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Abstract. Breast ultrasound image segmentation is a challenging task
due to the low contrast and blurred boundary between the breast mass
and the background. Our goal is to utilize the powerful feature extraction
capability of segment anything model (SAM) and make out-of-domain
tuning to help SAM distinguish breast masses from background. To this
end, we propose a novel model called SFRecSAM , which inherits the
model architecture of SAM but makes improvements to adapt to breast
ultrasound image segmentation. First, we propose a spatial-frequency
feature fusion module, which utilizes the fused spatial-frequency fea-
tures to obtain a more comprehensive feature representation. This fusion
feature is used to make up for the shortcomings of SAM’s ViT image
encoder in extracting low-level feature of masses. It complements the
texture details and boundary structure information of masses to better
segment targets in low contrast ultrasound images. Second, we propose
a dual false corrector, which identifies and corrects false positive and
false negative regions using uncertainty estimation, to further improve
the segmentation accuracy. Extensive experiments demonstrate that the
proposed method significantly outperforms state-of-the-art methods on
two representative public breast ultrasound datasets: BUSI and UDIAT.
Codes is available at https://github.com/dodooo1/SFRecSAM.

Keywords: Breast ultrasound image segmentation · Segment anything
model · High-frequency information

1 Introduction

Breast cancer is one of the most common causes of death among women around
the world [30]. Ultrasound imaging is extensively utilized in clinical for identi-
fying and diagnosing breast cancer. Interpretation of breast ultrasound images
requires extensive domain knowledge associated with benign or malignant breast
masses, and hence only experienced radiologists can analyze the images and pro-
duce the reports. Manual examination of breast ultrasound images is, however,
labor-intensive, time-consuming, and error-prone. To the end, computer-aided
diagnosis systems equipped with AI models have been developed to assist radi-
ologists in interpreting breast ultrasound images [36]. One of the key components

https://github.com/dodooo1/SFRecSAM
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Fig. 1: Challenges of segmenting lesion areas from breast ultrasound image: (a)-(c) low
contrast between breast masses and background and (d)-(f) the variations of morphol-
ogy and size in breast masses. Yellow contours represent the edges of masses, and red
regions represent ground truth.

in such a system is a segmentation model, which is able to automatically segment
lesions from ultrasound images for further analysis. However, it is very challeng-
ing to develop such a segmentation model due to speckle noise and low contrast
of ultrasound images (Fig. 1(a)-(c)), which makes it extremely difficult to distin-
guish lesion boundaries [16, 28]. In addition, the large variation of morphology
and size of breast masses (Fig. 1(d)-(f)) makes this task even harder.

Recent years, many deep learning models have been developed to meet these
challenges. Most early investigations utilized the local modeling capability of
convolutional neural networks (CNNs) to detect, segment, and classify breast
masses [2,35]. Later, transformer-based approaches have been proposed to over-
come the limitation of CNNs in capturing global features by harnessing self-
attention mechanisms, achieving better results particularly in cases with ambigu-
ous boundaries and irregular shapes [33, 45]. In order to take complementary
advantages of CNNs and transformers, some studies combined these two architec-
tures, using CNNs to extract local features while leveraging transformers to cap-
ture more remote dependencies [11,18,21]. While these models have more pow-
erful representation capability, these approaches still cannot adequately address
above-mentioned challenges due to the inadequate network capacity and lim-
ited high-quality training data. The recently proposed segment anything model
(SAM) [20] has powerful feature extraction capabilities owing to its large net-
work scale and excellent generalization performance because of a large amount
of training data. In addition, it is capable of effectively segmenting regions of
interest based on prompts. Unfortunately, original SAM is trained only on nat-
ural images. As there are significant differences in distribution characteristics
between natural and medical images, SAM, in principle, cannot be generalized
to medical image segmentation tasks.

Visual out-of-domain optimization is a crucial method for adapting SAM
to medical image segmentation. Currently, most research focuses on retraining
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SAM’s parameters using medical dataset, or adding new learnable adapters to
fine-tune some parameters. For example, MedSAM [24] trains SAM on a large
medical image dataset and fine-tune SAM’s mask decoder, while SAMed [41]
applies a low-rank-based (LoRA) strategy to fine-tune SAM with lower com-
putational cost. SAMUS [22] further introduces multiple adapters to generalize
the trained SAM image encoder to medical images. In addition, it introduces
parallel CNN branches to extract spatial features, injecting local information of
images into the image encoder through cross-branch attention. However, most of
these methods only consider enhancing or supplementing spatial features of SAM
while neglecting frequency features, which are usually of significance importance
in medical image analysis due to special imaging mechanisms in medical domain.

In this paper, we propose a novel model adapted from SAM for lesion segmen-
tation in breast ultrasound images. First, we propose a novel spatial-frequency
feature fusion (SFF) module, which aims to utilize the fused spatial-frequency
features to enhance local information of the segmented targets and hence further
eliminate background interference. The SFF module is capable of addressing the
challenge of low contrast between lesions and background in breast ultrasound
images. Second, as SAM is sensitive to the quality of prompts, we propose a
dual false corrector (DFC) to stabilize the segmentation performance of SAM
in medical images when the prompts are not good enough to yield satisfactory
results. The proposed DFC uses point prompt augmentation to estimate the un-
certainty map of generated multiple predictions in order to automatically identify
and rectify false positive (FP) and false negative (FN) regions in segmentation
results. We call the proposed model SFRecSAM . We conduct extensive exper-
iments on two benchmarking datasets of breast ultrasound images: BUSI [1]
and UDIAT [39], and comprehensively compare our model with task-specific
state-of-the-art (SOTA) methods and recently proposed SAM-based methods.
Experimental results show that our SFRecSAM significantly outperforms ex-
isting models on these two datasets.

Our main contributions are summarized as follows.

- We propose a novel model for breast ultrasound image segmentation based on
SAM, called SFRecSAM , which harnesses the powerful feature extraction
capability of SAM while equipping SAM with new modules to make it adapt
to ultrasound images.

- We propose an innovative spatial-frequency feature fusion (SFF) module
and a new dual false corrector (DFC) module and integrate them into SAM;
while the SFF generates comprehensive spatial-frequency fused features to
supplement the model with detailed local information, the DFC module fur-
ther employs uncertainty maps of prediction results to identify and correct
FP and FN regions in the initial prediction mask.

- Our model significantly outperforms state-of-the-art task-specific methods
and recently proposed SAM-based methods on two famous breast ultrasound
datasets (BUSI and UDIAT), demonstrating the effectiveness of the proposed
model.
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2 Related Work

2.1 Breast Ultrasound Image Segmentation

Breast ultrasound (BUS) image segmentation presents a significant challenge,
owing to the low contrast and speckle noise inherent in ultrasound images, as
well as the significant variations in the size and shape of breast masses [16, 28].
Initially, CNN-based method segments breast masses through excellent local
information perception [2, 35], but these methods were constrained by their de-
ficiency in global awareness. Therefore, some researchers combine transformer
with CNN to process global and local information simultaneously, thereby en-
hancing the feature extraction capabilities of the model [11, 18, 21]. However,
these task-specific models, affected by the limitation of network architecture
and the scarcity of high-quality annotated medical datasets, still cannot achieve
fine segmentation of lesion areas.

Different from task-specific models, SAM [20] is a foundation model for com-
puter vision tasks that has been pre-trained on a large set of natural images.
SAM decreases the dependence on specialized knowledge for image segmentation
tasks and lowers the need for large amounts of annotated data. However, due to
differences in characteristics such as pixel intensity, color, and texture between
natural images and medical images, recent studies have revealed that SAM shows
performance degradation in medical image segmentation [4,13,17,25]. Some re-
searchers begin to explore how to improve the performance of SAM on medical
images segmentation tasks [6, 15,22,24,31,37,41].

2.2 Spatial-frequency Domain Feature Fusion

The existing network predominantly focuses on spatial features while ignoring
the features of the frequency domain. The high-frequency components of the
image usually correspond to the drastic intensity changes on the edges of the
segmentation targets, which can be used to effectively identify object bound-
aries. Moreover, high-frequency information reveals image texture and helps dis-
tinguish regions of similar brightness but different textures, which is crucial for
detecting tumors in low-contrast ultrasound images [32,44]. These characteristics
enable segmentation models that exploit high-frequency information can accu-
rately delineate object edges and effectively separate objects from background.

The most commonly used methods to extract high-frequency information
from images are Fourier transform and wavelet transform [3]. Wavelet transform,
a multi-scale analysis method, can decompose an image into wavelet coefficients
used to represent the characteristics of signals or images at different frequen-
cies and locations [40]. Compared with Fourier transform, wavelet transform is
more effective in processing multi-scale features of images, and also has better
spatial locality and stronger anti-noise ability. Previously, researchers have ex-
plored some semantic segmentation methods by combining wavelet transform
with deep neural networks [27, 43]. Common strategies include using wavelet
transform as pre- or post-processing, and replacing certain layers of the CNNs
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with wavelet transform [8,32,43]. But few methods consider both spatial features
and frequency features, both of which are useful for segmentation. The convo-
lutional layer in CNN helps reduce noise when extracting spatial features, but
it makes the image features too smooth, resulting in the loss of some detailed
information. High-frequency image features can retain the edge and texture in-
formation of the image, but will introduce strong high-frequency noise. The fused
spatial-frequency features creates a more comprehensive image representation,
providing a more discriminative and informative feature space for segmentation
algorithms. This fusion takes advantage of the strengths of the two domains and
compensates for each other’s shortcomings to obtain more accurate results.

2.3 Uncertainty Estimation

Uncertainty estimation is the process of evaluating the confidence of network
predictions, which is crucial for generating reliable predictions and improving
model performance [19]. If the segmentation algorithm can assign a high degree
of uncertainty to incorrect predictions, it will enable the model to make better
decisions based on these valuable informations. Uncertainty in models can be
categorized into two types: aleatoric uncertainty, caused by inherent noise in
data, and epistemic uncertainty, resulting from limited knowledge or information
about the model or data distribution [7, 46].

Due to the variability of disease pathology and the poor imaging quality of
medical images, uncertainty estimation is crucial in the field of medical image
analysis, such as lesion detection [26,29], lung node segmentation [14] and brain
tumor segmentation [34]. Uncertainty in medical image segmentation can be di-
vided into two categories: (1) unclear regions or boundaries surrounding tissues,
and (2) semantic ambiguity of the regions or boundaries [46]. Methods for esti-
mating uncertainty can be divided into several types based on the number and
nature of the deep neural networks [9]. Single deterministic method, which pro-
vides uncertainty for each pixel in a medical image with only a single forward
pass, have received much attention. It can be roughly divided into two implemen-
tations, one is to model and train a single network to quantify uncertainty; the
other one is to use additional modules to estimate uncertainty of prediction [9].
Ultimately, the reliability and accuracy of model predictions can be enhanced
by processing those high-uncertainty pixels based on the uncertainty associated
with each pixel’s classification.

3 Method

3.1 Overview

The original SAM’s framework consists of an image encoder, a prompt encoder,
and a mask decoder that merge image and prompt embeddings to generate
segmentation masks. Starting from two key problems, we adapt SAM to make it
suitable for breast ultrasound image segmentation. First, ultrasound images are
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Fig. 2: Overview of our proposed method, which mainly introduces a spatial-frequency
feature fusion (SFF) module and a dual false corrector (DFC). SFF fuses spatial fea-
tures and high-frequency features to generate comprehensive fused features, supple-
menting more discriminative information of the segmented target for SAM’s ViT im-
age encoder. DFC uses the high uncertainty map to find and correct the FP and FN
regions in the initial prediction.

characterized by strong noise and blurred boundaries, and it is crucial to obtain
fine-grained features of segmented targets to supplement the local information
lacking in SAM’s ViT image encoder. Second, since SAM is strongly affected by
the quality of prompts, a single prediction will inevitably produce FP and FN
regions. Based on these problems, we introduce a spatial-frequency feature fusion
(SFF) module and a dual false corrector (DFC) into the SAM’s framework.

The SFF module integrates the fusion features obtained by merging high-
frequency image features and spatial image features into the model. It aims
to combine the advantages of the spatial features and the frequency features to
supplement the model with comprehensive information. The DFC aims to further
correct FP and FN regions in the initial prediction by estimating uncertainty,
which improves the accuracy and stability of predictions. As shown in Fig. 2, our
model’s framework inherits the original architecture of SAM and freezes all its
original parameters. We introduce an additional branch to extract high-frequency
components of ultrasound images, learn task-specific knowledge from the high-
frequency components and fuse them with valuable spatial features extracted by
multi-scale convolution. Then the features extracted by ViT image encoder are
used as query to establish global dependencies with the fused features, so that
fine-grained features and global information complement each other. Finally, the
outputs of the two branches are merged as the final image embedding and input
into the mask decoder, which is combined with prompt embedding to obtain the
prediction. We further utilize point prompt augmentation to generate multiple
predictions, find and correct the FN and FP regions of the initial prediction by
estimating aleatoric uncertainty to obtain the final prediction.
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Fig. 3: Illustration of the spatial-frequency feature fusion (SFF) module. The SFF
extracts and fuses spatial features and high-frequency features through multi-scale
convolution to obtain powerful feature representations.

3.2 Spatial-frequency Feature Fusion

Transformer has strong global perception capability, but only global information
is not enough when facing inputs with rich spatial structure such as images. It
also needs to be able to capture local features, which often carry important visual
information, such as edges and textures of objects. Notably, the high-frequency
information inherent in the image captures sudden changes in signal intensity
at the boundaries of the segmentation targets, corresponding to fine details and
sharp edges in ultrasound images, providing useful information for breast masses
segmentation. SAMUS [22] introduces CNN branches to extract spatial features
to make up for the lack of local features of SAM’s ViT image encoder, but the
spatial features may be too smooth to lose some detailed informations. Inspired
by this, we fuse the spatial image features with high-frequency image features
to obtain the more comprehensive and robust features. This provides the model
with more effective discriminative information and improves performance.

High-frequency Image Extraction. 2D images, which are essentially discrete
non-stationary signals, contain rich frequency range and spatial location informa-
tion. The Fourier transform, although able to provide global frequency informa-
tion, is unable to effectively capture local spatio-temporal features when dealing
with such signals. The wavelet transform, as a multi-scale analysis method, can
effectively preserve these local features while decomposing the images. We apply
wavelet transform to decompose the original image into four components: low-
frequency (LL), horizontal high-frequency (HL), vertical high-frequency (LH),
and diagonal high-frequency (HH). The high-frequency image is represented by
combining the high-frequency components from different directions.

Fusion of High-frequency Features and Spatial Features. To capture
different levels of features in ultrasound images, we use a multi-scale convolution
module to extract valuable features and suppress unimportant features, as shown
in Fig. 3. It consists of three types of convolutions with different receptive fields:



8 Zhang et al.

Fig. 4: Illustration of the dual false corrector (DFC). The DFC finds and corrects false
positive and false negative regions in the initial prediction by uncertainty estimation.

point convolution, ordinary convolution (kernel size is 3× 3, stride is 1, padding
is 1), and dilated convolution (kernel size is 3× 3, stride is 1, padding is 2, and
dilation rate is 2). The final feature embedding is obtained by concatenating the
outputs of the three convolutions. We extract features in the original image and
high-frequency image through multi-scale convolution, and merge the feature
embeddings of the two branches as the final image embedding.

3.3 Dual False Correction

Due to the sensitivity of SAM predictions to prompt quality and the low con-
trast and obvious shadows of ultrasound images, a single prediction has poor
stability and may include a wide range of FP and FN regions [42]. FNPC [38]
estimates uncertainty based on bounding box prompt to correct predictions, but
this prompt is more difficult to deploy in clinical applications than simple point
prompt. Inspired by this, we use a dual false corrector (DFC) to rectify the
initial prediction of the model. We use a random single-point prompt as the
initial prompt and adopt point prompt enhancement strategy to obtain multiple
predictions which are used for uncertainty estimation. We apply a predefined
threshold to identify high uncertainty mask, and the intersection of this mask
with the segmentation mask and the background mask is considered as poten-
tial FP and FN regions. The final prediction is obtained by adding potential FN
regions and removing potential FP regions from the initial prediction.

Point Prompt Enhancement Strategy. Since SAM’s predictions are highly
correlated with prompt quality, point prompts with changed positions will lead
to differences in segmentation masks. As shown in Fig. 4, our sampling method
is to perturb the initial prompt by random shifting, generating N point prompts
p = {p1, p2, · · · , pN} within a radius R = 1

M min (H,W ) around the center of
the initial point prompt, where M is the radius ratio. We set M and N to 5 and
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10 respectively. H and W denote height and width of the initial segmentation
mask. This perturbation strategy enables the model to perform interactive seg-
mentation with each point prompt at various locations, and generates different
segmentation masks Y = {Y 1, Y 2, · · · , Y N} for the subsequent correction.

Uncertainty Estimation. We estimate uncertainty in the network’s predic-
tions using an external uncertainty quantification method, which is separate
from the underlying prediction task. By integrating multiple predictions gener-
ated by extra point prompts, we can obtain the combined segmentation result
Ŷ = 1

N+1

∑N
i=0 Y

i, with Y 0 denoting the initial prediction. The pixel value at
each position (j, k) can be expressed as Ŷj,k = 1

N+1

∑N
i=0 Y

i
j,k. Entropy can de-

scribe the degree of uncertainty in the state of a system, so we approximate the
uncertainty of each pixel using the uncertainty form of entropy, with ϵ = 10−7:

Uj,k = −0.5 · [Ŷj,k · log(Ŷj,k + ϵ) + (1− Ŷj,k) · log(1− Ŷj,k + ϵ)], (1)

where U is the aleatoric uncertainty mask. We set a custom threshold for select-
ing high uncertainty areas as follows:

Tu = min(U) + γ · [max(U)−min(U)], (2)

where γ is the threshold ratio, which we set to 0.5. We extract the high un-
certainty mask through threshold Tu: Uh = U > Tu, with Uh being the final
uncertainty mask used in the correction process.

False Negative and False Positive Correction. The correction is based on
the assumption that pixels with similar intensity are more likely to belong to
the same class. We estimate the high uncertainty mask Uh of the input image I,
which highlights potential FN and FP regions. We utilize the initial prediction
to estimate the average intensity of the images in the target and background
regions as It and Ib. If the intensity of a pixel in Uh is similar to the average
intensity It of the pixel points contained in the recognized target region, then
we consider that pixel point should be included in the final segmentation mask.
For false negative correction, (1− Ŷ ) ·Uh is utilized to find possible FN regions.
The range of similar intensity (Itl, Ith) belonging to the segmentation target is
determined based on It, and only pixel points with intensity within this range
are retained in the final FN mask YFN . For false positive correction, Ŷ · Uh is
utilized to find possible FP regions, and the final FP mask YFP is also determined
within the range of background intensity (Ibl, Ibh) decided by Ib. The correction
process is shown in Fig. 4, and the final prediction mask can be calculated as:
Yfinal = Ŷ + YFN − YFP .

4 Experiment

4.1 Experimental Setup

Datasets. We evaluate the proposed model using two publicly available datasets:
BUSI [1] and UDIAT [39]. BUSI consists of 780 images and corresponding anno-
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Table 1: Statistical comparison with different state-of-the-art methods on two breast
ultrasound image datasets: BUSI and UDIAT.

Method Year Backbone BUSI UDIAT
mDice mIoU mHD mDice mIoU mHD

TransUNet [5] 2021 ResNet-50 82.22 74.53 4.51 84.42 75.00 4.14
HiFormer [12] 2023 ResNet-50 82.72 74.38 4.92 86.57 78.52 4.10
H2Former [10] 2023 ResNet-34 81.48 72.67 7.76 89.95 82.15 5.78
MNFE-Net [23] 2023 ResNet-34 85.49 77.72 4.68 91.39 84.39 4.02

SAM [20] 2023 ViT-B 55.48 45.50 10.99 80.40 70.67 6.16
MSA [37] 2023 ViT-B 81.95 73.13 5.50 88.09 79.16 4.43

SAM-Med2D [6] 2023 ViT-B 80.12 69.28 8.50 84.76 75.28 5.82
SAMed [41] 2023 ViT-B 73.02 64.16 8.86 80.28 70.12 6.82
SAMUS [22] 2023 ViT-B 85.62 76.82 4.80 90.46 82.94 3.98

BUSSAM [31] 2024 ViT-B 86.68 78.23 4.72 90.93 83.01 3.95

Ours - ViT-B 87.14 78.58 4.66 91.80 85.14 3.92

tations covering 600 female patients aged 25 to 75, with the average size of each
image being 500 × 500 pixels. We only use samples of benign and malignant
lesions (437 benign and 210 malignant) in the experiment. UDIAT consists of
163 images corresponding to 110 benign and 53 malignant breast masses. We
divide datasets into train set, test set and validation set according to 8:1:1.

Evaluation Metrics. We evaluate model performance using mean dice (mDice),
mean interaction over union (mIoU), and mean hausdorff distance (mHD).

Implementation Details. The model is trained on a single RTX 3090 GPU.
We use the original parameters of the SAM for initialization and randomly ini-
tialize the remaining parameters. The parameters of the prompt encoder and
mask decoder are frozen during training, while the parameters of the image en-
coder can be learned. We adjust the ultrasound images to a resolution of 256×256
when training model. We select the AdamW optimizer for training, and set the
initial learning rate to 0.0005, batch size to 4, and epoch to 400. The prompt
mode is set to a random single-point prompt.

4.2 Comparison with State-of-the-art Methods

We compare with four task-specific methods and five SAM-based methods to ver-
ify the effectiveness of our model. Task-specific methods include TransUNet [5],
HiFormer [12], H2Former [10] and MNFE-Net [23]. SAM-based methods include
SAM-Med2D [6], SAMed [41], MSA [37], SAMUS [22] and BUSSAM [31].

Comparison with SAM-based Methods. As shown in Table 1, the SAM
without fine-tuning shows predictable performance degradation on both datasets
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Fig. 5: Visual comparison with different methods on the BUSI test set. Red, green and
yellow represent ground truth, prediction and their overlapping regions, respectively.

Table 2: Performance comparison. Ef-
ficiency on BUSI based on a single RTX
3090 GPU and batch size equal to 1.

Method Resolution
BUSI

mDice Params(M) GFLOPs

SAM [20] 1024 × 1024 55.48 90.49 371.99
SAMed [41] 512 × 512 73.02 90.36 103.41

SAM-Med2D [6] 256 × 256 80.12 270.99 65.37
MSA [37] 256 × 256 81.95 100.92 35.36

SAMUS [22] 256 × 256 85.62 130.14 145.88

Ours 256 × 256 87.14 130.23 167.07

Table 3: Ablation studies on SFF and
DFC on two breast ultrasound image
datasets. SFF: spatial-frequency feature
fusion. DFC: dual false corrector.

SFF DFC
BUSI UDIAT

mDice mIoU mHD mDice mIoU mHD

85.62 76.82 4.80 90.46 82.94 3.98
✓ 86.27 77.54 4.70 91.68 84.93 3.95

✓ 86.30 77.61 5.07 90.74 83.38 3.94
✓ ✓ 87.14 78.58 4.66 91.80 85.14 3.92

due to its lack of specific knowledge related to medical images. After fine-tuning,
all SAM-based methods achieve varying degrees of performance improvement.
Among all tuning methods, our method achieves better performance with dice
scores of 87.14% and 91.80% on the two datasets respectively, an improvement
of 31.66% and 11.40% compared to SAM. Compared with SAMUS, which is
specially tuned for ultrasound image segmentation, the dice scores increased by
1.52% and 1.34% respectively. The kernel density estimation in Fig. 6 shows that
our method has a higher probability density in the dice interval, indicating the
robustness of our model. This shows that the powerful fused spatial-frequency
features supplement the detailed information of masses for SAM, helping the
network learn more discriminative and informative features. In addition, based
on more accurate prediction results obtained by utilizing high-frequency infor-
mation, our method further applies the DFC to find and effectively correct the
FP and FN regions in the initial prediction, resulting in better performance.

Comparison with Task-specific Methods. As shown in Table 1, our method
exhibits performance improvements across all metrics for both datasets, surpass-
ing four task-specific methods. This is not only due to SAM’s powerful feature
extraction capability and inherent model framework advantages, but also to the
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Fig. 6: Comparison of kernel density es-
timation with SAM-based methods on
BUSI and UDIAT.

Fig. 7: Comparison of segmentation per-
formance using different wavelet bases to
extract high-frequency image.

specific designs we introduced to address the challenges of ultrasound image seg-
mentation tasks. SAM can achieve segmentation performance equivalent to or
even better than that of task-specific models with a small amount of parame-
ter adjustment. It effectively avoids the performance limitations of task-specific
models due to inadequate network capacity or complex training calculations.

Visual Comparison with SOTA. Fig. 5 is the visual segmentation results
of breast masses under various methods. Our proposed model achieves fine seg-
mentation of breast masses by introducing the SFF module and the DFC into
SAM’s framework. Especially in low-contrast situations, the performance im-
provement is significant. The reason is that our method can extract more com-
prehensive features in breast ultrasound images and perform fine rectification.
The SFF module enables model to have strong perception of the texture details
and boundary structure of segmented targets, while the DFC can correct results
through point prompt enhancement and uncertainty estimation based on more
accurate prediction, further improving the reliability of predictions.

Performance-efficiency Comparison with SOTA. As shown in Table 2, we
conducted comparisons of performance efficiency. Due to the introduction of SFF
and DFC, the efficiency is reduced compared to SAM, but our model achieves
a significant performance improvement with small fine-tuning overhead. The
main overhead comes from extracting the high-frequency features of images and
processing the texture details and edge structure information contained therein.



Domesticating SAM for Breast Ultrasound Image Segmentation 13

Fig. 8: Visual feature map com-
parison of adding SFF. (a) Input
image. (b) GT. (c) w/o SFF (d)
w/ SFF.

Fig. 9: Visual the correction process and predici-
ton comparison of adding DFC. (a) Input image.
(b) w/o DFC. (c) Uncertainty map. (d) FN condi-
tion mask. (e) FP condition mask. (f) w/ DFC.

4.3 Ablation Studies

Effectiveness of SFF. The SFF module uses a feature extractor to extract
high-frequency features from high frequency images, which are further integrated
with spatial features to obtain more robust features. As shown in the Table 3, the
performance degradation caused by removing this module shows that our SFF
is effective for breast masses segmentation. The reason is that incorporating the
fused spatial-frequency features into the model can form a more comprehen-
sive feature representation, allowing SAM to explicitly perceive the structural
information of the segmented targets, adapting to breast ultrasound image seg-
mentation. Fig. 8 demonstrates the feature map visualization of our ablation
study for the SFF. It shows that network pays more attention to the real le-
sion regions and can accurately identify the segmentation target even with low
contrast under the influence of the SFF module.

Effectiveness of DFC. The DFC mainly selects high uncertainty regions in
the segmentation mask by setting a threshold, and then identifies and corrects
possible FN and FP regions based on the high uncertainty mask. As shown in
the Table 3, the correction strategy resulted in improved segmentation perfor-
mance of the test set. Fig. 9 shows the correction process and the comparison of
predictions before and after correction. It can be seen that the DFC effectively
corrects the potential FP and FN regions, making the final prediction are closer
to the ground truth (GT) than the initial prediction.

Effect of Wavelet Bases. Fig. 7 shows the impact of high-frequency fea-
ture extraction on segmentation accuracy using different wavelet bases of Haar,
Daubechies 2 (Db 2), Dmey, Coiflets 1 (Coif 1), bior1.5, and bior2.4. Compre-
hensive comparison shows that the prediction using Haar wavelet has higher and
more stable accuracy, so we use Haar as the wavelet base for our experiments.
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Fig. 10: Generalization ability. Untrained
mDice represents mean dice of training
model on BUSI and testing it on UDIAT.

Fig. 11: Failure cases. Red, green and yel-
low represent ground truth, prediction and
their overlapping regions, respectively.

Generalization Ability. We utilize the model trained on BUSI to test on the
UDIAT dataset to evaluate the model’s generalization ability. The performance
comparison of different SAM-based models on the untrained UDIAT dataset is
shown in Fig. 10. From the gap between the mDice of trained and untrained
data of each model, it can be seen that our SFRecSAM not only achieve the
best performance after training, but also successfully control the reduction of
mDice when applied to unseen datasets. This generalization ability is attributed
to the powerful feature extraction capability of SAM and the effectiveness of our
method in handling the challenges of low contrast and strong noise.

Discussions and Limitations. Although we only conducted experiments on
breast ultrasound images, we believe that our SFRecSAM can be used to ana-
lyze other datasets with similar challenges or other ultrasound images. However,
as shown in the failure cases in Fig. 11, our method has some limitations. When
lesions and artifacts are overly similar, SFF struggles to extract clear structural
information, and DFC may consider many irrelevant artifact when correcting
misclassified pixels based on pixel differences, thus limiting model performance.

5 Conclusion

In this paper, we propose a novel model SFRecSAM for masses segmentation in
breast ultrasound images, which utilizes a spatial-frequency feature fusion (SFF)
module and a dual false corrector (DFC) to make innovative improvements to
SAM. The SFF fuses the extracted high-frequency features of the ultrasound
image with the spatial features to achieve more powerful feature extraction ca-
pabilities, supplementing SAM with the texture details and edge structure in-
formation of masses. In addition, the DFC corrects the FP and FN regions in
the initial prediction by uncertainty estimation to reduce the sensitivity of SAM
to prompt’s quality and improve the stability of segmentation results. With the
help of the SFF and the DFC, our method improves the performance of SAM
on breast ultrasound image segmentation. Extensive experiments performed on
BUSI and UDIAT demonstrate the effectiveness of our proposed method.
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