BEVFusion-SST C+L 84.9 59.2 66.3 48.7 56.0 52.7 61.3
BEVFusion-SST+UniM2AE C+L 85.1 59.7 66.6 48.7 56.0 52.6 61.4
BEVFusion-SST+UniM2AE† C+L 88.7 67.4 72.9 59.0 59.0 59.7 67.8

3D volume space, substantially reduces information loss, boosting downstream
model by 1.9/4.4 NDS/mAP, respectively. The utilization of MMIM also accel-
erates pre-training convergence, which is also the key to improving downstream
task performance.

4.3 Comparison on Downstream Tasks

3D Object Detection To demonstrate the capability of the learned represen-
tation, we fine-tune various pre-trained detectors on the nuScenes dataset. As
shown in Table 2, our UniM2AE substranitally improves both LiDAR-only and
fusion-based detection models. Compared to TransFusion-L-SST, the UniM2AE-
L registers a 0.5/0.7 NDS/mAP enhancement on the nuScenes validation subset.
In the multi-modality realm, the UniM2AE elevates the outcomes of BEVFusion-
SST by 1.2/1.5 NDS/mAP and improves FocalFormer3D [9] by 0.7/0.6 NDS/mAP
when MMIM is pre-trained. Of note is that superior results are attained even
when a larger voxel size is employed. This is particularly significant given that
Transformer-centric strategies (e.g . SST [14]) generally trail CNN-centric method-
ologies (e.g . VoxelNet [47]).

BEV Map Segmentation Table 3 presents our BEV map segmentation re-
sults on the nuScenes dataset based on BEVFusion [28]. For the camera modality,
we outperform the results of training from scratch by 1.7 mAP. In the multi-
modality setting, the UniM2AE boosts the BEVFusion-SST by 6.5 mAP with
pre-trained MMIM and achieve 2.1 improvement over state-of-the-art meth-
ods X-Align [3], indicating the effectiveness and strong generalization of our
UniM2AE.
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Table 4: Comparison of the input modality and the interaction space.

Modality Interaction Space mAP NDSCamera LiDAR BEV 3D Volume

59.0 61.8
✓ 59.7 62.6

✓ 60.1 62.6

✓ ✓ 60.7 63.1
✓ ✓ ✓ 62.0 64.3
✓ ✓ ✓ 62.8 65.2

Table 5: Ablation experiments to validate our settings. Detection results are reported
on the nuScenes validation split

(a) Impact of the masking ratio.

Masking Ratio mAP NDSCamera LiDAR

60% 60% 63.6 66.5
70% 70% 64.2 67.3
75% 70% 64.5 67.3
80% 80% 63.3 66.4

(b) Impact of the number of layers along z -axis.

Z-layers NDS mAP FLOPs GPU memory

1 56.6 54.9 77G 5.84G
2 58.3 55.0 79G 6.29G
4 58.2 55.0 88G 7.16G
8 58.4 55.0 105G 8.80G

4.4 Ablation Study

Multi-modal Pre-training To underscore the importance of the Multi-modal
3D Interaction Module (MMIM) in the 3D volume space for dual modalities, ab-
lation studies were performed with single modal input and were compared with
other interaction techniques. As presented in Table 4, the 1st row shows the
result of training from scratch. The 2nd and 3rd rows show fine-tuning results
with parameters pre-trained on a single modality. The 4th row displays out-
comes using the two uni-modal pre-training parameters. The 5th and 6th rows
present fine-tuning results with weights pre-trained with different feature spaces
for integration. Results reveal that by utilizing MMIM to integrate features from
two branches within a unified 3D volume space, the UniM2AE model achieves
a remarkable enhancement in performance. Specifically, there’s a 3.4 NDS im-
provement for training from scratch, 2.6 NDS for LiDAR-only and camera-only
pre-training, and 2.1 NDS when simply merging the two during the initialization
of downstream detectors. Additionally, a noticeable decline in performance be-
comes evident when substituting the 3D volume space with BEV, as showcased
in the concluding rows of Table 4. This drop is likely attributed to features
mapped onto BEV losing essential geometric and semantic details, especially
along the height axis, resulting in a less accurate representation of an object’s
true height and spatial positioning. These findings conclusively highlight the
crucial role of concurrently integrating camera and LiDAR features within the
unified 3D volume space and further validate the effectiveness of the MMIM.
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Masking Ratio In Table 5a, an examination of the effects of the masking ratio
reveals that optimal performance is achieved with a high masking ratio (70%
and 75%). This not only offers advantages in GPU memory savings but also
ensures commendable performance. On the other hand, if the masking ratio is
set too low or excessively high, there is a notable decline in performance, akin
to the results observed with the single-modal MAE.

Number of Layers along z -axis As demonstrated in Table 5b, an increase in
the number of layers beyond two does not uniformly enhance performance, yet it
invariably escalates the computational cost. This observation can be intuitively
understood by considering the typical consistency of road conditions and the
specific altitudes where objects are located within a scene(e.g . street lights are
found above, whereas cars are on the road). Such spatial distribution suggests
that a high resolution along the z -axis may not always contribute to a meaning-
ful improvement, especially when the additional computational burden is taken
into account. Therefore, to strike an optimal balance between computational
efficiency and model effectiveness, we opted for two layers along z -axis.

5 Conclusion

The disparity in the multi-modal integration of MAE methods for practical driv-
ing sensors is identified. With the introduction of UniM2AE, a multi-modal self-
supervised model is brought forward that adeptly marries image semantics to
LiDAR geometries. Two principal innovations define this approach: firstly, the
fusion of dual-modal attributes into an augmented 3D volume, which incorpo-
rates the height dimension absent in BEV; and secondly, the deployment of the
Multi-modal 3D Interaction Module that guarantees proficient cross-modal com-
munications. Benchmarks conducted on the nuScenes Dataset reveal substantial
enhancements in 3D object detection by 1.2/1.5 NDS/mAP and in BEV map
segmentation by 6.5 mAP, reinforcing the potential of UniM2AE in advancing
autonomous driving perception.

Limitations UniM2AE uses a random masking strategy for sensor data from
different modalities, which fails to consider their interconnections. Employing
simultaneous or complementary masking across multi-modal inputs may enhance
feature learning. Moreover, dataset in autonomous driving exhibits significant
temporal continuity, with adjacent frames frequently resembling each other. This
aspect is omitted in our UniM2AE, leading to pre-training on redundant data,
which diminishes pre-training efficiency.
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