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1 Detailed Process of the DFC Module

We further provide the corresponding algorithm to show the rectifition process
of the dual false corrector(DFC) more concretely, as shown in Algorithm 1.

Algorithm 1 The overall workflow of our proposed dual false corrector (DFC).
1: Given an input image I.
2: Generate a point prompt p0 and initial mask Y 0.
3: Random perturbations of p0 to generate p = {p1, p2, · · · , pN}.
4: Generate segmentation masks Y = {Y 1, Y 2, · · · , Y N} based on p.
5: Calculate Ŷj,k = 1

N+1

∑N
i=0 Y

i
j,k, to get the average segmentation result Ŷ .

6: Calculate Uj,k = −0.5 · [Ŷj,k · log(Ŷj,k + ϵ) + (1− Ŷj,k) · log(1− Ŷj,k + ϵ)], to get the
uncertainty mask U .

7: Generate the high uncertainty mask Uh based on the threshold Tu = min(U) +
0.5× [max(U)−min(U)].

8: Calculate average intensity of I within target region It and background region Ib
9: Determine the pixels’ intensity range (Itl, Ith) and (Ibl, Ibh) belonging to target and

background respectively.
10: Initialize potential FN mask and FP mask using (1−Ŷ )·Uh and Ŷ ·Uh respectively.
11: for (i, j)) where Uh(i, j) = 1 do
12: if Ŷ (i, j) = 0 and Itl < I(i, j) < Ith then
13: Ŷ (i, j) = 1
14: end if
15: if Ŷ (i, j) = 1 and Ibl < I(i, j) < Ibh then
16: Ŷ (i, j) = 0
17: end if
18: end for
19: return Final rectified segmentation result Ŷ .
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2 More Experimental Results

2.1 More visualized results

We provide more visual comparison with three task-specific methods and five
SAM-based methods, including TransUNet [2], HiFormer [5], H2Former [4], SAM [6],
MSA [8], SAMed [9], SAM-Med2D [3] and SAMUS [7] on BUSI [1] dataset, as
shown in Fig. 1. Besides, more visualized ablation comparisons on the BUSI
test set for the spatial-frequency feature fusion (SFF) module and the dual false
corrector (DFC) are shown in Fig. 2 and Fig. 3.

Fig. 1: More visual comparisons with different methods on the BUSI test set. Red,
green and yellow represent ground truth, prediction and their overlapping regions,
respectively.

2.2 Generalization results

We provide visual comparison for gneralization ability evaluation experiment,
as shown in the Fig. 4. We applied the model parameters trained on the BUSI
dataset to the UDIAT dataset for testing, to evaluate the generalization effect
of the model on the unseen breast ultrasound dataset. It can be seen from the
visualization results that the breast mass predicted by our proposed model is
closer to the ground truth than other models, especially the boundaries of breast
masses are more refined. This shows that our model can be well applied to other
breast ultrasound data sets under the same challenge with a small amount of
training.
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Fig. 2: Visual comparisons of ablation
study on the SFF. (a) Input image. (b)
GT. (c) W/o SFF (d) SFF.

(a) (b) (c) (d)

Fig. 3: Visual comparisons of ablation
study on the DFC. (a) Input image. (b)
GT. (c) W/o DFC (d) DFC.

Fig. 4: Visual comparison with SAM-based methods on the UDIAT test set. Red,
green and yellow represent ground truth, prediction and their overlapping regions,
respectively.
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