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Abstract. We introduce DragAnything, which utilizes a entity repre-
sentation to achieve motion control for any object in controllable video
generation. Comparison to existing motion control methods, DragAny-
thing offers several advantages. Firstly, trajectory-based is more user-
friendly for interaction, when acquiring other guidance signals (e.g.,
masks, depth maps) is labor-intensive. Users only need to draw a line (tra-
jectory) during interaction. Secondly, our entity representation serves as
an open-domain embedding capable of representing any object, enabling
the control of motion for diverse entities, including background. Lastly,
our entity representation allows simultaneous and distinct motion con-
trol for multiple objects. Extensive experiments demonstrate that our
DragAnything achieves state-of-the-art performance for FVD, FID, and
User Study, particularly in terms of object motion control, where our
method surpasses the previous methods (e.g., DragNUWA) by 26% in
human voting. The project website is at: DragAnything.
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1 Introduction

Recently, there have been significant advancements in video generation, with
notable works such as Imagen Video [20], Gen-2 [13], PikaLab [1], SVD [3],
and SORA [38] garnering considerable attention from the community. However,
the pursuit of controllable video generation has encountered relatively slower
progress, notwithstanding its pivotal significance. Unlike controllable static im-
age generation [32, 33, 50], controllable video generation poses a more intricate
challenge, demanding not only spatial content manipulation but also precise
temporal motion control.

Recently, trajectory-based motion control [2, 19, 42, 48] has been proven to
be a user-friendly and efficient solution for controllable video generation. Com-
pared to other guidance signals such as masks or depth maps, drawing a trajec-
tory provides a simple and flexible approach. Early trajectory-based [2, 4, 5, 19]

B Corresponding author.

https://orcid.org/0000-0003-3912-7212
https://github.com/showlab/DragAnything


2 Wu et al.

Input Image

Motion Trajectory Drag Region

(a) Drag Pixel (e.g., DragNUWA and MotionCtrl) (b) Drag Any Object with its Entity Semantic Representation  (Our DragAnything)

Input Image

Mask with SAM Trajectory Drag Region

Video Diffusion Video Diffusion

Fig. 1: Comparison with Previous Works. (a) Previous works (Motionctrl [42],
DragNUWA [48]) achieved motion control by dragging pixel points or pixel regions.
(b) DragAnything enables more precise entity-level motion control by manipulating
the corresponding entity representation.

works utilized optical flow or recurrent neural networks to control the motion
of objects in controllable video generation. As one of the representative works,
DragNUWA [48] encodes sparse strokes into dense flow space, which is then used
as a guidance signal for controlling the motion of objects. Similarly, MotionC-
trl [42] directly encodes the trajectory coordinates of each object into a vector
map, using this vector map as a condition to control the motion of the object.
These works have made significant contributions to the controllable video gener-
ation. However, an important question has been overlooked: Can a single point
on the target truly represent the target?

Certainly, a single pixel point cannot represent an entire object, as shown in
Figure 2 (a)-(b). Thus, dragging a single pixel point may not precisely control
the object it corresponds to. As shown in Figure 1, given the trajectory of a
pixel on a star of starry sky, the model may not distinguish between controlling
the motion of the star or that of the entire starry sky; it merely drags the
associated pixel area. Indeed, resolving this issue requires clarifying two concepts:
1) What entity. Identifying the specific area or entity to be dragged. 2) How
to drag. How to achieve dragging only the selected area, meaning separating the
background from the foreground that needs to be dragged. For the first challenge,
interactive segmentation [24,40] is an efficient solution. For instance, in the initial
frame, employing SAM [24] allows us to conveniently select the region we want
to control. In comparison, the second technical issue poses a greater challenge.
To address this, this paper proposes a novel Entity Representation to achieve
precise motion control for any entity in the video.

Some works [11, 16, 37] has already demonstrated the effectiveness of using
latent features to represent corresponding objects. Anydoor [11] utilizes features
from Dino v2 [30] to handle object customization, while VideoSwap [16] and
DIFT [37] employ features from the diffusion model [33] to address video editing
tasks. Inspired by these works, we present DragAnything, which utilize the latent
feature of the diffusion model to represent each entity. As shown in Figure 2
(d), based on the coordinate indices of the entity mask, we can extract the
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Fig. 2: Comparison for Different Representation Modeling. (a) Point represen-
tation: using a coordinate point (x, y) to represent an entity. (b) Trajectory Map: using
a trajectory vector map to represent the trajectory of the entity. (c) 2D gaussian: using
a 2D Gaussian map to represent an entity. (c) Box representation: using a bounding
box to represent an entity. (d) Entity representation: extracting the latent diffusion
feature of the entity to characterize it.

corresponding semantic features from the diffusion feature of the first frame.
We then use these features to represent the entity, achieving entity-level motion
control by manipulating the spatial position of the corresponding latent feature.

In our work, DragAnything employs SVD [3] as the foundational model.
Training DragAnything requires video data along with the motion trajectory
points and the entity mask of the first frame. To obtain the required data and
annotations, we utilize the video segmentation benchmark [28] to train DragAny-
thing. The mask of each entity in the first frame is used to extract the central
coordinate of that entity, and then CoTrack [23] is utilized to predict the motion
trajectory of the point as the entity motion trajectory.

Our main contributions are summarized as follows:

– New insights for trajectory-based controllable generation that reveal the dif-
ferences between pixel-level motion and entity-level motion.

– Different from the drag pixel paradigm, we present DragAnything, which
can achieve true entity-level motion control with the entity representation.

– DragAnything achieves SOTA performance for FVD, FID, and User Study,
surpassing the previous method by 26% in human voting for motion control.
DragAnything supports interactive motion control for anything in context,
including background (e.g., sky), as shown in Figure 6 and Figure 9.

2 Related Works

2.1 Image and Video Generation

Recently, image generation [15,32,33,35,44] has attracted considerable attention.
Some notable works, such as Stable Diffusion [33] of Stability AI, DALL-E2 [32]
of OpenAI, Imagen [35] of Google, RAPHAEL [47] of SenseTime, and Emu [12]
of Meta, have made significant strides, contributions, and impact in the domain
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of image generation tasks. Controllable image generation has also seen signifi-
cant development and progress, exemplified by ControlNet [50] and DragDiffu-
sion [29]. By utilizing guidance information such as Canny edges, Hough lines,
user scribbles, human key points, segmentation maps, precise image generation
can be achieved.

In contrast, progress [8, 41, 43, 46, 49, 54] in the field of video generation is
still relatively early-stage. Video diffusion models [22] was first introduced using
a 3D U-Net diffusion model architecture to predict and generate a sequence of
videos. Imagen Video [20] proposed a cascaded diffusion video model for high-
definition video generation, and attempt to transfer the text-to-image setting to
video generation. Show-1 [49] directly implements a temporal diffusion model
in pixel space, and utilizes inpainting and super-resolution for high-resolution
synthesis. Video LDM [6] marks the first application of the LDM paradigm to
high-resolution video generation, introducing a temporal dimension to the la-
tent space diffusion model. I2vgen-xl [51] introduces a cascaded network that
improves model performance by separating these two factors and ensures data
alignment by incorporating static images as essential guidance. Apart from aca-
demic research, the industry has also produced numerous notable works, in-
cluding Gen-2 [13], PikaLab [1], and SORA [38]. However, compared to the
general video generation efforts, the development of controllable video genera-
tion still has room for improvement. In our work, we aim to advance the field of
trajectory-based video generation.

2.2 Controllable Video Generation

There have been some efforts [9, 17, 26, 27, 31, 52] focused on controllable video
generation, such as Click to Move [2], AnimateDiff [18], Control-A-Video [10],
Emu Video [14], and Motiondirector [53]. Control-A-Video [10] attempts to
generate videos conditioned on a sequence of control signals, such as edge or
depth maps, with two motion-adaptive noise initialization strategies. Follow
Your Pose [27] propose a two-stage training scheme that can utilize image pose
pair and pose-free video to obtain the pose-controllable character videos. Con-
trolVideo [52] design a training-free framework to enable controllable text-to-
video generation with structural consistency. These works all focus on video
generation tasks guided by dense guidance signals (such as masks, human poses,
depth). However, obtaining dense guidance signals in real-world applications is
challenging and not user-friendly. By comparison, using a trajectory-based ap-
proach for drag seems more feasible.

Early trajectory-based works [2,4,5,19] often utilized optical flow or recurrent
neural networks to achieve motion control. TrailBlazer [26] focuses on enhancing
controllability in video synthesis by employing bounding boxes to guide the
motion of subject. DragNUWA [48] encodes sparse strokes into a dense flow
space, subsequently employing this as a guidance signal to control the motion
of objects. Similarly, MotionCtrl [42] directly encodes the trajectory coordinates
of each object into a vector map, using it as a condition to control the object’s
motion. These works can be categorized into two paradigms: Trajectory Map
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(point) and box representation. The box representation (e.g., TrailBlazer [26])
only handle instance-level objects and cannot accommodate backgrounds such
as starry skies. Existing Trajectory Map Representation (e.g., DragNUWA,
MotionCtrl) methods are quite crude, as they do not consider the semantic
aspects of entities. In other words, a single point cannot adequately represent
an entity. In our paper, we introduce DragAnything, which can achieve true
entity-level motion control using the proposed entity representation.

3 Methodology

3.1 Task Formulation and Motivation

Task Formulation. The trajectory-based video generation task requires the
model to synthesize videos based on the motion trajectories. Given a point
trajectories (x1, y1), (x2, y2), . . . , (xL, yL), where L denotes the video length, a
conditional denoising autoencoder ϵθ(z, c) is utilized to generate videos that
correspond to the trajectory. The guidance signal c encompasses three types of
information: trajectory points, the first frame, and the entity mask of first frame.

Motivation. Recently, some trajectory-based works, such as DragNUWA [48]
and MotionCtrl [42] have explored using trajectory points to control the motion
of objects in video generation. These approaches typically directly manipulate
corresponding pixels or pixel areas using the provided trajectory coordinates or
their derivatives. However, they overlook a crucial issue: As shown in Figure 1
and Figure 2, the provided trajectory points may not fully represent
the entity we intend to control. Therefore, dragging these points may not
necessarily correctly control the motion of the object.

To validate our hypothesis, i.e., that simply dragging pixels or pixel re-
gions cannot effectively control object motion, we designed a toy experiment
to confirm. As shown in Figure 3, we employed a classic point tracker, i.e.,
Co-Tracker [23], to track every pixel in the synthesized video and observe their
trajectory changes. From the change in pixel motion, we gain two new insights:

Insight 1: The trajectory points on the object cannot represent the entity. (Fig-
ure 3 (a)). From the pixel motion trajectories of DragUNWA, it is evident that
dragging a pixel point of the cloud does not cause the cloud to move; instead, it
results in the camera moving up. This indicates that the model cannot perceive
our intention to control the cloud, implying that a single point cannot represent
the cloud. Therefore, we pondered whether there exists a more direct and effec-
tive representation that can precisely control the region we intend to manipulate
(the selected area).

Insight 2: For the trajectory point representation paradigm (Figure 2 (a)-(c)),
pixels closer to the drag point receive a greater influence, resulting in larger
motions (Figure 3 (b)). By comparison, we observe that in the videos synthesized
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Fig. 3: Toy experiment for the motivation of Entity Representation. Existing
methods (DragNUWA [48] and MotionCtrl [42]) directly drag pixels, which cannot
precisely control object targets, whereas our method employs entity representation to
achieve precise control.

by DragNUWA, pixels closer to the drag point exhibit larger motion. However,
what we expect is for the object to move as a whole according to the provided
trajectory, rather than individual pixel motion.

Based on the above two new insights and observations, we present a novel
Entity Representation, which extracts latent features of the object we want to
control as its representation. As shown in Figure 3, visualization of the corre-
sponding motion trajectories shows that our method can achieve more precise
entity-level motion control. For example, Figure 3 (b) shows that our method
can precisely control the motion of seagulls and fish, while DragNUWA only
drags the movement of corresponding pixel regions, resulting in abnormal defor-
mation of the appearance.

3.2 Architecture

Following SVD [3], our architecture mainly consists of three components: a de-
noising diffusion model (3D U-Net [34]) to learn the denoising process for space
and time efficiency, an encoder and a decoder, to encode videos into the latent
space and reconstruct the denoised latent features back into videos. Inspired by
Controlnet [50], we adopt a 3D Unet to encode the guidance signal, which is
then applied to the decoder blocks of the denoising 3D Unet of SVD, as shown
in Figure 4. Different from the previous works, we designed an entity represen-
tation extraction mechanism and combined it with 2D Gaussian representation
to form the final effective representation.

3.3 Entity Semantic Representation Extraction

The conditional signal of our method requires gaussian representation (§3.3) and
the corresponding entity representation (§3.3). In this section, we describe how
to extract these representations from the first frame image.
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Fig. 4: DragAnything Framework. The architecture includes two parts: 1) Entity
Semantic Representation Extraction. Latent features from the Diffusion Model are ex-
tracted based on entity mask indices to serve as corresponding entity representations. 2)
Main Framework for DragAnything. Utilizing the corresponding entity representations
and 2D Gaussian representations to control the motion of entities.

Entity Representation Extraction. Given the first frame image I ∈ RH×W×3

with the corresponding entity mask M, we first obtain the latent noise x of the
image through diffusion inversion (diffusion forward process) [21,37,45], which is
not trainable and is based on a fixed Markov chain that gradually adds Gaussian
noise to the image. Then, a denoising U-Net ϵθ is used to extract the correspond-
ing latent diffusion features F ∈ RH×W×C as follows:

F = ϵθ(xt, t), (1)

where t represents the t-th time step. Previous works [16, 37, 45] has already
demonstrated the effectiveness of a single forward pass for representation ex-
traction, and extracting features from just one step has two advantages: faster
inference speed and better performance. With the diffusion features F , the cor-
responding entity embeddings can be obtained by indexing the corresponding
coordinates from the entity mask. For convenience, average pooling is used
to process the corresponding entity embeddings to obtain the final embedding
{e1, e2, ..., ek}, where k denotes the number of entity and each of them has a
channel size of C.

To associate these entity embeddings with the corresponding trajectory points,
we directly initialize a zero matrix E ∈ RH×W×C and then insert the entity em-
beddings based on the trajectory sequence points, as shown in Figure 5. During
the training process, we use the entity mask of the first frame to extract the cen-
ter coordinates {(x1, y1), (x2, y2), ..., (xk, yk)} of the entity as the starting point
for each trajectory sequence point. With these center coordinate indices, the fi-
nal entity representation Ê can be obtained by inserting the entity embeddings
into the corresponding zero matrix E (Deatils see Section 3.4).
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With the center coordinates {(x1, y1), (x2, y2), ..., (xk, yk)} of the entity in
the first frame, we use Co-Tracker [23] to track these points and obtain the corre-
sponding motion trajectories {{(x1

i , y
1
i )}Li=1, {(x2

i , y
2
i )}Li=1, ..., {(xk

i , y
k
i )}Li=1}, where

L is the length of video. Then we can obtain the corresponding entity represen-
tation {Êi}Li=1 for each frame.

2D Gaussian Representation Extraction. Pixels closer to the center of the
entity are typically more important. We aim to make the proposed entity rep-
resentation focus more on the central region, while reducing the weight of edge
pixels. The 2D Gaussian Representation can effectively enhance this aspect, with
pixels closer to the center carrying greater weight, as illustrated in Figure 2 (c).
With the point trajectories {{(x1

i , y
1
i )}Li=1, {(x2

i , y
2
i )}Li=1, ..., {(xk

i , y
k
i )}Li=1} and

{r1, ..., rk}, we can obtain the corresponding 2D Gaussian Distribution Repre-
sentation trajectory sequences {Gi}Li=1, as illustrated in Figure 5. Then, after
processing with a encoder E (see Section 3.3), we merge it with the entity repre-
sentation to achieve enhanced focus on the central region performance, as shown
in Figure 4.

Encoder for Entity Representation and 2D Gaussian Map. As shown in
Figure 4, the encoder, denoted as E , is utilized to encode the entity representation
and 2D Gaussian map into the latent feature space. In this encoder, we utilized
four blocks of convolution to process the corresponding input guidance signal,
where each block consists of two convolutional layers and one SiLU activation
function. Each block downsamples the input feature resolution by a factor of 2,
resulting in a final output resolution of 1/8. The encoder structure for processing
the entity and gaussian representation is the same, with the only difference being
the number of channels in the first block, which varies when the channels for the
two representations are different. After passing through the encoder, we follow
ControlNet [50] by adding the latent features of Entity Representation and 2D
Gaussian Map Representation with the corresponding latent noise of the video:

{Ri}Li=1 = E({Êi}Li=1) + E({Gi}Li=1) + {Zi}Li=1, (2)

where Zi denotes the latent noise of i-th frame. Then the feature {Ri}Li=1 is
inputted into the encoder of the denoising 3D Unet to obtain four features with
different resolutions, which serve as latent condition signals. The four features
are added to the feature of the denoising 3D Unet of the foundation model.

3.4 Training and Inference

Ground Truth Label Generation. During the training process, we need to
generate corresponding Trajectories of Entity Representation and 2D Gaussian,
as shown in Figure 5. First, for each entity, we calculate its incircle circle using
its corresponding mask, obtaining its center coordinates (x, y) and radius r.
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Fig. 5: Illustration of ground truth generation procedure. During the training
process, we generate ground truth labels from video segmentation datasets.

Then we use Co-Tracker [23] to obtain its corresponding trajectory of the center
{(xi, yi)}Li=1, serving as the representative motion trajectory of that entity. With
these trajectory points and radius, we can calculate the corresponding Gaussian
distribution value [7] at each frame. For entity representation, we insert the
corresponding entity embedding into the circle centered at (x, y) coordinates
with a radius of r. Finally, we obtain the corresponding trajectories of Entity
Representation and 2D Gaussian for training our model.

Loss Function. In video generation tasks, Mean Squared Error (MSE) is com-
monly used to optimize the model. Given the corresponding entity representation
Ê and 2D Gaussian representation G, the objective can be simplified to:

Lθ =

L∑
i=1

M
∣∣∣∣∣∣ϵ− ϵθ

(
xt,i, Eθ(Êi), Eθ(Gi)

)∣∣∣∣∣∣2
2
, (3)

where Eθ denotes the encoder for entity and 2d gaussian representations. M is
the mask for entities of images at each frame. The optimization objective of the
model is to control the motion of the target object. For other objects or the
background, we do not want to affect the generation quality. Therefore, we use
a mask M to constrain the MSE loss to only backpropagate through the areas
we want to optimize.

Inference of User-Trajectory Interaction. DragAnything is user-friendly.
During inference, the user only needs to click to select the region they want to
control with SAM [24], and then drag any pixel within the region to form a
reasonable trajectory. Our DragAnything can then generate a video that corre-
sponds to the desired motion.

4 Experiments

4.1 Experiment Settings

Implementation Details. Our DragAnything is based on the Stable Video
Diffusion (SVD) [3] architecture and weights, which were trained to generate
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25 frames at a resolution of 320 × 576. All the experiments are conducted on
PyTorch with Tesla A100 GPUs. AdamW [25] as the optimizer for total 100k
training steps with the learning rate of 1e-5.

Evaluation Metrics. To comprehensively evaluate our approach, we con-
ducted evaluations from both human assessment and automatic script metrics
perspectives. Following MotionControl [42], we employed two types of automatic
script metrics: 1) Evaluation of video quality : We utilized Frechet Inception Dis-
tance (FID) [36] and Frechet Video Distance (FVD) [39] to assess visual quality
and temporal coherence. 2) Assessment of object motion control performance:
The Euclidean distance between the predicted and ground truth object trajec-
tories (ObjMC) was employed to evaluate object motion control. In addition,
for the user study, considering video aesthetics, we collected and annotate 30
images from Google Image along with their corresponding point trajectories and
the corresponding mask. Three professional evaluators are required to vote on
the synthesized videos from two aspects: video quality and motion matching.
The videos of Figure 6 and Figure 9 are sampled from these 30 cases.

Datasets. Evaluation for the trajectory-guided video generation task re-
quires the motion trajectory of each video in the test set as input. To obtain
such annotated data, we adopted the VIPSeg [28] validation set as our test set.
We utilized the instance mask of each object in the first frame of the video, ex-
tracted its central coordinate, and employed Co-Tracker [23] to track this point
and obtain the corresponding motion trajectory as the ground truth for metric
evaluation. As FVD requires videos to have the same resolution and length, we
resized the VIPSeg val dataset to a resolution of 256 × 256 and a length of 14
frames for evaluation. Correspondingly, we also utilized the VIPSeg [28] training
set as our training data, and acquired the corresponding motion trajectory with
Co-Tracker, as the annotation.

4.2 Comparisons with State-of-the-Art Methods

The generated videos are compared from four aspects: 1) Evaluation of Video
Quality with FID [36]. 2) Evaluation of Temporal Coherence with FVD [39]. 3)
Evaluation of Object Motion with ObjMC. 4) User Study with Human Voting.

Evaluation of Video Quality on VIPSeg val. Table 1 presents the com-
parison of video quality with FID on the VIPSeg val set. We control for other
conditions to be the same (base architecture) and compare the performance be-
tween our method and DragNUWA. The FID of our DragAnything reached 33.5,
significantly outperforming the current SOTA model DragNUWA with 6.3 (33.5
vs. 39.8). Figure 6 and Figure 9 also demonstrate that the synthesized videos
from DragAnything exhibit exceptionally high video quality.

Evaluation of Temporal Coherence on VIPSeg val. FVD [39] can
evaluate the temporal coherence of generated videos by comparing the feature
distributions in the generated video with those in the ground truth video. We
present the comparison of FVD, as shown in Table 1. Compared to the perfor-
mance of DragNUWA (519.3 FVD), our DragAnything achieved superior tem-
poral coherence, i.e., 494.8, with a notable improvement of 24.5.
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Fig. 6: Visualization for DragAnything. The proposed DragAnything can accu-
rately control the motion of objects at the entity level, producing high-quality videos.
The visualization for the pixel motion of 20-th frame is obatined by Co-Tracker [23].

Table 1: Performance Comparison on VIPSeg val 256 × 256 [28]. We only
compared against DragNUWA, as other relevant works (e.g., Motionctrl [42]) did not
release source code based on SVD [3].

Method Base Arch. ObjMC↓ FVD↓ FID↓ Venue/Date
DragNUWA [48] SVD [3] 324.6 519.3 39.8 arXiv, Aug. 2023
DragAnything (Ours) SVD [3] 305.7 494.8 33.5 -

Evaluation of Object Motion on VIPSeg val. Following MotionC-
trl [42], ObjMC is used to evaluate the motion control performance by computing
the Euclidean distance between the predicted and ground truth trajectories. Ta-
ble 1 presents the comparison of ObjMC on the VIPSeg val set. Compared to
DragNUWA, our DragAnything achieved a new state-of-the-art performance,
305.7, with an improvement of 18.9. Figure 7 provides the visualization compar-
ison between the both methods.

User Study for Motion Control and Video Quality. Figure 8 presents
the comparison for the user study of motion control and video quality. Our
model outperforms DragAnything by 26% and 12% in human voting for motion
control and video quality, respectively. We also provide visual comparisons in
Figure 7 and more visualizations in in Figure 6. Our algorithm has a more
accurate understanding and implementation of motion control.

4.3 Ablation Studies

Entity representation and 2D Gaussian representation are both core components
of our work. We maintain other conditions constant and only modify the corre-
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Fig. 7: Visualization Comparison with DragNUWA. DragNUWA leads to dis-
tortion of appearance (first row), out-of-control sky and ship (third row), incorrect
camera motion (fifth row), while DragAnything enables precise control of motion.

Voting for Motion Voting for Video Quality 

37%

63%
44%

56%
DragNUWA
DragAnything

Fig. 8: User Study for Motion Control and Video Quality. DragAnything
achieved superior performance in terms of motion control and video quality.

sponding conditional embedding features. Table 2 present the ablation study for
the two representations.

Effect of Entity Representation Ê. To investigate the impact of Entity
Representation Ê, we observe the change in performance by determining whether
this representation is included in the final embedding (Equation 2). As condi-
tion information Ê primarily affects the object motion in generating videos, we
only need to compare ObjMC, while FVD and FID metrics focus on temporal
consistency and overall video quality. With Entity Representation Ê, ObjMC of
the model achieved a significant improvement(92.3), reaching 318.4.

Effect of 2D Gaussian Representation. Similar to Entity Representa-
tion, we observe the change in ObjMC performance by determining whether
2D Gaussian Representation is included in the final embedding. 2D Gaussian
Representation resulted in an improvement of 71.4, reaching 339.3. Overall, the
performance is highest when both Entity and 2D Gaussian Representations are
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Table 2: Ablation for Entity and 2D Gaus-
sian Representation. The combination of the
both yields the greatest benefit.

Entity Rep. Gaussian Rep. ObjMC↓ FVD↓ FID↓
410.7 496.3 34.2

✓ 318.4 494.5 34.1
✓ 339.3 495.3 34.0

✓ ✓ 305.7 494.8 33.5

Table 3: Ablation Study for
Loss Mask M. Loss mask can bring
certain gains, especially for the Ob-
jMC metric.

Loss Mask M ObjMC↓ FVD↓ FID↓
311.1 500.2 34.3

✓ 305.7 494.8 33.5

used, achieving 305.7. This phenomenon suggests that the two representations
have a mutually reinforcing effect.

Effect of Loss Mask M. Table 3 presents the ablation for Loss Mask M.
When the loss mask M is not used, we directly optimize the MSE loss for each
pixel of the entire image. The loss mask can bring certain gains, approximately
5.4 of ObjMC.

4.4 Discussion for Various Motion Control

In this section, we will discuss the corresponding motion control, categorizing it
into four types.

Motion Control For Foreground. As shown in Figure 9 (a), foreground
motion control is the most basic and commonly used operation. Both the sun
and the horse belong to the foreground. We select the corresponding region that
needs to be controlled with SAM [24], and then drag any point within that region
to achieve motion control over the object. It can be observed that DragAnything
can precisely control the movement of the sun and the horse.

Motion Control For Background. Compared to the foreground, the back-
ground is usually more challenging to control because the shapes of background
elements, such as clouds, starry skies, are unpredictable and difficult to char-
acterize. Figure 9 (b) demonstrates background motion control for video gener-
ation in two scenarios. DragAnything can control the movement of the entire
cloud layer, either to the right or further away, by dragging a point on the cloud.

Simultaneous Motion Control for Foreground and Background. Dra-
gAnything can also simultaneously control both foreground and background, as
shown in Figure 9 (c). For example, by dragging three pixels, we can simulta-
neously achieve motion control where the cloud layer moves to the right, the
sun rises upwards, and the horse moves to the right.

Camera Motion Control. In addition to motion control for entities in the
video, DragAnything also supports some basic control over camera motion, such
as zoom in and zoom out, as shown in Figure 9 (d). The user simply needs to
select the entire image and then drag four points to achieve the corresponding
zoom in or zoom out. Additionally, the user can also control the movement of
the entire camera up, down, left, or right by dragging any point.
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(a) Motion Control for Foreground

(b) Motion Control for Background

Drag Point

Drag Point

Drag Point

Drag Point

(c) Simultaneous Motion Control for Foreground and Background

Drag Point

Drag Point

Drag Point

(d) Motion Control for Camera Motion

Drag Point

Fig. 9: Various Motion Control from DragAnything. DragAnything can achieve
diverse motion control, such as control of foreground, background, and camera.

5 Conclusion

In this paper, we reevaluate the current trajectory-based video generation task
and introduce two new insights: 1) Trajectory points on objects cannot ade-
quately represent the entity. 2) For the trajectory point representation paradigm,
pixels closer to the drag point exert a stronger influence. Addressing these two
technical challenges, we present DragAnything, which utilizes the latent features
of the diffusion model to represent each entity. The proposed entity represen-
tation serves as an open-domain embedding capable of representing any object,
enabling the control of motion for diverse entities, including the background.
Extensive experiments demonstrate that our DragAnything achieves SOTA per-
formance for User Study, surpassing the previous state of the art (DragNUWA)
by 26% in human voting.
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