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1 Experimental Settings

1.1 Pretraining

As described in the main paper, we use the ScanNet (v2), ScanRefer, and
Cap3D Objaverse datasets for joint pretraining. For the Cap3D Objaverse cap-
tion dataset, we only include objects whose captions contain any object name
from the ScanNet, S3DIS, or ModelNet categories. Our Uni3DL model is pre-
trained for 10,000 steps. We set the initial learning rate to 1e-4 and reduce it by
0.1 after 50% and 70% of the total training steps. A linear warmup is applied
for the first 10 iterations.

During pertaining, we set voxel size to 0.02m for 3D scans (e.g., S3DIS) and
0.01 for normalized 3D shapes (e.g., Cap3D Objaveerse), with a batch size of
8 for 3D scans and 12 for 3D-text pairs. For the S3DIS/ScanNet datasets, we
randomly crop 5m × 5m × 5m blocks from each scene, ensuring a minimum of
25,000 points per scene. Input scenes are augmented by random flips along the
X and Y axes, and rotations along the X, Y, and Z axes. Color augmentations,
including jittering, brightness, and contrast adjustments, are also applied.

1.2 Finetuning

Finetuning for 3D semantic/instance Segmentation. Our Uni3DL model
is finetuned for 25 epochs with an initial learning rate of 2e-5, which is multiplied
by 0.1 after 50% and 70% of the total finetuning steps. For ScanNet segmenta-
tion, we finetune our Uni3DL model for 30 epochs on ScanNet with the same
learning rate strategy as in S3DIS segmentation.
Finetuning for Grounded Segmentation. We finetune our Uni3DL model
on grounded segmentation for 20 epochs with an initial learning rate of 1e-5,
decaying it by 0.1 after reaching 50% and 70% of the total training steps.
Finetuning for 3D Captioning. Our Uni3DL model is finetuned for 30 epochs
on the Cap3D Objaverse dataset. The learning rate starts at 1e-4 and is reduced
by 0.2 after 50% and 70% of the training steps.
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Finetuning for Text-3D Cross-Modal Retrieval. We finetune the Uni3DL
model for 30 epochs on the Text2Shape retrieval task, following a similar learning
rate strategy as in 3D Captioning. For data augmentation, we apply random
scaling to the training shapes, using a scale factor uniformly sampled from the
range [0.8, 1.2]. Additionally, we randomly rotate the shapes along the z-axis,
selecting rotation angles within the range [−π/2, π/2].

2 More quantative results

2.1 Zero-Shot 3D Classification

We use our Uni3DL model fine-tuned on the Cap3D Objaverse dataset to eval-
uate zero-shot 3D classification performance on ModelNet40 and ModelNet10
datasets. ModelNet40 includes 40 different categories with 12, 311 CAD models,
while ModelNet10, a smaller subset, consists of 10 categories with 4, 899 models.
We use the same validation set as [7] for performance evaluation.

Table 1 summarizes the performance on ModelNet10 and ModelNet40 test
datasets. From this Table, we can see that our method achieves competitive
performance on both datasets, with a top-1 classification accuracy of 70.4% on
ModelNet10 and 57.0% on ModelNet40. Moreover, our Uni3DL achieves the best
top-5 classification accuracy on ModelNet40 dataset. It should be noted that all
compared methods rely on projecting 3D data to multiview 2D images and use
a pretrained CLIP for image-text alignment; while our method does not require
view projection.

Method Input Pretraing dataset Pretrained FM ModelNet10 ModelNet40
top-1 top-1 top-5

PointCLIP [10] MV Images ShapeNet Yes (CLIP) 30.2 23.8 -
CLIP2Point [6] MV Images ShapeNet Yes (CLIP) 66.6 49.4 -
PointCLIP V2 [13] MV Images ShapeNet Yes (CLIP+GPT3) 73.1 64.2 -
ULIP [8] MV Images ShapeNet Yes (CLIP) - 60.4 84.0
ULIP [8] MV Images Cap3D Objaverse Yes (CLIP) - 67.2 83.1

Ours Point Cloud Cap3D Objaverse No 70.4 57.0 88.8

Table 1: Zero-shot 3D shape classification performance on ModelNet10 and Model-
Net40 datasets. We show input types, pretrained datasets, and foundation model (FM)
requirements for detailed comparison. Our method does not require projected multi-
view images as inputs and does not require pretrained foundation models. The results
highlighted in bold and underline denote the best and second-best performance, re-
spectively.

2.2 Grounded Localization

In the main paper, we report the performance of our Uni3DL model for grounded
segmentation. Previous methods have also explored the grounded localization
task. To produce grounded object location, we directly use grounded object
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Model Single Stage Detector Overall
Acc@0.25 Acc@0.5

ScanRefer [2] ✗ VoteNet 39.0 26.1
InstanceRefer [9] ✗ PointGroup 38.2 31.4
3DVG-Transformer [12] ✗ VoteNet 45.9 34.5
3DJCG [1] ✗ VoteNet 47.6 36.1
D3Net [3] ✗ PointGroup - 35.6
UniT3D [4] ✗ PointGroup - 36.5
M3DRef [11] ✗ PointGroup - 40.4

TGNN [5] ✓ N/A 37.4 29.7
Uni3DL (Ours) ✓ N/A 37.8 33.7

Table 2: Comparative analysis of grounded localization performance on the ScanRe-
fer [2] dataset. We report the ratios of correctly predicted bounding boxes with IoU
thresholds of 0.25 and 0.5. We report the performance of all comparing methods with
only 3D point clouds as inputs.

masks to calculate their bounding boxes. Table 2 summarizes the performance
of Uni3DL and previous state-of-the-art methods for grounded localization. Note
that all compared methods, except for TGNN [5], employ a dual-stage process,
where a 3D object detector identifies potential bounding box candidates, followed
by a disambiguation module employed to fuse visual and textural features and
determine the precise target bounding box. In contrast, our Uni3DL model is a
single-stage model, without using second-stage object-text fusion modules. Specif-
ically, our Uni3DL model achieves better performance than another single-stage
model TGNN [5] which also generates bounding boxes from object segmentation
masks. It should be noted that in the grounded localization task, akin to TGNN,
our model tends to underperform, likely due to our basic approach in generat-
ing bounding boxes from masks. Minor boundary inaccuracies in segmentation
masks minimally impact segmentation IOU, but can significantly alter bounding
box locations. As our focus is primarily on grounded segmentation, minimizing
bounding-box loss is not a priority.

3 More qualitative results

3.1 3D Captioning

We show more qualitative results of 3D captioning on the Cap3D objaverse
dataset in Fig. 1. As shown in the figure, our Uni3DL can generate text descrip-
tions well aligned with ground truth captions.

3.2 Grounded Segmentation

Fig. 2 presents additional grounded segmentation results on the ScanRefer dataset.
As illustrated, our Uni3DL model accurately predicts the grounded masks cor-
responding to each referring sentence.
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GT: a small green cartoon car with blue eyes.
Ours: a small green cartoon car with blue eyes

GT: a cartoon monkey with a tail.
Ours: a cartoon monkey with a tail

GT: a yellow plastic block with two holes.
Ours: a yellow plastic box with a hole, resembling
a wooden bench

GT: a small red car.
Ours: a small red car

Fig. 1: 3D captioning results on Cap3D Objaverse dataset.

Input GT Ours
this black chair is next to the black couch. it ap-
pears to be leather. it is black. there is a snack
machine on the opposite wall.

Input GT Ours
it is a small pillow located on the couch. you
can notice it directly on your left when walking
through the door into the room.

Input GT Ours
this is a rectangular toilet seat cover dispenser. it
is to the left of a silver bar on the wall.

Input GT Ours
a bathroom stall door sits to the left of two sinks.
just behind it is a toilet with a toilet-paper dis-
penser to its left, hanging on the wall.

Fig. 2: Results of grounded segmentation on ScanRefer dataset.

3.3 Text-3D cross-modal retrieval

We show text-to-3D and 3D-to-text retrieval results in Fig. 3 and Fig. 4 respec-
tively. From the two figures, our Uni3DL model learns satisfying text-3D feature
alignments and produces satisfying cross-modal retrieval results.

4 Limitation and Future Work

In this study, we introduced Uni3DL, a novel unified model for 3D vision-
language understanding, operating directly on raw point clouds. This approach
differs from conventional 3D vision-language models that predominantly rely on
projected multi-view images. While these projection-based methods are limited
by their handling of geometric information, their integration with powerful 2D
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top1 top2 top3 top4 top5

a round table with differnt type of
look and is good 0.91(GT) 0.90 0.90 0.90 0.88

it is an oblong table with distressed
wooden top and six spindle shaped
legs. 0.91(GT) 0.86 0.86 0.83 0.83

a red sofa that is sitting on a black
carpet. the sofa is round and ovalular. 0.90 0.90(GT) 0.87 0.86 0.82

a unique design brown wooden table
with white color at top is great for
outdoor 0.94 0.87 0.83(GT) 0.82 0.81

Fig. 3: Text-to-Shape Retrieval results on Text2Shape dataset, For each query sen-
tence, we show the top-5 ranked shape, the scores of ground truth shape are marked
in red.

pretrained foundation models, such as CLIP, has yielded promising results. To
leverage the benefits of both point-based and projection-based techniques, our
future work will focus on a hybrid approach. This strategy aims to simultane-
ously learn joint 2D and 3D features, integrating insights from 2D foundation
models. This advancement is expected to significantly enhance the sophistication
and accuracy of 3D vision-language understanding in upcoming versions of our
model.
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. Query Shape Retrieval Results .

1. it is an oblong table with distressed wooden top and
six spindle shaped legs. (Prob: 0.91, GT)

2. elliptical table with brown wooden top and grey straight legs
(Prob: 0.88)

3. a brown oblong wooden topped table with four grey supporting
legs (Prob: 0.86)

4. oval table with shape oval , 4 legs and high qualit wood from
alaska that will make you happy (Prob: 0.86)

5. this is a dining table that is oval with the insert, but could col-
lapse down to a circle table. it has 4 legs. (Prob: 0.85)

1. a grey rectangular shaped wooden table with four short legs.
(Prob: 0.91)

2. grey colored, wooden table. four short solid legs with
rectangular top. (Prob: 0.89, GT)

3. a grey rectangular short table with four short grey legs. (Prob:
0.89)

4. a white colored rectangular table which has rectangular top
painted in white and has four short legs colored in black. (Prob:
0.89)

5. a low and long grey table with four legs. (Prob: 0.89,
GT)

1. a white conference table with legs (Prob: 0.92, GT)
2. a table with a white colored oval type top and four grey colored

plate type legs (Prob: 0.88)
3. simple white table. lunch room table. 4 legs. metal legs. formica

top. wide. (Prob: 0.87)
4. an ash colored oval shaped steel coffee table which has skinny

rectangular shaped long four legs. (Prob: 0.87)
5. outdoor table, wooden, gray, oval shape, with four legs. (Prob:

0.86)

1. red colour plastic chair with u shape iron legs and chair
was looking variety (Prob: 0.90, GT)

2. a red chair with curved back legs. probably made of plastic.
(Prob: 0.89)

3. a basket backed, red seated high bar stool with thin metal legs
(Prob: 0.88)

4. red high back chair made of plastic. four legs are made
of metal. (Prob: 0.88, GT)

5. this is a red molded chair with back and no arms. the
chair has 4 metal/plastic legs. (Prob: 0.87, GT)

Fig. 4: Shape-to-Text Retrieval results on Text2Shape dataset, For each query shape,
we show the top-5 ranked sentences, the ground truth sentences are marked in red.
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