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Appendices

This supplementary material contains more details including:

A. Additional ablation study and analysis,
B. Limitations of our work,
C. Qualitative comparisons.

A Additional ablation study and analysis

Pseudo box generation strategy. As shown in the main paper, the strategy
for generating pseudo-bounding boxes significantly influences the overall per-
formance, with our proposed weak-to-strong methods yielding remarkable en-
hancements. For a more detailed understanding, we provide more experimental
comparisons and analyses in this section.

We first assess the quality of various pseudo bounding boxes. Evaluating the
quality of pseudo bounding boxes on a large set of synthetic images is challenging
due to the absence of ground truth detection labels. For this reason, we man-
ually annotated 100 randomly selected synthetic images and conducted direct
evaluations of various pseudo bounding boxes. Our weak-to-strong method sig-
nificantly improves the quality of bbox upon the grounding-based baseline, from
53.8AP to 65.0AP, with absolutely high accuracy (i.e., See Qual in Table Ia).
⋆ Corresponding author

strategy AP AP-c AP-d AP-dS AP-dL Qual

Grounding-based 29.3 31.3 27.5 43.4 16.2 53.8

Weak-to-Strong 30.5 31.6 29.5 43.7 21.3 65.0

(a) pseudo box generation strategy

confidence threshold AP AP-c AP-d AP-dS AP-dL Recall

0.3 29.7 31.5 28.2 41.9 18.9 0.99

0.5 30.5 31.6 29.5 43.7 21.3 0.90

0.7 29.6 30.9 28.4 42.8 19.2 0.53

(b) confidence threshold

Table I: Additional ablation on pseudo label generation strategies.
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diff. model AP AP-c AP-d AP-dp AP-dS AP-dM AP-dL

Pixart 30.5 31.6 29.5 40.3 43.7 26.3 21.3

SDXL 30.3 31.2 29.4 39.8 44.7 26.3 20.0

SDXL-Turbo 29.9 31.0 28.9 39.5 43.5 25.7 19.9

(a) Diffusion Model

lang. model AP AP-c AP-d AP-dp AP-dS AP-dM AP-dL

llama-70b 30.2 31.0 29.3 40.3 44.0 26.2 19.8

GPT3.5-turbo 30.5 31.6 29.5 40.3 43.7 26.3 21.3

GPT4 30.6 31.6 29.7 40.7 44.2 26.5 20.8

(b) Language Model

Table II: Additional analysis on choice of (a) the diffusion model and (b) the language
model.

We further examine the impact of the thresholding hyperparameter p, which
is used to filter out predictions with low confidence, as described in the main
paper. We adjust p within the range of 0.3 to 0.7. As shown in Table Ib, opti-
mal performance is observed at a threshold of 0.5, achieving a high recall rate
for visual entities. Here, we treat noun phrases in descriptions as distinct visual
entities and quantify their recall rate in the pseudo boxes. A higher parameter
results in the exclusion of most predictions, leading to a significantly reduced re-
call rate. Conversely, setting the lower threshold increases the recall rate but also
introduces noisy predictions into the pseudo labels, hindering the effectiveness
of the learning process.
Choice of the diffusion model. We explore how the choice of text-to-image
model influences the final performance of object detection. In this evaluation,
we explore three state-of-the-art text-to-image models: Pixart [3], SDXL [12],
and SDXL-Turbo [13]. Using these models, we generate varied sets of images for
identical object descriptions, resulting in different collections of densely paired
synthetic triplets. These triplets are then utilized to train the FIBER-B model
and the experimental results are summarized in Table IIa. Our learning frame-
work reliably enhances performance across the model, though the diffusion mod-
els exhibit variable results in terms of the visual quality of generated images and
the accuracy of image-text correspondence. This highlights the robustness of
our approach regardless of the diffusion model chosen. Pixart is selected as our
default setting due to its marginally superior performance and fast inference
speed.
Choice of language model. We investigate the impact of selecting different
large language models (LLMs) on object detection performance. In this study, we
evaluate three LLMs: LLaMA2-70B [16], ChatGPT-3.5 Turbo [2], and ChatGPT-
4 [1]. Similar to the above experiments, we generate varied collections of densely
paired synthetic triplets and use them to train the detectors. The results are sum-
marized in the table. Although superior language models slightly show improve-
ments, the performance differences among them are marginal. Taking into ac-
count both performance and inference efficiency, we choose ChatGPT-3.5 Turbo
as a default setting.
Freezing network components. In our main paper, we propose that freezing
the visual backbone helps to prevent the model from overfitting to the synthetic
distribution during training. To substantiate this claim more convincingly, we
conduct a thorough exploration into the effects of freezing different components
of the detector. Common language-based object detectors are comprised of three
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key components: 1) a visual backbone for understanding the input image, 2) a
language backbone for extracting linguistic features, and 3) fusion layers that
fuse information from both modalities to detect objects according to the text
query. We experiment with freezing each component individually and assess the
impact on performance compared to a baseline model that is naively trained on
generated triplets and the Objects365 [15] detection dataset.

learning method AP AP-c AP-d AP-dp AP-dS AP-dM AP-dL

w/o freeze 26.3 30.2 23.3 34.2 41.0 19.7 11.5

Freeze Vis. 26.8 31.3 23.4 34.4 40.8 19.5 11.8

Freeze Lang. 26.1 30.6 22.8 35.9 38.5 19.6 12.1

Freeze Fuse. 26.4 30.1 23.5 34.5 41.2 19.9 11.7

Table III: Additional ablation on freez-
ing network components.

The results, as presented in Ta-
ble III, indicate that freezing the vi-
sual backbone yields better perfor-
mance than freezing the other compo-
nents or not applying any freezing tech-
nique at all (i.e., w/o freeze). Moreover,
freezing the language backbone shows
degraded performance, particularly in
description-based object detection. This reveals that the pre-trained image rep-
resentations may generalize well, whereas the bottlenecks lie in the language
component. Furthermore, compositional learning with synthetic triplets may de-
grade the generality of visual representation. Therefore, the optimal strategy is
to teach the model to understand complex language queries while reading out
high-quality pre-trained visual representations (i.e., freezing visual backbone)
for better compositional understanding.
Efficiency of the framework. Our framework brings minimal training costs.
The generation of descriptions, images, and bounding boxes takes a total of 7.5
hours (0.5 hr, 6 hr, 1 hr for each) for 58K triplets, and the additional train-
ing requires only 3 hours. These costs are efficient, especially compared to the
significant data curation cost of 1.3M data and the 72 hours of training time
required for GLIP [11]. Our efficient framework supports the extension of data
generation processes for novel classes. Most importantly, our framework signifi-
cantly enhances detector performance for both novel classes (not covered in the
data generation) and complex object descriptions, even with a relatively small
number of generated triplets.

B Limitations of our work

While our framework significantly enhances the compositional understanding of
language-based object detectors, there are several limitations within our proposal
that could be interesting points for future research.

Firstly, despite our efforts to mitigate the effects of artifacts in generated
triplets—such as freezing the visual backbone, employing real detection data as
a regularizer, and training exclusively with detectable objects—implementing
more sophisticated filtering techniques to exclude low-quality samples could be
beneficial. The criteria for “low-quality” can vary, encompassing aspects like vi-
sual quality [9,17] and the accuracy of image-text correspondence [6,8]. Explor-
ing the potential synergy between various filtering methods and our framework
could yield insights, similar to previous studies [5].
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Detect: “The TV sitting on the black and white stand”

GLIP Desco-GLIP GTOurs

Detect: “White porcelain tub for running water”

Detect: “The device on the sofa near the cat”

Fig. I: Qualitative comparisons on OmniLabel [14] benchmark. We can observe clear
improvements in compositional understanding against GLIP [11] and Desco-GLIP [10].

Moreover, while we instruct Large Language Models (LLMs) [1,2] to generate
plausible descriptions of visual entities under a broad range of conditions, these
prompts may not encompass all types of textual expressions. For example, LLMs
typically describe objects based on their features but might not employ nega-
tions [7] (e.g., "A dog without dots"). Although our model demonstrates strong
generalization capabilities regarding the concept of negation (See improved Abs
scores in Table 1 of the main paper), curating synthetic triplets aimed at such
specific cases could further enhance performance.

C Qualitative comparisons

In this section, we present qualitative comparisons against previous methods.
The Fig. I compares our model with the pre-trained GLIP [11] and the language-
augmentation-based method, Desco-GLIP [10]. Additionally, Fig. II provides
qualitative comparisons between our model, FIBER [4], and Desco-FIBER [10].
As illustrated in both figures, our model successfully identifies and locates the
target object only, disregarding any confusable objects in the image based on
the given descriptions.
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