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Vista3D: Unravel the 3D Darkside of
a Single Image

Supplementary Material

1 More experimental results

1.1 More ablation studies
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(a) Ablation study of the coarse stage. Here
we conduct four settings on the coarse stage, in-
cluding w/o Top-K densification, w/o transmit-
tance and scaling regularization for comparison.
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(b) Visualization of the disentangled tex-
ture. Here we showcase a generated 3D object.
The left side is visualized from the facing-forward
hash encoding Href , while the right side is visu-
alized from the back hash encoding Hback.

Fig. 6: Ablation study of the coarse stage and disentangled texture.

Top-k densification. We compare our densification strategy against a naive
gradient threshold approach. This comparison is illustrated in the second col-
umn of Figure 6a. Using a naive gradient threshold often results in excessive
densification of 3D Gaussians, causing geometry to appear swollen. Further-
more, finding an appropriate gradient threshold is challenging, as it varies from
case to case. In contrast, our method deterministically controls the densification
ratio throughout the optimization process. Consequently, the total number of 3D
Gaussians at convergence is solely influenced by the hyperparameter of pruning
opacity, effectively maintaining the number of 3D Gaussians within a reasonable
range and yielding more accurate geometry.
Regularization with 3DGS. In the third and fourth columns of Figure 6a,
we conduct ablation experiments on the two regularization terms specified in
Equation 2: transmittance regularization and scale regularization. Removing
the transmittance regularization tends to produce objects with holes, result-
ing in coarse meshes from these 3D Gaussians that are often not watertight,
complicating refinement stage optimization. On the other hand, excluding only
the scale regularization often leads to coarser details in the geometry. This may
be caused by Gaussians with larger scales oversmoothing the local geometries.
The effect of prior composition. To explore the 3D dark side of a single
image, we introduce a gradient constraint-based method in Sec. 3.3 to control
two diffusion priors in the image-to-3D task. Here we conduct an ablation study
to validate the effectiveness of this component. As shown in Fig. 7, without this
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score composition, though detailed texture on the backside can still be gener-
ated, results in degraded consistency between front views and reference images.
Another setting involves a naive weighting strategy; we follow Magic123 [28]
to set a weighting factor of 1/40 on the SDS term Lρ

SDS with diffusion prior
ϵρ. With this setting, the backside of the generated 3D objects appears overly
smoothed. In contrast, incorporating score composition enables our Vista3D to
robustly generate textures that are both detailed and consistent across the front
and back views of 3D objects.

w/o score composition with score composition naive weighting
Fig. 7: Ablation Study of Score Composition. Without score composition, the
consistency between the reference view and front view is degraded. Applying naive
weighting results in over-smoothed textures on back views.

1.2 More qualitative results

Figure 8 showcases the qualitative results of Vista3D-L with diffusion prior com-
position compared to Vista3D-S with a single diffusion prior. Particularly in sce-
narios where the provided reference view is less informative, such as when only
a side or back view of an object is available, Vista3D-L demonstrates a superior
ability to generate more detailed textures compared to Vista3D-S, especially
when specific text prompts are used. For example, in the case of the astronaut,
Vista3D-S tends to produce oversmoothed textures. In contrast, when using
Vista3D-L, the textures generated are notably more vivid and detailed.

2 Camera Pose Sampling

As illustrated in Fig. 9, our approach adopts a 3D-aware camera pose sampling
strategy in the refinement stage, diverging from the standard uniform sampling
used in previous image-to-3D works [28, 38, 39]. This approach not only speeds
up convergence but also enhances visual quality.
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Fig. 8: Qualitative Comparison between Vista3D-S and Vista3D-L

Specifically, for a given conditional reference image Iref , the pre-trained Zero-
1-to-3 model [18] ϵϕ is capable of approximating the underlying 3D object dis-
tribution PIref (x). Leveraging this, we employ its estimated empirical error for
3D-aware sampling.

In this sampling stage, camera poses are sampled from a sphere surface sur-
rounding the central object, divided evenly into N sub-regions Ri with azimuth
ranging from [−180, 180] degrees, as shown on the left side of Figure 9. Memory
queues of fixed length T are established for each sub-region to store empiri-
cal errors estimated during the SDS optimization, directly derived from SDS as
(ϵϕ − ϵ) in Equation 1.

When performing pose sampling, an empirical Probability Density Function
(PDF) P3d(Ri) is created from these N memory queues. Additionally, given the
supplementary supervision from the reference image Iref for forward-facing cam-
era poses, we integrate Gaussian unsampling to reduce sampling frequency on
forward-facing poses and increase it for unseen views. This unsampling employs
a rejection sampling with a truncated Gaussian distribution, depicted on the
right side of Figure 9. Each sub-region is mapped onto this truncated Gaussian
PDF, with regions overlapping significantly with the reference view being more
likely to be sampled.

In this process, a camera pose is sampled by initially performing Gaussian
unsampling to determine a rejection index n ∈ [0, N − 1]. Subsequently, we
modify the empirical PDF by setting P3d(Rn) = 0 and normalizing it. A sub-
region index is then sampled from this discrete PDF P̃3d(Ri), and a camera pose
is uniformly sampled from this chosen sub-region.
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Fig. 9: 3D-aware Pose Sampling, Camera poses are sampled from an empirical
PDF with a truncated Gaussian unsampling.

In our implementation, we configure N = 5, and initially perform uniform
camera pose sampling during the first 100 iterations. For the Gaussian Un-
sampling, we utilize a truncated Gaussian distribution spanning [−1, 1], with
N (0, 0.5). This distribution is evenly divided into N intervals to facilitate the
sampling process.

3 Timestep Sampling in SDS

Pioneering work DreamFusion [27] randomly sample timestep t from U(20, 980)
in the SDS optimization. However, Dreamtime [10] critiques this strategy, sug-
gesting that such random sampling is misaligned with the Denoising Diffusion
Probabilistic Models (DDPM) sampling process and leads to inefficient and in-
accurate optimization in SDS. Dreamtime suggests a deterministic Time Priori-
tized (TP) strategy where each iteration step is assigned a unique, decrementally
decreasing timestep t.

However, we observed that this deterministic approach falls short in SDS
optimization. Artifacts generated by large timesteps are not effectively compen-
sated for by smaller timesteps, often exacerbating the problem. To rectify this,
we propose an interval-based annealing method for the timestep. Specifically,
we define a maximum timestep tmax and a minimum timestep tmin for each
optimization interval, updating them every 50 optimization steps. The timestep
is then sampled from the dynamically adjusted interval U(tmin, tmax). This ap-
proach effectively alleviates the artifacts that larger timesteps tend to cause.
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4 Limitations

Despite Vista3D demonstrating prowess in exploring the 3D dark side of a sin-
gle image, we acknowledge several limitations for future exploration. Employing
a Score Distillation Sampling (SDS) based architecture, Vista3D necessitates
optimization for each 3D object it generates, positioning its efficiency a notch
below that of purely feed-forward image-to-3D methods. The amount of public
3D data is relatively limited, often resulting in the generation of simplistic 3D
objects by feed-forward methodologies. Vista3D leverages diffusion prior compo-
sition to facilitate the reconstruction of more diverse 3D objects. This strategy
holds promise for the creation of additional 3D data, potentially alleviating the
current data scarcity and enabling the development of more sophisticated pre-
trained image-to-3D models.
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