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Abstract. Despite significant progress in 3D point cloud segmentation,
existing methods primarily address specific tasks and depend on explicit
instructions to identify targets, lacking the capability to infer and un-
derstand implicit user intentions in a unified framework. In this work,
we propose a model, called SegPoint, that leverages the reasoning ca-
pabilities of a multi-modal Large Language Model (LLM) to produce
point-wise segmentation masks across a diverse range of tasks: 1) 3D
instruction segmentation, 2) 3D referring segmentation, 3) 3D seman-
tic segmentation, and 4) 3D open-vocabulary semantic segmentation. To
advance 3D instruction research, we introduce a new benchmark, In-
struct3D , designed to evaluate segmentation performance from complex
and implicit instructional texts, featuring 2,565 point cloud-instruction
pairs. Our experimental results demonstrate that SegPoint achieves com-
petitive performance on established benchmarks such as ScanRefer for
referring segmentation and ScanNet for semantic segmentation, while de-
livering outstanding outcomes on the Instruct3D dataset. To our knowl-
edge, SegPoint is the first model to address these varied segmentation
tasks within a single framework, achieving satisfactory performance.

Keywords: Instruct3D dataset · Unified framework · 3D point cloud
segmentation · Large language model

1 Introduction

3D point cloud segmentation, a critical challenge in the 3D vision community,
aims to interpret and classify each point in a point cloud to understand its
semantic properties [27, 45, 46, 54, 56, 80]. This longstanding issue has spurred
significant advancements across various fields, including robotics, autonomous
driving, virtual reality, etc. This challenge has evolved into a series of specialized
tasks, each targeting a specific segmentation aspect. Overall, tasks cover basic
semantic and instance segmentation [3,7,53,74], as well as more practical tasks
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3D Instruction Segmentation

3D Semantic Segmentation
Can you segment all the 
semantic masks in this point 
cloud and output separate 
masks for each category?

3D Referring Segmentation

Where is items used for 
supporting the head while 
sleeping or resting. Please 
output segmentation mask. Pillow.

3D Open-Vocabulary Semantic Segmentation

Where is the 3D object, a 
white pillow. it is a above a 
bed in this point cloud? Please 
output segmentation mask. Pillow.

Can you segment all the 
semantic masks in this point 
cloud and output separate 
masks for each category?

Bed, chair, curtain, 
desk, door, floor, 
pillow, wall, window

bed, chair, curtain, door, 
desk, floor, picture, 
pillow, smoke detector, 
sofa, toilet, wall.im
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Fig. 1: Example of functionality in SegPoint. SegPoint can complete various point
cloud tasks in a unified framework by leveraging task-specific prompts, including 1) 3D
instruction segmentation, 2) 3D referring segmentation, 3) 3D semantic segmentation,
and 4) 3D open-vocabulary semantic segmentation.

such as referring segmentation [1, 4, 24, 33, 79, 84], which segments points based
on explicit textual descriptions, and open-vocabulary segmentation [12, 40, 42,
57,65,77] designed for the dynamic and complex nature of real-world.

Despite significant progress achieved within the 3D community toward ac-
curately segmenting objects through specifically designed models, each model is
typically developed to tackle one specific segmentation task, leading to inefficien-
cies and a lack of versatility for real-world application. Furthermore, previous
perception approaches heavily depend on predefined categories or explicit ex-
pressions for language understanding. Such approaches fall short in interpreting
and acting on implicit instructions often found in human language, a critical
gap that hinders the development of truly intelligent next-generation percep-
tion systems. This brings a pivotal question: Is it possible to design a unified
model capable of comprehensively addressing all aforementioned 3D tasks with
human-like instructions? The exploration of this question not only challenges
the current paradigms of 3D point cloud segmentation but also opens the door
to groundbreaking advancements in robotic perception and interaction.

In this work, we propose a model called SegPoint, leveraging the Large Lan-
guage Model’s (LLM) advanced ability to reason and comprehend user instruc-
tions. To enhance 3D scene comprehension, we integrate a Geometric Enhancer
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Module that extracts local semantics from point clouds, seamlessly incorporat-
ing this geometric insight into the feature extraction process. Furthermore, a
Geometric-guided Feature Propagation is designed to utilize semantic flows de-
rived from geometric priors and the LLM’s hidden embeddings, facilitating the
generation of fine-grained, high-quality features for accurate dense prediction
tasks. Unlike previous attempts at 2D field [8, 28, 50], we do not depend on
additional costly pre-trained segmentation models like SAM [26].

Moreover, we introduce a benchmark named Instruct3D , designed to advance
research in the field of segmentation driven by implicit and complex instruc-
tions. Understanding these nuanced instructions necessitates reasoning abilities
and extensive knowledge of the world. It includes a total of 2,565 diverse pairs
of instructions and point clouds for tuning and evaluation. Our comprehensive
experiments demonstrate the benchmark’s utility in evaluating the model’s ca-
pability of segmentation based on human-like instructions.

Taking advantage of a multi-modal LLM and task-specific prompts, SegPoint
is capable of generating segmentation masks for a wide range of tasks in a uni-
fied model: 1) 3D instruction segmentation, 2) 3D referring segmentation, 3) 3D
semantic segmentation, and 4) 3D open-vocabulary semantic segmentation, as
depicted in Fig. 1. SegPoint achieves competitive results on established bench-
marks like ScanRefer [4] for referring segmentation and ScanNet [7] for semantic
segmentation while showing remarkable performance on the Instruct3D dataset.

In summary, our main contributions are as follows:

– We propose SegPoint, the first 3D segmentation model that can compre-
hend human intentions and address multiple segmentation tasks within one
framework by harnessing the Large Language Model’s reasoning capabilities.

– We present a Geometric Enhancer Module that integrates comprehensive
scene information into the process of 3D scene understanding. Besides, A
Geometric-guided Feature Propagation is designed to achieve accurate and
fine-grained segmentation. These two modules supplement the missing local
information and grasp fine-grained features for dense prediction tasks.

– We introduce a new task called 3D instruction segmentation and construct
a new dataset Instruct3D , which necessitates a model’s self-reasoning to
interpret implicit instructions for segmenting the target object.

– Our experimental findings reveal that SegPoint not only competes strongly
in 3D semantic, referring, and open-vocabulary semantic segmentation but
also excels in 3D instruction segmentation, showcasing its versatility and
effectiveness across a spectrum of segmentation challenges.

2 Related Work

2.1 Multi-modal Large Language Model

Inspired by the exceptional reasoning abilities of Large Language Models, re-
searchers are delving into transferring these capabilities into the vision realm [9,
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28, 36, 55], developing multi-modal LLMs. Flamingo [2], BLIP-2 [31], mPLUG-
OWL [73], Otter [30], LLaVA [37] and MiniGPT-4 [83] first construct image-text
feature alignment followed by instruction tuning and achieve superior perfor-
mance. Recent studies have increasingly concentrated on integrating founda-
tional models with tasks that demand a refined understanding at the region or
pixel level. VisionLLM [61] introduces a versatile interaction interface for var-
ious vision-centric tasks via instruction tuning, albeit without fully leveraging
LLMs for intricate reasoning tasks. Kosmos-2 [43] has built substantial data of
grounded image-text pairs, thereby embedding grounding capabilities into LLMs.
DetGPT [44] links the fixed multi-modal LLM with an open-vocabulary detec-
tor, facilitating user instruction-based detection tasks. This growing interest has
spurred further innovations, including GPT4RoI [78], LLaVA-grounding [76],
Ferret [75], LISA [28], GlaMM [50], PixelLM [52], Sphinx [32], each contributing
to the evolving landscape of instruction-based, multi-modal understanding.

Building on advancements of multi-modal large language models in 2D image
domain, the field is witnessing a seamless transition into 3D spaces. PointLLM [70]
harnesses the prowess of large language models and trains with 3D point clouds
following the paradigm of LLaVA [37]. 3D-LLM [20] utilizes 2D foundation mod-
els to encode multi-view images of 3D point clouds. Point-Bind [15] aligns point
clouds with Image-Bind [14] and leverages ImageBind-LLM to reason multi-
modality input without 3D-instruction data training. GPT4Point [47] pioneers
in facilitating a unified approach towards 3D object understanding and gener-
ation, setting a new standard for versatility. However, these models primarily
concentrate on scene-level insights, often overlooking the intricate details at the
region, or point level. Contrasting with existing models, our research focuses on
two pivotal goals: 1) efficiently inject segmentation capabilities into multi-modal
LLMs to conduct point-level understanding and 2) design a unified framework
for 3D point cloud segmentation via the reasoning ability of LLMs.

2.2 3D Point Cloud Segmentation

3D point cloud segmentation, a crucial task in computer vision, can be cat-
egorized into 3D semantic, instance, and panoptic segmentation. 3D semantic
segmentation [3, 7, 19, 45, 53, 74, 80] assigns each point in a 3D space to specific,
predefined classes. In contrast, 3D instance segmentation [25,27,54] goes a step
further by classifying each point and differentiating between distinct objects
of the same class. 3D panoptic segmentation [68, 82] aims to group 3D points
according to their semantics and identities. Lately, more practical tasks have
emerged, such as 3D referring segmentation [1, 4, 17, 23, 67, 79], which extends
referring expression segmentation [8, 10, 11, 33–35] to 3D and segments a target
instance based on explicit linguistic descriptions, and 3D open-vocabulary seg-
mentation [12,40,42,57], designed to identify and segment unseen objects beyond
a fixed set of known categories.

Despite the significant progress made by transformer-based models: Mask3D
[54], SPFormer [56], MAFT [29], and OneFormer3D [27] in basic 3D segmenta-
tion tasks, their application in real-world scenarios requiring human language
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Large Language Model LoRA !
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Point Encoder

Where is the 3D object, {class_name} in this 
point cloud? Please output segmentation mask.

…
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Where is items used for supporting the head while 
sleeping or resting. Please output segmentation mask.
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Fig. 2: The pipeline of SegPoint. Given input point cloud and text query, the multi-
modal LLM F generates text output. Geometric Enhancer Module G injects geometric
information into Point Encoder E and obtains point features f̂point. Per-point embed-
dings fP derived from Geometric-guided Feature Propagation P multiplied with the
embedding associated with the <SEG> token yield the final segmentation masks.

interaction remains constrained. Besides, Seal [38] aims to segment any point
cloud through distilling vision foundation models, while it doesn’t use language
as cues. TGNN [22] is the first work to tackle referring segmentation problem
that proposes aggregating textual features by considering the neighboring local
structure of each instance but it heavily depends on explicit expressions or pre-
defined categories for language understanding. Furthermore, the development of
models tailored to specific segmentation tasks restricts their versatility and ap-
plicability in diverse real-world scenarios. Therefore, it is imperative to develop
more intelligent interaction ways and a unified model for 3D point segmentation.

3 Approach

3.1 Architecture Overview

The overall architecture of SegPoint is presented in Fig. 2. SegPoint mainly
comprises four parts: i) a pre-trained point encoder E tailored for aligning with
textual data; ii) a large language model F endowed with advanced reasoning
capabilities; iii) a Geometric Enhancer Module G responsible for extracting geo-
metric representation from input point clouds and infusing these priors into the
point encoder; and iv) a Geometric-guided Feature Propagation P which is key
to achieving precise mask generation. The collaboration between the Geometric
Enhancer Module and Geometric-guided Feature Propagation is crucial, as it
equips LLMs with the ability to generate masks effectively in various scenarios.

3.2 Vanilla Baseline

The input of the framework is the text instructions itxt and point cloud ipoint ∈
RN×(3+F ). Specifically, a point cloud scene, comprising N points, each includes
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3D coordinates ∈ R3 and an auxiliary feature vector ∈ RF (e.g., color). The
point cloud ipoint is fed into the point encoder E , which extracts point features
fpoint ∈ RN1×D, where N1 ≪ N , D is the feature dimension. Concurrently, the
text instruction itxt undergoes tokenization via Ftokenize. These prepared inputs
are then fed into the Large Language Model F , resulting in a textual response
y. The above process can be formulated as:

fpoint = E(ipoint), f txt = Ftokenize(itxt), y = F(fpoint,f txt). (1)

Building on the approach introduced by LISA [28], SegPoint enhances the
segmentation capabilities of Large Language Models (LLMs) by expanding their
vocabulary with a new special token, <SEG>. This modification enables the model
to recognize and predict the <SEG> token within the output sequence as a sig-
nal to identify segmentation targets. Upon detecting a <SEG> token, the corre-
sponding output sequence belonging to <SEG> token is extracted and processed
through an MLP layer γ, generating mask embeddings hseg. The final step in-
volves computing each binary mask prediction m ∈ RN by performing a dot
product between the mask embeddings hseg and the upsampled per-point em-
beddings derived from the point features fpoint. The formulation of the afore-
mentioned process is given by:

hseg = γ(y[seg]), m = hseg ⊗ UpS.(fpoint), (2)

where UpS. denotes the upsampling operation following PointNet++ [46] on
fpoint. The vanilla baseline represents an initial attempt to bridge the gap be-
tween LLMs’ text comprehension and point cloud segmentation tasks. It encoun-
ters two primary issues. Firstly, the point encoder is trained on a scene-level
dataset for classification achieving alignment between text and point clouds, not
specifically trained for dense prediction tasks. Besides, the point encoder’s first
layer employs Farthest Point Sampling (FPS) [46] to reduce the point cloud to N1

points, risking the loss of details vital for accurate dense predictions. Secondly,
the operation of directly upsampling from N1 to N points to obtain per-point
embeddings is prone to losing structural information and introducing a notable
degree of noise, undermining the model’s efficacy in segmentation tasks.

3.3 Geometric Enhancer Module

To adapt the pre-trained point encoder for dense prediction tasks while main-
taining its superior scene recognition capability, our objective is to harness the
geometric information across the entire scene to guide the further feature learning
process. Drawing inspiration from recent advancements in 2D computer vision,
where studies [5,41,62,64] demonstrate that convolutions enhance transformers’
ability to capture local spatial information, we introduce the Geometric En-
hancer Module (GEM). This module is specifically designed to grasp the local
geometric contexts within point clouds while enabling the preservation of the
point encoder’s foundational architecture and information integrity.
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(c) Geometric-guided Feature Propagation
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Fig. 3: Architecture of the proposed (b) Geometric Enhance Module (GEM) and (c)
Geometric-guided Feature Propagation (GFP) interaction with (a) Point Encoder.

As shown in Fig. 3, Geometric Enhancer Module G is composed of three
blocks, each featuring a KPConv [58] layer followed by BN and ReLU activation.
The architecture is similar to the 2D convolutional stem [16]. We utilize KPConv
instead of vanilla convolution or linear layer here to facilitate grasping the local
geometric information effectively. The resultant geometric feature, represented
by gf ∈ RN×D, contains the features across all points, thereby supplementing
the missing local information. This gf is then leveraged to infuse geometric
insights into the point encoder’s features via a cross-attention mechanism, the
above process can be expressed as:

gf = G(ipoint), f̂ i = f i + gi · softmax

(
f ig

T
f√
D

)
gf , (3)

where f i represents the feature from the i-th block of the point encoder and l
consecutive transformer layers are regarded as one block for the convenience of
explanation. To fine-tune the integration of geometric information, we introduce
a learnable gating factor gi that modulates the balance between the attention
layer’s output and the input feature f i. This gating factor is initially set to zero,
to ensure that the incorporation of geometric data does not abruptly alter f
feature distribution. Such an approach allows for the preservation and effective
utilization of the point encoder’s pre-trained weights. Upon processing through
the Geometric Enhancer Module (GEM), the modified output of the point en-
coder, LLM are formulated as:

f̂point = E(ipoint, gf ), ŷ = F(f̂point,f txt), ĥseg = γ(ŷ[seg]). (4)

3.4 Geometric-guided Feature Propagation

Addressing the challenge of upsampling point clouds from a sparse set of N1

points to a denser set of N points is crucial, as direct upsampling inevitably intro-
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duces noise and results in information loss, leading to sub-optimal performance
in segmentation tasks. To mitigate these issues, we introduce Geometric-guided
Feature Propagation designed to generate high-quality per-point embeddings.
Geometric features gf , which carry comprehensive point information, serving
as a “gold message” for enhancing the upsampling process. By integrating these
geometric features, we aim to significantly improve the quality and accuracy of
the generated dense per-point embeddings.

As illustrated in Fig. 3, we begin by upsampling the higher-layer features
f3,f4 from a smaller set of points N1 to larger sets N3, N2, employing Point-
Net++’s [46] propagation techniques. This step yields features f ′

3 ∈ RN3×D, and
f ′
4 ∈ RN2×D. Subsequently, we perform downsampling on the geometric features

gf from the original number of points N to reduced counts N2, N3, respectively,
utilizing the Farthest Point Sampling (FPS) technique. In this process, we di-
rectly obtain the features of the sampled points without performing additional
k-nearest neighbor (k-NN) and pooling operations to simplify the computation
and produce features fg,1 ∈ RN3×D, and fg,2 ∈ RN2×D.

In the next phase, we integrate the up- and downsampled features, processing
them through fully connected layers and ReLU activation to update the feature
vectors f̃3 ∈ RN3×D, and f̃4 ∈ RN2×D. Note that the last layer feature f5

bypasses this step. Instead, we concatenate it with ĥpoint from the LLM output
to form f̃5 to perceive multi-modal information from LLM.

Finally, to enable information exchange across different point densities, we
propose attentive propagation. Take the propagation from f̃5 to f̃4 as example.
Here, f̃4 ∈ RN2×D acts as a set of local centers. For each local center within f̃4,
we identify its neighboring points from f̃5 using the k-NN algorithm, resulting in
f54 ∈ RN2×k×D. Then, employing cross-attention mechanism, where f̃4 serves as
query and f54 as both key and value, facilitates information flow across different
point densities and effectively extract relevant details into the query points.

ˆ̃
f4 = f̃4 + softmax

(
f̃4f

T
54√
D

)
f54. (5)

Leveraging geometric-guided feature propagation enables us to produce high-
quality per-point embeddings denoted as fP , laying the foundation for generat-
ing precise segmentation masks expressed as follows:

fP = P(f̂point, gf ), m̂ = ĥseg ⊗ fP . (6)

3.5 Training Objectives

Our model is trained end-to-end leveraging the text classification loss and the
segmentation mask loss:

L = λtxtLtxt + λbceLbce + λdiceLdice, (7)

where Ltxt denotes the auto-regressive cross-entropy loss targeting text genera-
tion accuracy, segmentation mask loss includes both binary cross-entropy (BCE)
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loss Lbce and DICE loss Ldice, aims at refining segmentation quality. The weights
λtxt, λbce and λdice are utilized to balance the different loss items. The model’s
training is guided by the ground-truth labels ytxt for text and M for masks.

3.6 Instruct3D Dataset Collection

Although 3D instruction segmentation and 3D referring segmentation [1,4,79] are
both language-based segmentation, 3D referring segmentation guides segmenta-
tion with explicit target object names, e.g., “chair”, lacking more complicated
reasoning instructions, e.g., “Where to sit in the room?”. Besides, they also fall
short in offering multi-target question-answer pairs with target descriptions di-
rectly connected to multiple segmentation masks, which cannot meet a common
requirement in real-world scenarios, like “How to play computer games”.

To enhance the assessment and analysis of instruction segmentation capabil-
ities, we have developed a benchmark, referred to Instruct3D . This benchmark
incorporates 280 scenes specifically selected for instruction segmentation tuning
and evaluation, sourced from the recently introduced ScanNet++ [74] dataset.
Each scene comes with approximately 10 different segmentation instructions,
resulting in 2,565 instruction-point cloud pairings. This dataset is then divided
into two splits: train, and val, containing 2,052, and 513 question-answer pairs,
respectively. Our dataset is uniquely designed to encompass both multi-target
and zero-target scenarios, addressing the real-world requirement of identifying
multiple objects in response to text queries and accounting for situations where
objects mentioned in the text may not be present in the paired point cloud.
Besides, we take into account the characteristics of 3D scenes and incorporate
diverse locations and view descriptions e.g., “something that is used for sitting
while working at a desk. It is the one facing the window.”. The model needs to
have not only reasoning capabilities but also the ability to perceive views and
directions in 3D scenes. These designs underscore the dataset’s practical value.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. Our training data is composed of two types of datasets: (1) semantic
segmentation dataset including ScanNet200 [53], and S3DIS [3]; (2) referring
segmentation dataset consisting of ScanRefer [4], ReferIt3D [1](including Sr3D
and Nr3D), and Multi3DRefer [79]. We design task-specific prompts to facilitate
the joint training of various tasks within a unified framework.
Semantic Segmentation Dataset. We use two strategies to generate tem-
plates. 1) segment the specific category: “USER: <POINT> Can you segment the
{category} category in this point cloud? ASSISTANT: {category} <SEG>.”,
where category is the random chosen category, and <POINT> denotes the place-
holder for tokens of point cloud patches. 2) segment all the categories: “USER:
<POINT> Can you segment all the semantic masks in this point cloud and
output separate masks for each category in the alphabetical order of the
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categories? ASSISTANT: {category} <SEG>, {category} <SEG>, ...” To sim-
plify the output and ensure it has only one possible answer, we add the con-
straints “in the alphabetical order of the categories”. To avoid generating
class names not in the dataset, we incorporate category names in a dataset
into the prompts during training and inference.
Referring Segmentation Dataset. We use template prompts: “USER: <POINT>
Can you segment the object {description} in this point cloud? ASSISTANT:
{category} <SEG>.”, where {description} is the given explicit description from
referring segmentation dataset. It is worth noting that during training, we also
use other templates to generate the QA data to ensure data diversity. We add
{category} in front of <SEG> to unify the output format so that when outputting
semantic masks, the output category name is the label it predicts.
Evaluation Metrics. We follow most previous works on 3D segmentation [22,
27, 54] to adopt mIoU as primary metric. mIoU is defined by the average of
all per-point cloud scene Intersection-over-Unions (IoUs). Besides, we employ
accuracy (Acc) as a metric to evaluate whether the model accurately identifies
targets with which the predictions have an IoU greater than 0.5.

4.2 Implementation Details

In our experiments, unless specified otherwise, we employ the LLaMA2-7B model
[59] as the large language model F and Uni3D [81] as the point cloud processing
backbone E . The training stage leverages the deepspeed [51] engine for efficiency,
with the AdamW [39] optimizer guiding the learning process. The learning rate
and weight decay are set to 0.0003 and 0, respectively, enhanced by a WarmupDe-
cayLR learning rate scheduler that initiates with 100 warmup iterations. The
projection layer γ utilizes an MLP with channel sizes of [256, 4096, 4096]. We
set balancing weight λtxt_gen, λbce, and λdice to 1.0, 2.0, 2.0, respectively. The
experiments utilize a total batch size of 16, distributed across 4 NVIDIA 80G
A100 GPUs, and span 5,000 iterations, culminating in a training period of ap-
proximately 3 days. During training, we use all mentioned datasets in Sec. 4.1
for joint training by leveraging task-specific prompts. For evaluation on a specific
dataset, we finetune the trained model on the corresponding dataset.

4.3 Results on Instruct3D

The instruction segmentation results, as detailed in Table 1, underscore a signif-
icant advancement: where existing methodologies fall short, our model demon-
strates exceptional prowess, achieving a more than 15% improvement in mIoU
for tasks requiring intricate reasoning. Unlike conventional referring segmenta-
tion tasks, instruction segmentation demands not just identification but also
understanding, necessitating the model’s reasoning capabilities and access to
world knowledge. Existing approaches, confined to explicit references, struggle
with implicit queries due to their lack of understanding, which further under-
scores the task’s inherent challenges. In contrast, our model leverages LLMs to
bridge this gap, demonstrating superior performance by comprehending and in-
terpreting the queries accurately. Moreover, SegPoint configuration substantially
outperforms SegPoint†, highlighting the critical role of our designed Geometric
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Table 1: 3D instruction segmentation benchmark results on Instruct3D val
split evaluated by Acc and mIoU. † denotes our vanilla baseline removing geometric
enhancer module and geometric-guided feature propagation. ∗ represents adding an
auxiliary mask head through our implementation.

Stage Method Reference Acc mIoU
Two ScanRefer [4] [ECCV’20] 12.0 6.9
Two ReferIt3D [1] [ECCV’20] 11.7 6.4
Two M3DRef-CLIP [79] [ICCV’23] 18.1 12.8

Single TGNN [22] [AAAI’21] 12.9 7.1
Single BUTD-DETR [23]∗ [ECCV’22] 16.3 10.9
Single EDA [67]∗ [CVPR’23] 16.6 12.1
Single SegPoint† [ECCV’24] 21.8 16.1
Single SegPoint [ECCV’24] 31.6 27.5

Table 2: 3D Semantic segmentation benchmark results on S3DIS [3], Scan-
Net [7], and ScanNet200 [53]. We evaluate on the Area 5 of S3DIS and validation split
of ScanNet and ScanNet200.

Method Reference ScanNet ScanNet200 S3DIS
PointNet++ [46] [NeurIPS’17] 53.5 - -
MinkUNet [6] [CVPR’19] 72.2 25.0 65.4
PTv1 [80] [ICCV’21] 70.6 27.8 70.4
PTv2 [66] [NeurIPS’22] 75.4 30.2 71.6
PointNeXt [48] [NeurIPS’22] 71.5 - 70.5
OctFormer [60] [SIGGRAPH’23] 75.7 32.6 -
Swin3D [72] [ArXiv] 75.5 - 72.5
SegPoint [ECCV’24] 74.1 35.3 72.4

Enhancer Module and Geometric-guided Feature Propagation components. No-
tably, even in its baseline form, SegPoint† surpasses all competing methods,
validating the effectiveness and rationale behind our pipeline design.

Besides, different from traditional two-stage approaches that first generate
mask proposals using a pre-trained segmentor like Mask3D [54] and then ap-
ply language-aware networks for selection, SegPoint directly tackles the task,
bypassing the need for preliminary mask proposals, enhancing its efficiency.

4.4 Results on Semantic Segmentation

Table 2 present SegPoint’s performance on semantic segmentation, delivering
competitive results across diverse datasets. Our model uses a simple yet effective
answer format, category <SEG>, to use category name as predicted labels,
achieving particularly stronger performance in datasets with various categories
like ScanNet200 [53], where it surpasses SOTA methods by 2.1% mIoU. To ensure
fair comparisons, we fine-tune our model on each semantic segmentation dataset
to accommodate the varying class category definitions.

4.5 Results on Referring Segmentation

Table 3 presents results on referring segmentation datasets. SegPoint showcases
outstanding performance in both single-target (e.g., ScanRefer [4], Nr3D [1])
and multi-target and zero-target contexts within the Multi3DRefer [79] dataset.
For multi-targets, we aggregate masks into a single ground truth, and for zero-
target, we use an empty mask, indicated by “ASSISTANT: There is no mask.”
SegPoint significantly surpasses other approaches, achieving 2.5% mIoU increase.
The evaluation process of two-stage method M3DRef-CLIP is similar to Sec.4.3.
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Table 3: 3D referring segmentation benchmark results on ScanRefer [4],
Nr3D [1], and Multi3Drefer [79] evaluated by mIoU. ∗ represents adding an auxil-
iary mask head through our implementation.

Stage Method Reference ScanRefer Nr3D Multi3DRefer
Two M3DRef-CLIP [79] [ICCV’23] 35.7 27.0 32.6
Two 3D-STMN [63] [AAAI’24] 39.5 - -

Single TGNN [22] [AAAI’21] 27.8 - -
Single BUTD-DETR [23]∗ [ECCV’22] 35.4 27.5 26.2
Single EDA [67]∗ [CVPR’23] 36.2 29.3 28.9
Single X-RefSeg3D [49] [AAAI’24] 29.9 - -
Single RefMask3D [18] [ACMMM’24] 44.8 - -
Single SegPoint [ECCV’24] 41.7 32.2 36.1

Table 4: 3D open-vocabulary semantic segmentation benchmark results on
val split of ScanNet++ [74].

Type Method Reference ScanNet++

Supervised

PointNet [45] [CVPR’17] 7.0
PointNet++ [46] [NeurIPS’17] 15.0
MinkUNet [6] [CVPR’19] 28.0
KPConv [58] [ICCV’19] 30.0

Open-Vocabulary OpenScene [42] [CVPR’23] 12.8
PLA [12] [CVPR’23] 14.2
RegionPLC [71] [CVPR’24] 14.9

Unified SegPoint [ECCV’24] 19.3

4.6 Results on Open-vocabulary Semantic Segmentation

Table 4 shows our method’s open-vocabulary segmentation performance which is
directly evaluated on ScanNet++ [74] following the setting in prevalent method-
ologies in the 2D domain [13,69]. It demonstrates our superiority over both exist-
ing open-vocabulary techniques and even several supervised approaches, showing
our model’s robust generalization capabilities. It effectively aligns and interprets
categories with visual scenes, underscoring the reasoning prowess of large lan-
guage models. A notable issue is the potential misalignment between output
categories of SegPoint and val split category names. To address this, we employ
GPT-4 to match its most similar category names in the val split.

4.7 Ablation Study

We conduct extensive experiments to verify the effectiveness of our proposed
components in Table 5 (a) on both Instruct3D and ScanRefer [4] dataset. We
established a vanilla baseline as described in Sec. 3.2 following the paradigm
of LISA [28], which cannot achieve satisfactory performance and only obtain
16.1%/30.3 mIoU on Instruct3D/ScanRefer, respectively. Further analysis, both
qualitative and quantitative, of our proposed components reveals that their in-
tegration substantially outperforms the baseline.
Geometric Enhancer Module Integrating the Geometric Enhancer Module
(GEM) into our point encoder results in a notable 5.3%/5.5% mIoU improve-
ment on Instruct3D/ScanRefer, effectively addressing compatibility issues with
dense prediction tasks. An ablation study, shown in Table 5 (b), shows that
our improvement is not due to an increase in parameters. Our approach out-
performs traditional full fine-tuning, LoRA [21] strategies, and the addition of
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Table 5: Ablation studies on Instruct3D and ScanRefer.

Components Instruct3D ScanRefer
Index GEM GFP mIoU mIoU

0 ✗ ✗ 16.1 30.3
1 ✓ ✗ 21.4 35.8
2 ✗ ✓ 23.2 38.1
3 ✓ ✓ 27.5 41.7

(a) Effect of different main components.

Method Instruct3D ScanRefer

Full tuning 26.2 39.1
LoRA [21] 24.8 38.5
MLP 23.1 36.8
GEM 27.5 41.7

(b) Effect of different tuning methods.

(a) Scene (b) Baseline (c) Ours

Given point

Fig. 4: (Best viewed in color) We visualize the feature responses between a given
point (in red) and other points in the scene from per-point embeddings fP for the
baseline and our SegPoint, respectively. The color changes from yellow to red, indicating
increasing feature similarity.

MLP layers for feature adapter, underscoring its effectiveness in embedding 3D
domain-specific knowledge into point encoder. Unlike adapter techniques com-
mon in language and 2D image processing, our GEM is designed to address the
unique challenges in dense prediction tasks.
Geometric-guided Feature Propagation Introducing Geometric-guided Fea-
ture Propagation (GFP) results in a substantial improvement over the baseline,
as shown in Table 5 (a) (index 2). This underscores our method’s capability to
minimize information loss and reduce noise during the upsampling phase, leading
to higher-quality per-point embeddings.

4.8 Qualitative Visualization

Fig. 4 qualitatively illustrates the feature responses between a given point and
others in a scene. From left to right, it presents the original scene, baseline
method, and our SegPoint, respectively, with warmer colors indicating closer
feature relationships. The baseline method predominantly highlights spatially
proximate points, often missing important but distant features, such as chair
cushions. In contrast, SegPoint leverages global information, allowing for the
identification of both near and distant relevant features, such as cushions and
casters. This demonstrates our model’s superior ability to capture global context
and recognize intricate structures within the scene.

As shown in Fig. 5, we provide some typical qualitative results from SegPoint
on Instruct3D . Given an implicit instruction, e.g ., “the object that is used for dis-
pensing water during bathing”, SegPoint successfully infers the role of a shower.
In other scenes, the instructions include queries requiring extensive knowledge
of the world and complex reasoning, like “What appliance is used for heating or
cooking food quickly using electromagnetic radiation.” SegPoint can still segment
the microwave oven very well, which shows that SegPoint can make good use of
the reasoning ability of LLM and provide high-quality masks.
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What is the object that is used for 
dispensing water during bathing.

Shower. Microwave. Trash can. Monitor.

The container designated for 
holding waste and it is the one 
closest to the door.

The device is used to display visual 
output from a computer and faces 
two doors and a chair.

The item that must be opened to 
provide a way into a room or 
building.

Door. Air conditioner. Chair. Plants.

Where to sit in the room?
The living organisms are often 
placed in soil-filled pots for 
decoration or air purification.

What appliance is used for cooling 
the room?

What appliance is used for 
heating or cooking food quickly 
using electromagnetic radiation. 

Fig. 5: Qualitative results from val split of Instruct3D . SegPoint understand the human
instruction and accurately segment the target object. We omitted the “please output
segmentation mask” in the sentence for simplicity.

5 Conclusion

In this work, we introduce SegPoint, an effective model supported by LLM for
point-level reasoning and segmentation. Benefiting from the proposed Geometric
Enhancer Module and Geometric-guided Feature Propagation, SegPoint is adept
at solving a variety of segmentation tasks in a unified framework. Additionally,
we construct a comprehensive Instruct3D benchmark to bolster research area in
segmentation via implicit and complex instructions, introducing more challenges
to promote it closer to real-world applications. Through thorough experiments,
SegPoint achieves promising results across multiple benchmarks.
Limitations Although SegPoint demonstrates notable success in tasks driven by
text prompts, its current framework cannot process non-textual prompts, such
as boxes and points. Future developments will explore the adoption of a prompt
encoder, inspired by SAM model [26], to extend support for these formats.
Acknowledgements We thank the anonymous reviewers for their constructive sug-
gestions. Following their advice, we have incorporated diverse location and view de-
scriptions into our Instruct3D . This work was partially supported by the National
Research Foundation Singapore Competitive Research Program (CRP29-2022-0003).



SegPoint 15

References

1. Achlioptas, P., Abdelreheem, A., Xia, F., Elhoseiny, M., Guibas, L.: Referit3d:
Neural listeners for fine-grained 3d object identification in real-world scenes. In:
ECCV (2020)

2. Alayrac, J.B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K.,
Mensch, A., Millican, K., Reynolds, M., et al.: Flamingo: a visual language model
for few-shot learning. In: NeurIPS (2022)

3. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese,
S.: 3d semantic parsing of large-scale indoor spaces. In: CVPR (2016)

4. Chen, D.Z., Chang, A.X., Nießner, M.: Scanrefer: 3d object localization in rgb-d
scans using natural language. In: ECCV (2020)

5. Chen, Z., Duan, Y., Wang, W., He, J., Lu, T., Dai, J., Qiao, Y.: Vision transformer
adapter for dense predictions. In: ICLR (2023)

6. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convo-
lutional neural networks. In: CVPR (2019)

7. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: CVPR (2017)

8. Ding, H., Liu, C., He, S., Jiang, X., Loy, C.C.: MeViS: A large-scale benchmark
for video segmentation with motion expressions. In: ICCV (2023)

9. Ding, H., Liu, C., He, S., Jiang, X., Torr, P.H., Bai, S.: MOSE: A new dataset for
video object segmentation in complex scenes. In: ICCV (2023)

10. Ding, H., Liu, C., Wang, S., Jiang, X.: Vision-language transformer and query
generation for referring segmentation. In: ICCV (2021)

11. Ding, H., Liu, C., Wang, S., Jiang, X.: VLT: Vision-language transformer and query
generation for referring segmentation. IEEE TPAMI (2023)

12. Ding, R., Yang, J., Xue, C., Zhang, W., Bai, S., Qi, X.: Pla: Language-driven
open-vocabulary 3d scene understanding. In: CVPR (2023)

13. Ding, Z., Wang, J., Tu, Z.: Open-vocabulary panoptic segmentation with maskclip.
In: ICLR (2023)

14. Girdhar, R., El-Nouby, A., Liu, Z., Singh, M., Alwala, K.V., Joulin, A., Misra, I.:
Imagebind: One embedding space to bind them all. In: CVPR (2023)

15. Guo, Z., Zhang, R., Zhu, X., Tang, Y., Ma, X., Han, J., Chen, K., Gao,
P., Li, X., Li, H., et al.: Point-bind & point-llm: Aligning point cloud with
multi-modality for 3d understanding, generation, and instruction following. arXiv
preprint arXiv:2309.00615 (2023)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

17. He, S., Ding, H.: Decoupling static and hierarchical motion perception for referring
video segmentation. In: CVPR (2024)

18. He, S., Ding, H.: RefMask3D: Language-guided transformer for 3d referring seg-
mentation. In: ACM MM (2024)

19. He, S., Jiang, X., Jiang, W., Ding, H.: Prototype adaption and projection for few-
and zero-shot 3d point cloud semantic segmentation. IEEE TIP (2023)

20. Hong, Y., Zhen, H., Chen, P., Zheng, S., Du, Y., Chen, Z., Gan, C.: 3d-llm: Injecting
the 3d world into large language models. In: NeurIPS (2023)

21. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen,
W.: Lora: Low-rank adaptation of large language models. In: ICLR (2022)

22. Huang, P.H., Lee, H.H., Chen, H.T., Liu, T.L.: Text-guided graph neural networks
for referring 3d instance segmentation. In: AAAI (2021)



16 S. He et al.

23. Jain, A., Gkanatsios, N., Mediratta, I., Fragkiadaki, K.: Bottom up top down
detection transformers for language grounding in images and point clouds. In:
ECCV (2022)

24. Jia, B., Chen, Y., Yu, H., Wang, Y., Niu, X., Liu, T., Li, Q., Huang, S.: Sceneverse:
Scaling 3d vision-language learning for grounded scene understanding. In: ECCV
(2024)

25. Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: Pointgroup: Dual-set point
grouping for 3d instance segmentation. In: CVPR (2020)

26. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. In: ICCV (2023)

27. Kolodiazhnyi, M., Vorontsova, A., Konushin, A., Rukhovich, D.: Oneformer3d: One
transformer for unified point cloud segmentation. In: CVPR (2024)

28. Lai, X., Tian, Z., Chen, Y., Li, Y., Yuan, Y., Liu, S., Jia, J.: Lisa: Reasoning
segmentation via large language model. In: CVPR (2024)

29. Lai, X., Yuan, Y., Chu, R., Chen, Y., Hu, H., Jia, J.: Mask-attention-free trans-
former for 3d instance segmentation. In: ICCV (2023)

30. Li, B., Zhang, Y., Chen, L., Wang, J., Yang, J., Liu, Z.: Otter: A multi-modal
model with in-context instruction tuning. arXiv:2305.03726 (2023)

31. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. In: NeurIPS (2023)

32. Lin, Z., Liu, C., Zhang, R., Gao, P., Qiu, L., Xiao, H., Qiu, H., Lin, C., Shao, W.,
Chen, K., et al.: Sphinx: The joint mixing of weights, tasks, and visual embeddings
for multi-modal large language models. arXiv preprint arXiv:2311.07575 (2023)

33. Liu, C., Ding, H., Jiang, X.: GRES: Generalized referring expression segmentation.
In: CVPR (2023)

34. Liu, C., Ding, H., Zhang, Y., Jiang, X.: Multi-modal mutual attention and iterative
interaction for referring image segmentation. IEEE TIP (2023)

35. Liu, C., Jiang, X., Ding, H.: Instance-specific feature propagation for referring
segmentation. IEEE TMM (2022)

36. Liu, C., Jiang, X., Ding, H.: Primitivenet: decomposing the global constraints for
referring segmentation. Visual Intelligence 2(1), 16 (2024)

37. Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. In: NeurIPS (2023)
38. Liu, Y., Kong, L., Cen, J., Chen, R., Zhang, W., Pan, L., Chen, K., Liu, Z.: Seg-

ment any point cloud sequences by distilling vision foundation models. In: NeurIPS
(2023)

39. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)
40. Nguyen, P.D., Ngo, T.D., Gan, C., Kalogerakis, E., Tran, A., Pham, C., Nguyen,

K.: Open3dis: Open-vocabulary 3d instance segmentation with 2d mask guidance.
In: CVPR (2024)

41. Park, N., Kim, S.: How do vision transformers work? arXiv preprint
arXiv:2202.06709 (2022)

42. Peng, S., Genova, K., Jiang, C., Tagliasacchi, A., Pollefeys, M., Funkhouser, T.,
et al.: Openscene: 3d scene understanding with open vocabularies. In: CVPR (2023)

43. Peng, Z., Wang, W., Dong, L., Hao, Y., Huang, S., Ma, S., Wei, F.: Kosmos-2:
Grounding multimodal large language models to the world. In: ICLR (2024)

44. Pi, R., Gao, J., Diao, S., Pan, R., Dong, H., Zhang, J., Yao, L., Han, J., Xu, H.,
Zhang, L.K.T.: Detgpt: Detect what you need via reasoning. In: EMNLP (2023)

45. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for
3d classification and segmentation. In: CVPR (2017)

46. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: NeurIPS (2017)



SegPoint 17

47. Qi, Z., Fang, Y., Sun, Z., Wu, X., Wu, T., Wang, J., Lin, D., Zhao, H.: Gpt4point:
A unified framework for point-language understanding and generation. In: CVPR
(2024)

48. Qian, G., Li, Y., Peng, H., Mai, J., Hammoud, H., Elhoseiny, M., Ghanem, B.:
Pointnext: Revisiting pointnet++ with improved training and scaling strategies.
In: NeurIPS (2022)

49. Qian, Z., Ma, Y., Ji, J., Sun, X.: X-refseg3d: Enhancing referring 3d instance
segmentation via structured cross-modal graph neural networks. In: AAAI (2024)

50. Rasheed, H., Maaz, M., Shaji, S., Shaker, A., Khan, S., Cholakkal, H., Anwer,
R.M., Xing, E., Yang, M.H., Khan, F.S.: Glamm: Pixel grounding large multimodal
model. In: CVPR (2024)

51. Rasley, J., Rajbhandari, S., Ruwase, O., He, Y.: Deepspeed: System optimizations
enable training deep learning models with over 100 billion parameters. In: KDD
(2020)

52. Ren, Z., Huang, Z., Wei, Y., Zhao, Y., Fu, D., Feng, J., Jin, X.: Pixellm: Pixel
reasoning with large multimodal model. In: CVPR (2024)

53. Rozenberszki, D., Litany, O., Dai, A.: Language-grounded indoor 3d semantic seg-
mentation in the wild. In: ECCV (2022)

54. Schult, J., Engelmann, F., Hermans, A., Litany, O., Tang, S., Leibe, B.: Mask3d:
Mask transformer for 3d semantic instance segmentation. In: ICRA (2023)

55. Shuai, X., Ding, H., Ma, X., Tu, R., Jiang, Y.G., Tao, D.: A survey of
multimodal-guided image editing with text-to-image diffusion models. arXiv
preprint arXiv:2406.14555 (2024)

56. Sun, J., Qing, C., Tan, J., Xu, X.: Superpoint transformer for 3d scene instance
segmentation. In: AAAI (2023)

57. Takmaz, A., Fedele, E., Sumner, R.W., Pollefeys, M., Tombari, F., Engelmann, F.:
Openmask3d: Open-vocabulary 3d instance segmentation. In: NeurIPS (2023)

58. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: ICCV (2019)

59. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.A., Lacroix, T.,
Rozière, B., Goyal, N., Hambro, E., Azhar, F., et al.: Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971 (2023)

60. Wang, P.S.: Octformer: Octree-based transformers for 3d point clouds. In: SIG-
GRAPH (2023)

61. Wang, W., Chen, Z., Chen, X., Wu, J., Zhu, X., Zeng, G., Luo, P., Lu, T., Zhou,
J., Qiao, Y., et al.: Visionllm: Large language model is also an open-ended decoder
for vision-centric tasks. In: NeurIPS (2023)

62. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pvt v2: Improved baselines with pyramid vision transformer. Computational
Visual Media (2022)

63. Wu, C., Ma, Y., Chen, Q., Wang, H., Luo, G., Ji, J., Sun, X.: 3d-stmn: Dependency-
driven superpoint-text matching network for end-to-end 3d referring expression
segmentation. In: AAAI (2024)

64. Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., Zhang, L.: Cvt: Intro-
ducing convolutions to vision transformers. In: ICCV (2021)

65. Wu, J., Li, X., Xu, S., Yuan, H., Ding, H., Yang, Y., Li, X., Zhang, J., Tong,
Y., Jiang, X., Ghanem, B., Tao, D.: Towards open vocabulary learning: A survey.
IEEE TPAMI (2024)

66. Wu, X., Lao, Y., Jiang, L., Liu, X., Zhao, H.: Point transformer v2: Grouped vector
attention and partition-based pooling. In: NeurIPS (2022)



18 S. He et al.

67. Wu, Y., Cheng, X., Zhang, R., Cheng, Z., Zhang, J.: Eda: Explicit text-decoupling
and dense alignment for 3d visual grounding. In: CVPR (2023)

68. Xiao, Z., Zhang, W., Wang, T., Loy, C.C., Lin, D., Pang, J.: Position-guided point
cloud panoptic segmentation transformer. arXiv preprint arXiv:2303.13509 (2023)

69. Xu, J., Liu, S., Vahdat, A., Byeon, W., Wang, X., De Mello, S.: Open-vocabulary
panoptic segmentation with text-to-image diffusion models. In: CVPR (2023)

70. Xu, R., Wang, X., Wang, T., Chen, Y., Pang, J., Lin, D.: Pointllm: Empowering
large language models to understand point clouds. In: ECCV (2024)

71. Yang, J., Ding, R., Deng, W., Wang, Z., Qi, X.: Regionplc: Regional point-language
contrastive learning for open-world 3d scene understanding. In: CVPR (2024)

72. Yang, Y.Q., Guo, Y.X., Xiong, J.Y., Liu, Y., Pan, H., Wang, P.S., Tong, X., Guo,
B.: Swin3d: A pretrained transformer backbone for 3d indoor scene understanding.
arXiv preprint arXiv:2304.06906 (2023)

73. Ye, Q., Xu, H., Xu, G., Ye, J., Yan, M., Zhou, Y., Wang, J., Hu, A., Shi, P.,
Shi, Y., et al.: mplug-owl: Modularization empowers large language models with
multimodality. arXiv:2304.14178 (2023)

74. Yeshwanth, C., Liu, Y.C., Nießner, M., Dai, A.: Scannet++: A high-fidelity dataset
of 3d indoor scenes. In: ICCV (2023)

75. You, H., Zhang, H., Gan, Z., Du, X., Zhang, B., Wang, Z., Cao, L., Chang, S.F.,
Yang, Y.: Ferret: Refer and ground anything anywhere at any granularity. In: ICLR
(2024)

76. Zhang, H., Li, H., Li, F., Ren, T., Zou, X., Liu, S., Huang, S., Gao, J., Zhang,
L., Li, C., et al.: Llava-grounding: Grounded visual chat with large multimodal
models. arXiv preprint arXiv:2312.02949 (2023)

77. Zhang, H., Ding, H.: Prototypical matching and open set rejection for zero-shot
semantic segmentation. In: ICCV (2021)

78. Zhang, S., Sun, P., Chen, S., Xiao, M., Shao, W., Zhang, W., Chen, K.,
Luo, P.: Gpt4roi: Instruction tuning large language model on region-of-interest.
arXiv:2307.03601 (2023)

79. Zhang, Y., Gong, Z., Chang, A.X.: Multi3drefer: Grounding text description to
multiple 3d objects. In: ICCV (2023)

80. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: ICCV
(2021)

81. Zhou, J., Wang, J., Ma, B., Liu, Y.S., Huang, T., Wang, X.: Uni3d: Exploring
unified 3d representation at scale. In: ICLR (2024)

82. Zhou, Z., Zhang, Y., Foroosh, H.: Panoptic-polarnet: Proposal-free lidar point cloud
panoptic segmentation. In: CVPR (2021)

83. Zhu, D., Chen, J., Shen, X., Li, X., Elhoseiny, M.: Minigpt-4: Enhancing vision-
language understanding with advanced large language models. In: ICLR (2024)

84. Zhu, Z., Ma, X., Chen, Y., Deng, Z., Huang, S., Li, Q.: 3d-vista: Pre-trained trans-
former for 3d vision and text alignment. In: ICCV (2023)


	[0pt][l][height=25pt]Figs/logo-removebg-preview.png       SegPoint: Segment Any Point Cloud via Large Language Model

