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1 Residual Channel Attention Block

In the main manuscript, we introduced the Residual Channel Attention Block
(RCAB) within the context of the Residual Combination Operation for depth
prediction and the Feature Extractor during the confidence-guided residual pyra-
mid estimation phase. Here, we delve deeper into the details of RCAB and
present ablation experiments to analyze its impact.
Architecture of RCAB. We employ the RCAB to extract the features from the
concatenation of depth and amplitude maps for balancing the time consumption
and ToF denoising performance. In addition, different from SHARP-Net [2], we
incorporate a channel attention layer to combine the estimated confidence-guided
residual pyramid instead of a 1× 1 convolution layer.

The detailed architecture of the RCAB is shown in Fig. 1. For the Feature
Extractor, the RCAB takes the features from the above block F as input to
obtain the aggregated feature F

′
. In the Residual Combination Operation, the

RCAB takes as input the concatenation of the dot product of the residual pyra-
mid and the confidence pyramid at each level. RCAB outputs a coarse depth
residual Rcoarse, which is employed to remove the MPI and shot noise in ToF
depth images.
Ablation study. To validate the effectiveness of RCAB, we conduct experiments
to compare our method against its variants, as shown in Table 1. We create
three variants by removing RCAB from our network: ‘FE w/o RCAB’, ‘RCO
w/o RCAB’, and ‘Ours w/o RCAB’. "FE w/o RCAB" refers to a variant of
our network that includes a feature extractor of 3 × 3 convolutions. "FE w/o
RCAB" also describes a variant of our network that employs a 1×1 convolution to
combine the confidence-guided residual pyramid. ‘Ours w/o RCAB’ represents
a variant of our network without RCAB. By comparing these variants with
our method across all error levels, we observe that introducing RCAB is more
effective in regions with low error levels and plays a crucial role in high-error
areas with geometric details.
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Fig. 1: The architecture of the RCAB in Feature Extractor and Residual Combination
Operation. Here, ‘ c○’ is the concatenation operation. ‘ +○’ and ‘×○’ represent the addi-
tion and multiply operations, respectively. ‘∼○’ denotes a sigmoid activation function.

Table 1: Quantitative comparison with the variants on the TFT3D dataset.

Model TFT3D Dataset:MAE(cm)
1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

FE w/o RCAB 0.44 0.51 0.65 2.16 0.94
RCO w/o RCAB 0.42 0.48 0.57 2.21 0.92
Ours w/o RCAB 0.50 0.59 0.69 2.18 0.99

Ours 0.36 0.40 0.49 2.03 0.82

Table 2: Quantitative comparison with different values of L on the TFT3D dataset.

Model 1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall
Ours (L = 3) 0.55 0.59 0.70 2.64 1.12
Ours (L = 4) 0.49 0.54 0.66 2.55 1.06
Ours (L = 5) 0.46 0.51 0.63 2.44 1.01
Ours (L = 6) 0.36 0.40 0.49 2.03 0.82
Ours (L = 7) 0.34 0.37 0.48 2.01 0.80
Ours (L = 8) 0.34 0.36 0.48 1.98 0.79

2 Depth Refinement Module and Kernel Prediction
Network

Following the previous processing steps, MPI noise is significantly reduced. Al-
though shot noise is also mitigated to some extent, it is not as effectively re-
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Fig. 2: Qualitative comparison on the TFT3D dataset, the Cornell-Box dataset and
the HAMMER iToF dataset for ToF depth denoising. For each dataset, four scenes are
selected for comparison. The colour bars on the right show the colour scale for error
maps with the unit in cm.
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Table 3: The detailed architecture of the DRM.

Module Layer Kernel Stride Input Output Input
Name Name Size Channels Channels Layer

conv1_1 3× 3 1 1 16 RFM
⊕

depth
conv1_2 3× 3 1 16 16 conv1_1
conv2_1 3× 3 2 16 32 conv1_2
conv2_2 3× 3 1 32 32 conv2_1
conv3_1 3× 3 2 32 64 conv2_2

Depth conv3_2 3× 3 1 64 64 conv3_1
Refinement conv4_1 3× 3 2 64 128 conv3_2

Module conv4_2 3× 3 1 128 128 conv4_1
(DRM) upconv1_1 3× 3 2 128 64 conv4_2

upconv1_2 3× 3 1 128 64 conv3_2©upconv1_1
upconv2_1 3× 3 2 64 32 upconv1_2
upconv2_2 3× 3 1 64 32 conv2_2©upconv2_1
upconv3_1 3× 3 2 32 16 upconv2_2
upconv3_2 3× 3 1 32 16 conv1_2©upconv3_1

w 3× 3 1 16 9 upconv3_2

moved as MPI. Shot noise still poses a challenge to applying ToF depth sensing.
To tackle this issue, we introduce a depth refinement module that leverages a
kernel prediction network to output a final denoised ToF depth image denoted
as Dout [1, 6].

The Depth Refinement Module takes the intermediate depth image as the
input and employs a U-Net model with a skip connection to generate a weight
matrix. The weight matrix consists of a vectorized filter kernel for each pixel in
the depth image. In our experiment, we set the kernel size k as 3, and the size of
the weight matrix is W ×H × 9. Next, we generate a patch matrix by vectoring
a neighbourhood for each pixel in the depth image. Then the weight matrix is
multiplied element-wisely with the patch matrix, generating a 3D volume with
the same size. By summing over the 3D volume, we finally get the refined depth
image Dout. The details of the Depth Refinement Module are shown in Table 3.
The

⊕
symbol and the symbol represent the addition and concatenation oper-

ations, respectively.

3 Ablation on the number of pyramid network levels

To determine suitable values for the number of pyramid network levels during
training and inference, we compare them with different values of L as shown in
Table 2. We observe a consistent decrease in Mean Absolute Error (MAE) across
all error levels as the number of pyramid levels increases. This improvement
stems from the network’s ability to partition the scene into a more fine-grained
hierarchical structure with higher pyramid levels. This finer partitioning facili-
tates a more accurate estimation of MPI noise. To balance runtime efficiency and
denoising performance for our proposed method, we ultimately set the number
of pyramid levels L to 6.
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4 Additional Visualization Results

We present additional error maps in Fig. 2 for a comprehensive comparison
of our approach with ToF-KPN [7], SHARP-Net [2], and RADU [8] on both
synthetic and realistic datasets. These datasets include the ToF-FlyingThings3D
(TFT3D) [7], Cornell-Box [8], and HAMMER [3] datasets. Visual inspection of
the error maps reveals that our method performs better, exhibiting smaller errors
than the other methods.

Table 4: Quantitative comparison with competitive ToF depth denoising methods on
the iToF set and dToF set of the HAMMER dataset.

Model HAMMER iToF Dataset: MAE (cm)
1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

DeepToF [5] 0.097 0.111 0.138 0.222 0.142
ToF-KPN [7] 0.076 0.087 0.112 0.229 0.126

SHARP-Net [2] 0.048 0.052 0.067 0.149 0.079
RADU [8] 0.049 0.055 0.076 0.204 0.096

Ours 0.035 0.039 0.048 0.094 0.054

Model HAMMER dToF Dataset: MAE (cm)
1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

DeepToF [5] 0.094 0.095 0.112 0.175 0.119
ToF-KPN [7] 0.082 0.081 0.092 0.557 0.203

SHARP-Net [2] 0.060 0.060 0.067 0.129 0.079
RADU [8] 0.066 0.066 0.076 0.224 0.108

Ours 0.056 0.057 0.065 0.106 0.071

5 Quantitative Comparison on direct ToF data

In addition, we evaluate the denoising performance of our method on direct ToF
(dToF) data. Although dToF also suffers from MPI, the main source of dToF
noise is edge fattening caused by flying pixels, not MPI. We test our method
and existing methods on a realistic dToF dataset, i. e., the dToF set of the
HAMMER dataset. The experimental results for all the methods on the iToF
and dToF sets of the HAMMER dataset are shown in Table 4. We cannot create
amplitude maps because the dToF dataset does not have correlation maps. We
use the dataset’s instance labels as our network’s input instead of the amplitude
maps. To maintain fairness in comparisons, we adopt the concatenation of an
instance label map and a ToF depth map as inputs to our network for the iToF
dataset. Compared with RADU and SHARP-Net in all quantiles, our method
still achieves optimal performance at all error levels of dToF data. It is observed
that while our proposed method outperforms baselines on the dToF set as well,
its superiority is less pronounced than it is on iToF data. This difference indi-
cates that the efficacy of our proposed method is intimately linked to the noise
composition within the ToF data.
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6 Evaluation on temporal continuity

Quantifying temporal continuity metrics is challenging due to our dataset’s ab-
sence of ground truth for scene flow. To address this limitation, we reference [4]
for comparing our method and SHARP-Net using x-t plots, demonstrating im-
proved temporal continuity, as depicted in the figure below.

Input Input (x-t plot) SHARP-Net Ours SHARP-Net (error) Ours (error)

Fig. 3: Visual comparisons with SHARP-Net on the x-t plot of the HAMMER dataset.
The red boxes highlight the regions that existing temporal discontinuity.

7 Generalizability on different multi-frame settings

Based on experiments conducted on the HAMMER dataset, depicted below,
we observe that increasing the number of frames leads to improved denoising
performance of the network. Remarkably, even with just two frames as input,
our framework effectively handles the ToF noise.

Table 5: Quantitative comparison with various multi-frame settings on the HAMMER
dataset.

# frames 1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall
2 0.050 0.055 0.076 0.207 0.097
3 0.051 0.055 0.074 0.196 0.094
4 0.049 0.054 0.073 0.192 0.093

8 Runtime of different methods

We report the runtime and memory for all methods on a single GTX 1080Ti, as
shown in the table below.

Table 6: Quantitative comparison on runtime and memory.

Method MAE [cm] Time [ms] Param. [M]
DeepToF 3.54 243 2.6
ToF-KPN 2.38 359 2.6
SHARP-Net 1.19 404 2.1
RADU 1.28 3650 2.4
Ours 0.82 509 2.9
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