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Abstract. Recent advancements in Time-of-Flight (ToF) depth denois-
ing have achieved impressive results in removing Multi-Path Interfer-
ence (MPI) and shot noise. However, existing methods only utilize a
single frame of ToF data, neglecting the correlation between frames. In
this paper, we propose the first learning-based framework for multi-frame
ToF denoising. Different from existing methods, our framework leverages
the correlation between neighboring frames to guide ToF noise removal
with a confidence map. Specifically, we introduce a Dual-Correlation Es-
timation Module, which exploits both intra- and inter-correlation. The
intra-correlation explicitly establishes the relevance between the spa-
tial positions of geometric objects within the scene, aiding in depth
residual initialization. The inter-correlation discerns variations in ToF
noise distribution across different frames, thereby locating the regions
with strong ToF noise. To further leverage dual-correlation, we intro-
duce a Confidence-guided Residual Regression Module to predict a con-
fidence map, which guides the residual regression to prioritize the regions
with strong ToF noise. The experimental evaluations have consistently
shown that our framework outperforms existing ToF denoising methods,
highlighting its superior performance in effectively reducing strong ToF
noise. The source code is available at https://github.com/gtdong-
ustc/multi-frame-tof-denoising.
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1 Introduction

Time-of-Flight (ToF) cameras capture depth images over long distances and
are commonly used across various applications. Among different types of ToF
cameras, indirect ToF (iToF) cameras continually illuminate the scene with a
periodically modulated light signal and aim to ascertain the phase offset between
the emitted and received signal, providing information about the signal’s travel
time. iToF cameras stand as the most prevalent in the market, and are the
primary focus of this paper. Despite the prevalence of ToF cameras in the market,
they continue to struggle with noise, which hinders their performance in high-
level tasks [9,25,26,28,35,46,47]. The ToF camera noise encompasses two primary
types: shot noise and MPI. Shot noise constitutes a form of random noise that is
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Fig. 1: The overview of our proposed multi-frame ToF denoising framework.

pervasive in nearly all depth sensors and arises from the electronic accumulation
of received light signals in the sensor [14, 45]. MPI is a noise associated with
the geometric structure of the scene, stemming from the multi-bounce reflection
of the received light signal during the exposure time. Several previous studies
have attempted to eliminate MPI for ToF depth images [3, 7, 21, 27, 30, 31, 37].
However, current works only apply single-frame processing and ignore utilizing
the correlation from multi-frame depth images to improve performance during
ToF denoising.

In this paper, our objective is to harness the correlation inherent in multi-
frame ToF depth images. Referring to existing methods, we find that multi-
frame processing frameworks in other tasks [34, 38, 41, 42], both flow-based and
flow-free, typically involve three steps: Alignment, Fusion, and Reconstruction.
However, given the particular challenges present in multi-frame ToF denoising,
existing frameworks are not directly applicable. This is because the presence of
MPI leads to the spatial distribution of ToF noise to be regional. As shown in
the error map of Fig. 1, ToF noise is regionally distributed in the depth image
space. Therefore, an explicit alignment and fusion process struggles to capture
additional geometric information from neighboring frames, leading to poor per-
formance for multi-frame ToF denoising. By observing continuous ToF data, we
discover that changes in camera perspectives can cause a notable difference in
the spatial distribution of ToF noise. This phenomenon is clearly demonstrated
in Fig. 1, where the red box highlights the area exhibiting an increase in the
Mean Absolute Error (MAE) due to a shift in the camera perspective. This spe-
cial property of ToF noise offers the potential to predict its spatial distribution.
Based on this observation, we introduce a novel framework specifically tailored
for multi-frame ToF denoising, including Correlation, Guidance and Reconstruc-
tion. Our framework stands apart from existing ones by not incorporating an
explicit alignment and fusion process. Instead, we aggregate temporal informa-
tion, specifically the inter-correlation between two neighboring frames, to predict
a confidence map that guides the denoising process to focus on removing strong
ToF noise.
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Based on our proposed framework shown in Fig. 1, we design a Multi-frame
ToF Denoising Network (MTDNet), which takes in two frames of amplitude im-
ages and ToF depth images, and generates a denoised depth image. Moreover,
we introduce a Dual-Correlation Estimation Module (DCEM) to estimate the
intra- and inter-correlation, respectively. The intra-correlation explicitly estab-
lishes the relationship between the spatial positions of geometric objects within
the scene, which is beneficial for regressing an initial depth residual to remove
MPI. The inter-correlation is calculated to capture the variations in the spatial
distribution of ToF noise across multiple frames, which aids our MTDNet in the
removal of strong ToF noise, such as MPI at edges and in corner areas. In addi-
tion, we propose a Confidence-guided Residual Regression Module (CRRM) as
the backbone of our MTDNet. Building upon the capabilities of dual-correlation,
the CRRM predicts a confidence map, which guides residual regression to prior-
itize the regions with strong ToF noise. Through deploying multiple CRRMs at
different scales, our MTDNet constructs a confidence-guided residual pyramid
in a coarse-to-fine manner. Finally, we introduce a residual channel attention
block [36] and a depth refinement module [7] to combine the residual pyramid
together, producing a comprehensive depth residual that enables accurate re-
moval of noise in ToF depth images, particularly MPI and shot noise. In brief,
our contributions can be summarized as follows:

– We first propose a multi-frame processing framework for ToF denoising that
estimates dual-correlation between neighboring frames to guide the ToF
noise removal with a confidence map.

– We propose a Dual-Correlation Estimation Module, including the inter- and
intra-correlations, to initialize the MPI estimation and capture the variations
in ToF noise distribution across multiple frames.

– We propose a Confidence-guided Residual Regression Module to utilize the
dual-correlation, obtaining a confidence map that guides residual regression
to focus on the regions with strong ToF noise.

– Our proposed MTDNet outperforms existing methods in the quantitative
and qualitative comparisons for ToF denoising on both synthetic and realistic
datasets.

2 Related Work

The sensitivity of ToF imaging to both shot noise and MPI has been extensively
documented in prior research [17,44]. While shot noise is ubiquitous in all sensors
and originates from sensor electronics, it has been the subject of extensive study
within the context of ToF sensors. Traditional filtering techniques, such as bi-
lateral filtering, have demonstrated effectiveness in eliminating shot noise [2,18].
In contrast, MPI removing poses a more intricate challenge in ToF denoising.
Transient imaging-based ToF denoising. Conventional indirect ToF sys-
tems extract temporal frequencies from the Fourier Transform of the transient
image of the scene [20]. It is essential to capture a wide range of frequencies to
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accurately determine the depth from the transient image [5]. Gupta et al. [12]
explored the impact of modulation frequencies on MPI and proposed a phasor
imaging technique involving the emission of two signals with significantly differ-
ing frequencies. Freedman et al. [10] introduced a model utilizing a compress-
ible backscattering representation to tackle challenges associated with multipath
scenarios involving more than two paths, to achieve real-time processing speed.
Buratto et al. [6] predicted the intensity and arrival time of the first two peaks
of the impulse response by assuming that the direct reflection reaches the ToF
sensor early.

Learning-based ToF denoising. Recently, learning-based techniques have sig-
nificantly advanced the field of 3D information processing, leading to the devel-
opment of numerous learning-based MPI removal methods. Marco et al. [15]
simulated the light transport model of MPI in the ToF imaging process and
generated a substantial dataset for ToF denoising. Additionally, they introduced
the first two-stage deep neural network to refine the coarse estimation of ToF
depth images [21]. Su et al. [32] proposed a deep end-to-end network that di-
rectly inputs raw correlation measurements. Guo et al. [11] offered a suite of
advanced transient rendering tools and created a large-scale ToF dataset called
FLAT. They also innovatively applied the divide and conquer concept, designing
a residual-based U-Net [29] and a kernel prediction network [4, 22] for the re-
moval of MPI and shot noise, respectively. Agresti et al. [2] devised an adversarial
learning strategy to address the domain shift between unlabeled realistic scenes
and synthetic training datasets, employing a generative adversarial network for
unsupervised domain adaptation. Qiu et al. [27] proposed a deep end-to-end
network for camera alignment and ToF depth refinement, explicitly leveraging
corresponding RGB images provided by the RGB-D camera. Dong et al. [7] fo-
cused on leveraging the scene’s spatial hierarchical structure by constructing a
depth residual pyramid with multiple scales. Gutierrez et al. [13] introduced the
iToF2dToF method, which generates interpolated frequency measurements to es-
timate dToF images, providing an alternative output representation. The dToF
representation benefits from the denoising abilities of the data-driven model and
aids in removing MPI by separating direct and indirect illumination. RADU [30]
extended 2D ToF data denoising to 3D and employed 3D point CNNs for ray-
aligned depth updating.

Multi-frame depth processing. In practical scenarios, depth processing is
commonly conducted on multiple images rather than a single frame. Many prior
methods have focused on extracting multi-view geometry from monocular RGB
videos or on self-supervised depth estimation [8, 24, 39, 40, 43]. Meanwhile, the
efficient utilization of inter-correlation has yet to be explored. Patil et al. [24] em-
ployed a ConvLSTM structure to fuse concatenated frames without alignment.
Li et al. [19] explicitly aligned multiple frames using a pre-trained scene flow
estimator in a stereo video. Sun et al. [34] devised a dToF video super-resolution
framework with a more flexible and error-tolerant multi-frame alignment to bet-
ter leverage multi-frame correlations. However, the performance of these methods
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Fig. 2: The architecture of our proposed MTDNet. Here, CRRMi represents the
confidence-guided residual regression module at the pyramid network’s ith scale.

is primarily constrained by the inefficient or inaccurate multi-frame alignment
module.

3 Method

3.1 Multi-Path Interference Model

In the case of an AMCW iToF sensor, the received light signal r(t) is not solely
from direct reflection but rather a combination of both directly and indirectly
received signals. Let r̂(t) represent the direct light signal, and rp(t) denote the
indirectly received signals that undergo multiple bounces before being captured
by the camera. Thus, the received signal r(t) can be modelled as r(t) = r̂(t) +∫
p∈P

rp(t), where P represents the set of all light paths followed by the indirectly
received signals. The difference between r(t) and r̂(t) introduces a deviation in
ToF depth, commonly known as MPI.

3.2 Network Overview

Our proposed MTDNet consists of two phases, as shown in Fig. 2. The first phase,
named Confidence-guided Residual Pyramid Estimation, consists of three mod-
ules: a weight-sharing Feature Extractor that provides multi-scale features from
the concatenation of depth and amplitude maps, a dual-correlation estimation
module for estimating the intra- and inter-correlation, and a confidence-guided
residual regression module serving as the backbone for predicting multi-scale
residuals. The second phase, Depth Prediction, consists of two modules: a resid-
ual channel attention block to obtain a coarse depth residual for removing MPI
and shot noise, and a depth refinement module to eliminate the rest of the
noise (mainly shot noise). The following subsections explain these five modules
respectively.
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3.3 Confidence-guided Residual Pyramid Estimation

Feature Extractor. To achieve stable feature representations, we construct
the feature extractor with 3 × 3 convolutions and residual channel attention
blocks [36]. And then, the feature extractor is utilized to extract two multi-scale
feature pyramids, denoted as

{
F i
t

}L

i=1
and

{
F i
t+1

}L

i=1
, from the combination

of depth and amplitude images, i.e., Dt&At and Dt+1&At+1. Here, L denotes
the total number of levels in the pyramid. At the ith level, F i

t represents the
feature map extracted from the tth frame and pooled i times. We denote the
size of input images as W ×H. Therefore, the dimension of the feature map at
the ith level is W

2i−1 × H
2i−1 × CNi, where CNi signifies the number of output

channels. We fix L = 6 in our network to ensure optimal denoising performance.
The corresponding values for CNi are 16, 32, 64, 96, 128, and 192, respectively.
The feature pyramid performs a hierarchical encoding of geometric information,
progressing from simpler to more complex scene structures.
Dual-Correlation Estimation Module. For constructing dual-correlation, we
introduce a cost volume layer [33] that utilizes the extracted features to construct
the cost volume as shown in Fig. 3(a). The cost volume stores the matching costs
for associating a pixel with its corresponding pixels at next frame as follows:

cost(xt) =
1

d2
(F 6

t (xt))
TF 6

t+1(x
′

t), (1)

where xt and x
′

t represent coordinates and its neighboring ones in pixel space,
T is the transpose operator. We use a limited range of d pixels to compute
the cost volume, i.e., |xt − x

′

t|∞ ≤ d. The dimension of the 3D cost volume is
d2× H

32 ×
W
32 , where we set d = 3. Then, we calculate the intra-cost, which refers

to the matching cost of the relative correspondences for the geometric objects in
the tth frame. In addition, we define the inter-cost as the matching cost between
the features of tth and (t + 1)th frames, i.e., F 6

t and F 6
t+1. Next, we use the

combination of the inter-cost, F 6
t and F 6

t+1 as inputs for two 3× 3 convolutions
to generate the feature embedding of the inter-correlation called Einter. Similarly,
we combine the intra-cost and F 6

t as inputs for two 3×3 convolutions to produce
the feature embedding of intra-correlation known as Eintra.
Confidence-guided Residual Regression Module (CRRM). At each level,
we introduce a CRRM, as illustrated in Fig. 3(b), to regress a depth residual
map and a confidence map. Firstly, the depth residual map and the confidence
map from the lower level denoted as Ri+1 and Ci+1, respectively, are upsampled
by a factor of 2 using bicubic interpolation. It is then concatenated with the
feature map F i

t of the tth frame and the upsampled feature embedding of the
dual-correlation at the current level. The resulting concatenated feature is fed
into five sequential convolutional layers, which output the residual map Ri for the
current level. Similarly, we concatenate the confidence map with the feature maps
extracted from the tth and (t+ 1)

th frames, along with the feature embedding of
inter-correlation at the current level. Again, the concatenated feature is passed
through five sequential convolutional layers, resulting in the residual map Ri for
the current level. For the bottom level, the input of CRRM consists only of the
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feature map with a size of W
32 × H

32 × 192, as there are no depth residual map
and confidence map from the lower level. Finally, we obtain a residual pyramid{
Ri

}L

i=1
consisting of depth residual maps with different scales, and a confidence

pyramid
{
Ci

}L

i=1
containing corresponding confidence maps.

3.4 Depth Prediction

It is worth noting that information from the lower levels of the pyramid can be
lost during the layer-by-layer convolution and upsampling operations. We draw
inspiration from SHARP-Net to address this concern and introduce a resid-
ual pyramid combination operation that explicitly concatenates the confidence-
guided depth residual maps from all scales [7]. We first upsample the confidence-
guided depth residual to the original resolution using bicubic interpolation to
achieve this. These upsampled depth residual maps are then concatenated to
obtain a concatenated residual volume that serves as the input for a channel
attention block. Following the convolutional operation, we obtain a coarse depth
residual map. We add this depth residual map to the original input depth image
to recover the depth image, resulting in the reconstructed depth image.

Following the existing processing steps, MPI noise is significantly reduced.
Although shot noise is also mitigated to some extent, it is not as effectively
removed as MPI. Shot noise still poses a challenge to applying ToF depth sensing.
To tackle this issue, we introduce a depth refinement module that leverages a
kernel prediction network to output a final denoised ToF depth image denoted
as Dout [4, 22]. Details about the kernel prediction network can be found in the
supplementary material. This module is crucial in effectively removing shot noise
and refining the depth images, enabling enhanced accuracy and quality.
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3.5 Loss Function

To train our proposed MTDNet effectively, we compare the predicted depth im-
age Dout with the ground truth depth image Dgt by calculating their differences.
Our main goal is to remove depth noise accurately while preserving important
geometric details. The loss function we utilized, inspired by [27], consists of two
components: the L1 loss and the gradients of the refined depth image. The loss
function can be expressed as:

L =
1

N

∑
||Dout −Dgt||1 + λ||∇Dout −∇Dgt||1, (2)

where the ||·||1 represents the L1 norm, and N denotes the total number of
pixels. The gradients are computed using the discrete Sobel operator. In our
experimental setup, we set the value of λ to 10, as suggested in [7, 27].

4 Experiments

4.1 Datasets

MTDNet is a neural network employing supervised learning to effectively remove
noise from ToF depth images. We require ToF datasets that provide ground truth
depth information to train all the network parameters. The typical approach
for generating suitable datasets is to employ transient rendering technology to
simulate the ToF imaging process while introducing MPI and shot noise [15].
Existing CNN-based methods for ToF denoising have created synthetic datasets
with thousands of scenes. For our experiments, we select two large-scale synthetic
datasets: ToF-FlyingThings3D (TFT3D) [27] and Cornell Box [30] for training
and evaluation. The TFT3D dataset consists of 4000 scenes, including living
rooms and kitchens. We utilize the ToF amplitude images and ToF depth im-
ages with a 640× 480 resolution as input for our proposed method. The Cornell
Box dataset comprises 21.3K scenes, consisting of raw measurements with dif-
ferent frequencies and corresponding ground truth depths. In our experiments,
we convert the raw measurements at 50MHz frequency into ToF depth and am-
plitude images with a resolution of 600 × 600 [30]. Additionally, to assess our
MTDNet’s performance on realistic scenes, we also adopt the HAMMER dataset
developed by Jung et al. [16], which offers iToF measurements and encompasses
13 different scenes with a resolution of 384 × 576. For the HAMMER dataset,
we exclusively utilize the real data collected with Lucid Helios (iToF) in the
HAMMER dataset.

4.2 Data Pre-processing

Firstly, the input depth images are normalized based on the provided depth
value range in the dataset. Any pixels with depth values outside the range (0,
1] are filtered out Next, for the convenience of experiments, we crop the images
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from the TFT3D dataset, Cornell-Box dataset and HAMMER dataset to a size
of 384×512. Considering the different camera movement speeds in each dataset,
we use different numbers of intermediate frames to distinguish between the tth

and (t + 1)th frames for each dataset: three for the TFT3D dataset, three for
the Cornell Box dataset, and seven for the HAMMER dataset. Finally, for all
three datasets, we randomly select 10% scenes as the test set while the rest for
training.

4.3 Training Settings

The methods involved in the quantitative and qualitative comparison include
DeepToF, ToF-KPN, SHARP-Net, RADU and our proposed MTDNet. For the
TFT3D dataset, the learning rate is 4×10−4, which is reduced by 20% after every
8 epochs. We train all the methods for 100 epochs with a batch size of 2. We set
the learning rate for the Cornell Box dataset as 1× 10−3 and the decay rate to
0.1 every 25 epochs. We train all the methods for 120 epochs with a batch size of
4. We set the HAMMER dataset’s learning rate as 4× 10−4 and the decay rate
to 0.8 every 8 epochs. We train all the methods for 70 epochs with a batch size of
2. The network is implemented using the TensorFlow framework [1] and trained
using Adam optimizer. With four NVIDIA 1080Ti graphics cards, training takes
about 30 hours for all TFT3D, Cornell Box and HAMMER datasets.

4.4 Results on Synthetic Datasets

To conduct a quantitative comparison, we utilize MAE to evaluate the perfor-
mance of different denoising methods. The MAE is calculated by measuring
the absolute difference between the denoised depth image and the ground truth
depth image. To provide a comprehensive evaluation at various error levels, we
adopt a similar evaluation method as ToF-KPN [27] and SHARP-Net [7] in our
experiments. Specifically, we partition the pixels in the test set into four sets
based on distinct error levels, with each set corresponding to a quantile of the
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Table 1: Quantitative comparison with competitive ToF denoising methods on
TFT3D, Cornell Box and HAMMER datasets. Here, ‘Original’ denotes the MAE be-
tween the original and the ground truth depth images.

Model TFT3D Dataset: MAE(cm)
1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

Original 1.55 5.88 11.55 29.98 12.24
DeepToF [21] 0.78 0.91 1.09 5.10 1.97
ToF-KPN [27] 0.61 0.76 0.97 3.26 1.40
SHARP-Net [7] 0.45 0.49 0.59 2.55 1.02

RADU [30] 0.42 0.48 0.63 3.27 1.20
MTDNet 0.36 0.40 0.49 2.03 0.82

Model Cornell Box Dataset: MAE(cm)
1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

Original 2.47 6.79 11.99 36.75 14.50
DeepToF [21] 0.95 0.96 0.96 1.85 1.18
ToF-KPN [27] 0.57 0.56 0.56 1.91 0.90
SHARP-Net [7] 0.48 0.47 0.45 0.96 0.59

RADU [30] 0.45 0.53 0.55 1.51 0.76
MTDNet 0.42 0.43 0.43 0.68 0.49

Model HAMMER Dataset: MAE(cm)
1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

Original 0.194 0.656 2.089 11.709 3.662
DeepToF [21] 0.473 0.641 0.991 2.739 1.211
ToF-KPN [27] 0.091 0.105 0.141 0.355 0.173
SHARP-Net [7] 0.059 0.065 0.090 0.250 0.116

RADU [30] 0.062 0.070 0.104 0.356 0.148
MTDNet 0.050 0.055 0.076 0.207 0.097

total number of pixels in the ToF depth image. Employing this evaluation ap-
proach, we can thoroughly assess our MTDNet’s performance across different
error levels. It is worth noting that different denoising methods may exhibit
varying performance levels depending on the specific error level.

Our MTDNet demonstrates outstanding performance in terms of MAE at the
overall error level on both synthetic and realistic datasets, as shown in Table 1.
Specifically, on the TFT3D dataset, the MAE between the input and ground
truth depth is significantly reduced from 12.24 cm to an impressive 0.82 cm.
Similarly, the MAE is reduced from 14.50 cm to 0.49 cm on the Cornell-Box
dataset at 50MHz frequency. Our MTDNet significantly improves the denoising
performance compared to baseline methods, especially at high error levels (third
and fourth quantiles).

To further validate the denoising performance of our MTDNet, Fig. 4 presents
a qualitative comparison between DeepToF, ToF-KPN, SHARP-Net, RADU,
and our MTDNet. Overall, our MTDNet provides more accurate depth images
while preserving the geometric structures within the scene. Furthermore, RADU
outperforms SHARP-Net regarding noise removal in low-error-level regions, such
as those with large-scale geometric shapes like walls and desktops. However,
RADU struggles with high-error-level regions containing the geometric details
of objects, such as the edge regions of cabinets and teacups. In contrast, our



Multi-frame ToF Denoising 11

Noisy 
Depth

𝐶

Input 
Error

𝑅

𝐶ହ 𝐶ସ 𝐶ଷ 𝐶ଶ 𝐶ଵ

𝑅ହ 𝑅ସ 𝑅ଷ 𝑅ଶ 𝑅ଵ

Fig. 5: Visualization of the immediate results produced by our MTDNet at different
scales on the TFT3D dataset. Here, Ci and Ri denote the confidence map and the
depth residual map at ith scale, respectively.

MTDNet simultaneously achieves superior results for low-error-level and high-
error-level regions.

Furthermore, as depicted in Fig. 5, we present visualizations of the depth
residual map and the confidence map at each scale. Notably, our coarse-to-fine
framework progressively refines the confidence maps, directing the corresponding
residual maps to target on eliminating the prominent ToF noises attributed to
complex scene geometry. Furthermore, by incorporating intra-correlation and
utilizing the residual pyramid architecture, our MTDNet effectively removes ToF
noise, especially the MPI artifacts, at lower error levels. This integration allows
our MTDNet to effectively remove large-scale MPI artifacts while maintaining
consistent performance in handling strong ToF noises.

4.5 Results on the Realistic Dataset

In addition, we test our MTDNet along with existing methods on a realistic
dataset. All the tested models are trained on the training set of the HAM-
MER dataset. The experimental results for all the methods on the HAMMER
dataset are also shown in Table 1. Here, DeepToF faces difficulties in handling
challenging scenes, especially for transparent and highly reflective objects that
are common in the HAMMER dataset, which leads to DeepToF seeming to be
completely unusable. However, DeepToF encounters difficulties in handling chal-
lenging scenes, especially for transparent and highly reflective objects common
in the HAMMER dataset, leading to poor denoising performance. Compared
with SHARP-Net and RADU, our MTDNet demonstrates strong performance
across both low and high error levels on the real judgmental, which is generally
consistent with the experimental results observed on synthetic datasets. At the
bottom of Fig. 4, we present the qualitative comparison on a scene selected from
the HAMMER dataset. MTDNet demonstrates the best visual effects.

4.6 Ablation Studies

MTDNet is a CNN-based method with a 6-level confidence-guided residual re-
gression module as the backbone. It incorporates a dual-correlation estimation
module, as well as combination and refinement modules. To assess the effective-
ness of our proposed modules, we conduct experiments to compare MTDNet
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Table 2: Quantitative comparison with the variants on the HAMMER dataset.

Model HAMMER Dataset:MAE(cm)
1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

w/o CRRM 0.053 0.058 0.082 0.251 0.111
w/o DCEM 0.059 0.065 0.093 0.271 0.122
w/o RCAB 0.151 0.175 0.252 0.674 0.313
w/o DRM 0.052 0.058 0.080 0.230 0.105
w/o Inter 0.053 0.059 0.082 0.270 0.116
w/o Intra 0.057 0.063 0.089 0.259 0.117
MTDNet 0.050 0.055 0.076 0.207 0.097

against its variants. Additionally, we study the impact of varying the number
of input frames on the denoising performance of the MTDNet and evaluate the
temporal consistency and computational efficiency of the MTDNet. Please refer
to the supplementary material for more details.
Illustrating the significance of our proposed modules. Our MTDNet
consists of a dual-correlation estimation module (DCEM), a confidence-guided
residual regression module (CRRM), a residual channel attention block (RCAB)
and a depth refinement module (DRM). To validate the effectiveness of our pro-
posed modules, we conduct experiments to compare our MTDNet against its
variants. First, we devise four variants by removing the corresponding modules
from our network: ‘w/o DCEM’, ‘w/o CRRM’, ‘w/o RCAB’, and ‘w/o DRM’.
Notably, ‘w/o CRRM’ only means removing the confidence map from our net-
work to confirm its effectiveness for regressing the depth residual. To verify the
effects of our inter- and intra-correlation, we design an experiment without inter-
correlation and intra-correlation, respectively (‘w/o Inter’ and ‘w/o Intra’). For
a fair comparison, we adjust the number of convolution kernel channels of the
variants to ensure that the number of parameters of these variants is nearly the
same as MTDNet.

Incorporating a dual-correlation estimation module into our MTDNet signif-
icantly improves performance. This enhancement reduces the overall MAE from
0.122 cm to 0.097 cm compared to the ‘w/o DCEM’ approach. Our analysis also
identifies the critical role of inter- and intra-correlation in accurately removing
ToF noise within high-error and low-error levels, respectively. This observation is
supported by the results obtained from excluding inter-correlation (‘w/o Inter’)
and intra-correlation (‘w/o Intra’). Moreover, the introduction of a confidence
map into our MTDNet has proven beneficial, leading to a remarkable 12.6%
reduction in the overall MAE compared to the ‘w/o CRRM’ approach. This
finding underscores the importance of constructing a confidence map based on
inter-correlation in the MPI removal.

Comparing MTDNet with ‘w/o DRM’ and ‘w/o RCAB’, it is evident that
incorporating the depth refinement module and residual pyramid combination
decreases the overall MAE by 7.6% and 69%, respectively. This highlights the
necessity of those two modules in improving performance. The removal of the
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Table 3: Quantitative comparison with competitive multi-frame processing strategies
on the HAMMER dataset.

Model HAMMER Dataset: MAE(cm)
1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

SHARP-Net w/o align. 0.070 0.077 0.111 0.330 0.147
RADU w/o align. 0.067 0.077 0.116 0.392 0.163

MTDNet w/o align. 0.053 0.058 0.081 0.244 0.109
Deformable based alignment 0.053 0.059 0.081 0.239 0.108

Flow-based alignment 0.054 0.060 0.085 0.257 0.114
Our framework 0.050 0.055 0.076 0.207 0.097

w/o CRRMNoisy Depth
Deformable 

based Alignment
Flow

based Alignmentw/o DCEM
w/o

Alignment
Our

Framework

cm

Fig. 6: Visualization of the results produced by the variants on the HAMMER dataset.

RCAB prevents the network from integrating depth residuals across various
scales, disrupting the spatial hierarchy assumption and leading to a notable
decrease in performance. In Fig. 6, we present visualizations of the error maps,
including MTDNet, methods with different multi-frame processing strategies,
‘w/o CRRM’ and ‘w/o DCEM’. Zoomed figures are incorporated to illustrate
and affirm the effectiveness of our MTDNet in mitigating strong MPI noise.
Comparing different multi-frame processing strategies. We begin by
comparing various multi-frame processing strategies as shown in Table 3 and
Fig. 6. In the simplest scenario, features from multiple frames are concatenated
without alignment. This approach significantly reduces performance as it fuses
features from unrelated spatial locations. Flow-based alignment utilizes a pre-
trained (fixed) optical flow estimator to align features at each scale of pyramids
across frames. However, this approach is plagued by inaccurate flow estima-
tions and the fundamental issue of foreground-background mixing [23]. Based
on EDVR [38], deformable alignment involves incorporating deformable convolu-
tions at every pyramid scale to align extracted features. While this yields a slight
performance enhancement, it also considerably increases computational com-
plexity. Following EDVR [38], deformable-based alignment involves deformable
convolutions at various scales to align extracted features. Our dual-correlation-
based framework avoids these issues and allows the network to pick out accurate
geometric information from the features of multi-frame ToF data. Therefore, our
proposed framework achieves superior results compared with other multi-frame
processing strategies.
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Table 4: Quantitative comparison with different number of depth images between tth

and (t+ 1)th frames on the TFT3D dataset.

Model TFT3D Dataset: MAE(cm)
1st Quan. 2nd Quan. 3rd Quan. 4th Quan. Overall

0 frame 0.39 0.43 0.54 2.16 0.88
1 frame 0.39 0.43 0.55 2.11 0.87
3 frame 0.36 0.40 0.49 2.03 0.82
5 frame 0.38 0.42 0.52 2.08 0.85
7 frame 0.38 0.41 0.51 2.14 0.86

Changing the number of intermediate frames the between tth and
(t+1)th frames. It’s worth noting that, unlike alignment-based frameworks, the
performance of our MTDNet is not linearly related to the increase or decrease
of the number of intermediate frames between the tth and (t + 1)th frames. In
practical applications, the (t+1)th frame denotes the subsequent frame following
tth frame. The inclusion of intermediate frames serves to simulate the impact of
different camera movement speeds on the performance of our framework during
real-world usage. As shown in Table 4, both an insufficient and an excessive
number of intermediate frames result in sub-optimal performance. The scarcity
of intermediate frames hampers the discernment of noise distribution across
the tth and (t + 1)th frames, whereas an overabundance of intermediate frames
complicates the computation of matching costs.

5 Conclusion

In this paper, we first propose a novel multi-frame ToF denoising framework.
Unlike existing alignment-based multi-frame processing methods, our proposed
framework does not adopt an alignment-based architecture. Instead, it aggre-
gates the dual correlation in multiple frames to guide the removal of ToF noise
with a confidence map. We design a multi-frame ToF denoising network based
on our proposed framework, i.e., MTDNet. Our MTDNet consists of the Dual-
Correlation Estimation Module and the Confidence-guided Residual Regression
Module. The former constructs the inter- and intra-correlations to initialize the
MPI estimation and capture the variations in ToF noise distribution across mul-
tiple frames. The latter utilizes the dual correlation to obtain a confidence map,
guiding residual regression to focus on regions with strong ToF noise. Exten-
sive experiments on the synthetic and realistic datasets show that our MTDNet
surpasses the state-of-the-art methods across all error levels.
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