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FlashSplat: 2D to 3D Gaussian Splatting
Segmentation Solved Optimally

Supplementary Material

6 More Implementation details

The implementation of FlashSplat unfolds in two main parts. Initially, the focus
is on deriving the contribution set {Ae} for every Gaussian across objects e.
This step involves projecting 3D Gaussians onto each mask Mv, capturing the
product αiTi within the alpha blending formula into the buffer Ae where a pixel
Mv

ij = e. This procedure compiles the contributions from every object across all
viewpoints into a matrix A ∈ RE×|{Gi}|, where E is total number of objects in
the 3D scene, and |{Gi}| represents the total number of 3D Gaussians. Following
this, we allocate labels Pi to each 3D Gaussian Gi based on this contribution
matrix, as delineated in equations Eq. 7 and Eq. 8. For binary segmentation, the
assignment process simplifies to an argmax operation for optimal assignment.
Scene segmentation is resolved through dynamic programming to manage the
complexity of multiple assignments, with the specific implementation details
provided in list 1.1. The segmentation results for scenes are represented within
a matrix S ∈ RE×|{Gi}|, where each entry Sm,n ∈ {0, 1} specifies whether the
n-th Gaussian belongs to object m.

6.1 Mask association details

Our work primarily concentrates on lifting 2D masks into 3D space, with less
emphasis placed on mask association within the core sections of main paper.
In this context, we provide additional insights into the methodology used to
associate 2D masks in the 3D segmentation experiments presented.
Binary Mask Association. Within binary segmentation scenarios, association
among 2D view masks is achieved through the propagation of point prompts
across different views. Specifically, for a point prompt p2Di ∈ R2 identified on an
object in a single view, this point is back-projected to the 3D space, acquiring
a world coordinate p3Di ∈ R3, to locate its corresponding 3D Gaussian Gi. How-
ever, due to the prevalence of numerous Gaussians surrounding this 3D point
prompt, relying solely on distance for Gaussian correspondence can lead to in-
correct outcomes. To mitigate this, we initially identify the Top− 10 closest 3D
Gaussian centers using the L2 distance. Subsequently, the specific Gaussian is
determined by selecting the one with the least depth when projected onto the
reference view. The center positions of these 3D Gaussians are then projected
onto other views to link point prompts associated with the same object across
different views. By utilizing SAM [20] to produce masks for each view based on
these aligned point prompts, we inherently associate these predicted 2D masks.
This method of point prompt propagation is implemented via CUDA kernels,
enabling the association of point prompts across all views in under one second.
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Scene Mask Association. Beyond binary segmentation, the segmentation of
entire 3D scenes without specific point prompts is essential. Therefore, we in-
troduce an alternative approach for associating scene masks across all views.
To assign each 2D object with a unique ID in the 3D scene, multiple views are
treated akin to a video sequence. Utilizing a zero-shot video tracker [7, 53], we
ensure the consistent association and propagation of objects across viewpoints.

7 More qualitative evaluation

To validate the effectiveness of our FlashSplat, we conduct qualitative compar-
isons on the object removal task with prior works in 3D Gaussian Splatting
segmentation, specifically Gaussian-Grouping [53]. As outlined in Sec.4.4, 3D
object removal involves entirely eliminating the 3D Gaussians subset of selected
objects from the scene, which is a fundamental application of 3D segmentation.
For fair comparison, we use identical 2D scene mask set {Mv} for both methods.
Our process begins with conducting 3D segmentation using these scene masks,
followed by the specification of object IDs for removal. We present the multiple
object removal results in Fig. 8 and single object removal results in Fig. 9. We
render 4 distinct views of the removal results, showing that our FlashSplat can
cleanly remove these 3D objects with imperceptible artifacts, while the results
of Gaussian-grouping show severe artifacts near the removed 3D objects. These
comparisons underscore our method is not only superior for the efficiency of 3D
segmentation, but also excels at 3D scene segmentation quality.

Fig. 8: Multiple Object Removal Comparison. Here we show a qualitative com-
parison by removing multiple objects from the Counter scene in the MIP-360 [1]
dataset. The first row is the ground truth, the second row shows our FlashSplat, and
the third row displays the results from Gaussian-Grouping. A total of 5 objects are
removed in this scene, the same as in Fig. 4 row 2.
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Fig. 9: Single object removal comparison. Here we show a qualitative comparison
by removing a single object from the Bear scene in the Instruct-NeRF2NeRF [15]
dataset. The first row is the ground truth, the second row is our FlashSplat, and the
third row shows the results from Gaussian-Grouping.

8 More discussions

8.1 The effect of background bias γ

Table 3 presents our ablation study on the truck scenes from the T&T dataset [21].
We annotate 5 views 2D mask as target views, and other view masks predicted
by SAM [20] are used as reference view masks. With the background bias γ rang-
ing from [−1, 1], we get the 3D segmentation of the truck and then render it to
2D masks to compute the mean IoU. Among these γ values, a setting of γ = 0.4
produces the optimal mean IoU of 94.2%. This is caused by the noise in masks
predicted by SAM (as visualized in Fig. 6), the assignment with γ = 0 is prone to
take background Gaussians as foreground, while this softened refinement helps
to reduce such noises.

γ -0.8 -0.4 0 0.4 0.8
mIoU 82.4 89.6 92.3 94.2 93.8

Table 3: Effect of the background bias γ on the truck scene.

8.2 Quantization in novel view mask

In Sec. 3.4, we outline projecting masks from 3D segmentation results onto novel
views using simple quantization and depth-guidance. Here we take mask ren-
dering in binary segmentation as an example to claim why this quantization is



4 Shen et al.

necessary. Without this quantization, novel view masks are produced by first pro-
jecting subsets of 3D Gaussians {Gi}e for instance e, and then the mask value for
each pixel M̂v

jk is determined by M̂v
jk = argmaxe ρ

e
jk. The absence of quantiza-

tion leads to masks, displayed in the 2-nd column and 4-th row of Fig. 10, riddled
with numerous unintended holes. This phenomenon stems from the nature of 3D
Gaussian Splatting, where each Gaussian is a semi-transparent ellipse with opac-
ity oi. As such, when a pixel (i, j) is rendered, the background 3D Gaussians
also affect the alpha blending outlined in Eq. 1, at times more significantly than
the foreground Gaussians. Implementing quantization and depth guidance ame-
liorates these discrepancies, as evident in the first and third columns of Fig. 4.
However, it’s noteworthy that despite the employment of depth guidance, mask
rendering can still produce vague outcomes in scene mask rendering due to the
absence of geometric supervision in 3D Gaussian Splatting reconstruction. The
geometry that is learned does not conform precisely to the underlying geometry,
occasionally impairing the effectiveness of depth guidance.

Fig. 10: Quantization in mask rendering.

8.3 Scene segmentation extension

In Sec. 3.3, we extend our optimal assignment for binary segmentation to scene
segmentation. This formulation, shown in Eq. 8, is chosen over a straightfor-
ward approach that would simply perform argmax among the E instances. This
choice is driven by the non-exclusive nature of Gaussian Splatting, where a Gaus-
sian can be shared between objects. For instance, we quantitatively analyze the
Counter scene in the MIP360 [1] dataset under different numbers of given masks.
As illustrated in Fig. 11, approximately 20% of the Gaussians in this scene are
shared between more than two objects. This phenomenon occurs because, in
the 3D reconstruction of 3DGS, supervision is limited to view space, with no
additional geometric or semantic constraints to enforce mutual exclusivity.

9 Limitations

Despite the advancements presented by our method in 3D-GS segmentation,
we acknowledge several limitations for future exploration. The linear program-
ming approach, although effective, may encounter scalability challenges with
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Fig. 11: Visualization of each Gaussian’s contributed object number.

significantly larger 3D scenes with substantial spatial resolutions, as we need
to traverse all mask pixels. Moreover, due to the inherent property of 3D-GS,
rendering 3D segmentation results onto novel view with depth guidance may
currently yield ambiguous mask. To address this limitation, incorporating ex-
plicit geometry supervision into the 3D-GS reconstruction is essential for more
accurately representing the underlying geometry. Additionally, the investigation
of adaptive strategies aimed at reducing computational demands and enhancing
the adaptability of our method to handle a broader array of scene complexities
presents a promising future work.
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1 def multi_instance_opt(all_contrib , gamma =0.):
2 """
3 Input:
4 all_contrib: A_{e} with shape (obj_num , gs_num)
5 gamma: background bias range from [-1, 1]
6

7 Output:
8 all_obj_labels: results S with shape (obj_num , gs_num)
9 where S_{i,j} = 1 denotes j-th gaussian belong i-th

object
10 """
11 all_contrib_sum = all_contrib.sum(dim=0)
12 all_obj_labels = torch.zeros_like(all_contrib)
13 for obj_idx , obj_contrib in enumerate(all_contrib):
14 other_contrib = all_contrib_sum - obj_contrib
15 obj_contrib = torch.stack([ other_contrib , obj_contrib

])
16 obj_contrib = F.normalize(obj_contrib , dim=0, p=1)
17 obj_contrib [0, :] += gamma
18 obj_label = torch.argmax(obj_contrib , dim =0)
19 all_obj_labels[obj_idx] = obj_label
20 return all_obj_labels

Listing 1.1: Multi-instance optimization in PyTorch



FlashSplat 7

References

1. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In: CVPR (2022)

2. Bing, W., Chen, L., Yang, B.: Dm-nerf: 3d scene geometry decomposition and
manipulation from 2d images. arXiv preprint arXiv:2208.07227 (2022)

3. Cen, J., Fang, J., Yang, C., Xie, L., Zhang, X., Shen, W., Tian, Q.: Segment any
3d gaussians. arXiv preprint arXiv:2312.00860 (2023)

4. Cen, J., Zhou, Z., Fang, J., Yang, C., Shen, W., Xie, L., Jiang, D., Zhang, X., Tian,
Q.: Segment anything in 3d with nerfs. In: NeurIPS (2023)

5. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In:
ECCV (2022)

6. Chen, Z., Wang, F., Liu, H.: Text-to-3d using gaussian splatting. arXiv preprint
arXiv:2309.16585 (2023)

7. Cheng, H.K., Oh, S.W., Price, B., Schwing, A., Lee, J.Y.: Tracking anything with
decoupled video segmentation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 1316–1326 (2023)

8. Fang, J., Yi, T., Wang, X., Xie, L., Zhang, X., Liu, W., Nießner, M., Tian, Q.:
Fast dynamic radiance fields with time-aware neural voxels. In: SIGGRAPH Asia
(2022)

9. Fei, B., Xu, J., Zhang, R., Zhou, Q., Yang, W., He, Y.: 3d gaussian as a new vision
era: A survey. arXiv preprint arXiv:2402.07181 (2024)

10. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenox-
els: Radiance fields without neural networks. In: CVPR (2022)

11. Fu, X., Zhang, S., Chen, T., Lu, Y., Zhu, L., Zhou, X., Geiger, A., Liao, Y.:
Panoptic nerf: 3d-to-2d label transfer for panoptic urban scene segmentation. In:
3DV (2022)

12. Goel, R., Sirikonda, D., Saini, S., Narayanan, P.: Interactive segmentation of radi-
ance fields. arXiv preprint arXiv:2212.13545 (2022)

13. Haque, A., Tancik, M., Efros, A., Holynski, A., Kanazawa, A.: Instruct-nerf2nerf:
Editing 3d scenes with instructions. In: ICCV (2023)

14. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.E.: Baking
neural radiance fields for real-time view synthesis. In: ICCV (2021)

15. Hu, B., Huang, J., Liu, Y., Tai, Y.W., Tang, C.K.: Instance neural radiance field.
arXiv preprint arXiv:2304.04395 (2023)

16. Hu, X., Wang, Y., Fan, L., Fan, J., Peng, J., Lei, Z., Li, Q., Zhang, Z.: Semantic
anything in 3d gaussians. arXiv preprint arXiv:2401.17857 (2024)

17. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics (ToG) (2023)

18. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM TOG 42(4), 1–14 (2023)

19. Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: Lerf: Language
embedded radiance fields. arXiv preprint arXiv:2303.09553 (2023)

20. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.Y., et al.: Segment anything. arXiv preprint
arXiv:2304.02643 (2023)

21. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Trans. Graph. (2017)

22. Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing nerf for editing via
feature field distillation. In: NeurIPS (2022)



8 Shen et al.

23. Lindell, D.B., Martel, J.N.P., Wetzstein, G.: Autoint: Automatic integration for
fast neural volume rendering. In: CVPR (2021)

24. Ling, H., Kim, S.W., Torralba, A., Fidler, S., Kreis, K.: Align your gaussians: Text-
to-4d with dynamic 3d gaussians and composed diffusion models. arXiv preprint
arXiv:2312.13763 (2023)

25. Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-
1-to-3: Zero-shot one image to 3d object. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. pp. 9298–9309 (2023)

26. Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu,
J., et al.: Grounding dino: Marrying dino with grounded pre-training for open-set
object detection. arXiv preprint arXiv:2303.05499 (2023)

27. Liu, X., Chen, J., Yu, H., Tai, Y., Tang, C.: Unsupervised multi-view object seg-
mentation using radiance field propagation. In: NeurIPS (2022)

28. Luiten, J., Kopanas, G., Leibe, B., Ramanan, D.: Dynamic 3d gaussians: Tracking
by persistent dynamic view synthesis. arXiv preprint arXiv:2308.09713 (2023)

29. Mildenhall, B., Srinivasan, P.P., Cayon, R.O., Kalantari, N.K., Ramamoorthi, R.,
Ng, R., Kar, A.: Local light field fusion: practical view synthesis with prescriptive
sampling guidelines. ACM Trans. Graph. (2019)

30. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020)

31. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020)

32. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph. (2022)

33. Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional gener-
ative neural feature fields. In: CVPR (2021)

34. Qiu, J., Yang, Y., Wang, X., Tao, D.: Scene essence. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp. 8322–8333
(2021)

35. Ren, J., Pan, L., Tang, J., Zhang, C., Cao, A., Zeng, G., Liu, Z.: Dreamgaussian4d:
Generative 4d gaussian splatting. arXiv preprint arXiv:2312.17142 (2023)

36. Ren, J., Xie, K., Mirzaei, A., Liang, H., Zeng, X., Kreis, K., Liu, Z., Torralba, A.,
Fidler, S., Kim, S.W., et al.: L4gm: Large 4d gaussian reconstruction model. arXiv
preprint arXiv:2406.10324 (2024)

37. Ren, Z., Agarwala, A., Russell, B.C., Schwing, A.G., Wang, O.: Neural volumetric
object selection. In: CVPR (2022)

38. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: CVPR. pp. 10684–10695 (2022)

39. Shen, Q., Yang, X., Wang, X.: Anything-3d: Towards single-view anything recon-
struction in the wild. arXiv preprint arXiv:2304.10261 (2023)

40. Shen, Q., Yi, X., Wu, Z., Zhou, P., Zhang, H., Yan, S., Wang, X.: Gamba: Marry
gaussian splatting with mamba for single view 3d reconstruction. arXiv preprint
arXiv:2403.18795 (2024)

41. Stelzner, K., Kersting, K., Kosiorek, A.R.: Decomposing 3d scenes into objects via
unsupervised volume segmentation. arXiv preprint arXiv:2104.01148 (2021)

42. Sun, C., Sun, M., Chen, H.: Direct voxel grid optimization: Super-fast convergence
for radiance fields reconstruction. In: CVPR (2022)



FlashSplat 9

43. Suvorov, R., Logacheva, E., Mashikhin, A., Remizova, A., Ashukha, A., Silvestrov,
A., Kong, N., Goka, H., Park, K., Lempitsky, V.: Resolution-robust large mask
inpainting with fourier convolutions. In: WACV (2022)

44. Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: Dreamgaussian: Generative gaussian
splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653 (2023)

45. Tang, S., Pei, W., Tao, X., Jia, T., Lu, G., Tai, Y.W.: Scene-generalizable interac-
tive segmentation of radiance fields. In: ACMMM (2023)

46. Tschernezki, V., Laina, I., Larlus, D., Vedaldi, A.: Neural feature fusion fields: 3d
distillation of self-supervised 2d image representations. In: 3DV (2022)

47. Vora, S., Radwan, N., Greff, K., Meyer, H., Genova, K., Sajjadi, M.S., Pot, E.,
Tagliasacchi, A., Duckworth, D.: Nesf: Neural semantic fields for generalizable se-
mantic segmentation of 3d scenes. arXiv preprint arXiv:2111.13260 (2021)

48. Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.: Nex: Real-
time view synthesis with neural basis expansion. In: CVPR (2021)

49. Wu, Z., Zhou, P., Yi, X., Yuan, X., Zhang, H.: Consistent3d: Towards consistent
high-fidelity text-to-3d generation with deterministic sampling prior. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 9892–9902 (2024)

50. Yang, X., Wang, X.: Hash3d: Training-free acceleration for 3d generation. arXiv
preprint arXiv:2404.06091 (2024)

51. Yang, Z., Yang, H., Pan, Z., Zhu, X., Zhang, L.: Real-time photorealistic dynamic
scene representation and rendering with 4d gaussian splatting. arXiv preprint
arXiv:2310.10642 (2023)

52. Yang, Z., Gao, X., Zhou, W., Jiao, S., Zhang, Y., Jin, X.: Deformable 3d gaus-
sians for high-fidelity monocular dynamic scene reconstruction. arXiv preprint
arXiv:2309.13101 (2023)

53. Ye, M., Danelljan, M., Yu, F., Ke, L.: Gaussian grouping: Segment and edit any-
thing in 3d scenes. arXiv preprint arXiv:2312.00732 (2023)

54. Yi, T., Fang, J., Wu, G., Xie, L., Zhang, X., Liu, W., Tian, Q., Wang, X.: Gaus-
siandreamer: Fast generation from text to 3d gaussian splatting with point cloud
priors. arXiv preprint arXiv:2310.08529 (2023)

55. Yi, X., Wu, Z., Shen, Q., Xu, Q., Zhou, P., Lim, J.H., Yan, S., Wang, X., Zhang, H.:
Mvgamba: Unify 3d content generation as state space sequence modeling. arXiv
preprint arXiv:2406.06367 (2024)

56. Yi, X., Wu, Z., Xu, Q., Zhou, P., Lim, J.H., Zhang, H.: Diffusion time-step curricu-
lum for one image to 3d generation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 9948–9958 (2024)

57. Yin, Y., Xu, D., Wang, Z., Zhao, Y., Wei, Y.: 4dgen: Grounded 4d content gener-
ation with spatial-temporal consistency. arXiv preprint arXiv:2312.17225 (2023)

58. Yu, H., Guibas, L.J., Wu, J.: Unsupervised discovery of object radiance fields. In:
ICLR (2022)

59. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)

60. Zhi, S., Laidlow, T., Leutenegger, S., Davison, A.J.: In-place scene labelling and
understanding with implicit scene representation. In: ICCV (2021)

61. Zou, Z.X., Yu, Z., Guo, Y.C., Li, Y., Liang, D., Cao, Y.P., Zhang, S.H.: Triplane
meets gaussian splatting: Fast and generalizable single-view 3d reconstruction with
transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 10324–10335 (2024)


	FlashSplat: 2D to 3D Gaussian Splatting Segmentation Solved Optimally

