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Figure 1: With a unified architecture, Uni3DL supports diverse 3D vision-language
understanding tasks, including semantic segmentation, object detection, instance
segmentation, grounded segmentation, captioning, text-3D cross-modal retrieval,
(zero-shot) 3D object classification.

Abstract. We present Uni3DL, a unified model for 3D Vision-Language
understanding. Distinct from existing unified 3D vision-language mod-
els that mostly rely on projected multi-view images and support lim-
ited tasks, Uni3DL operates directly on point clouds and significantly
broadens the spectrum of tasks in the 3D domain, encompassing both
vision and vision-language tasks. At the core of Uni3DL, a query trans-
former is designed to learn task-agnostic semantic and mask outputs by
attending to 3D visual features, and a task router is employed to se-
lectively produce task-specific outputs required for diverse tasks. With
a unified architecture, our Uni3DL model enjoys seamless task decom-
position and substantial parameter sharing across tasks. Uni3DL has
been rigorously evaluated across diverse 3D vision-language understand-
ing tasks, including semantic segmentation, object detection, instance
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segmentation, visual grounding, 3D captioning, and text-3D cross-modal
retrieval. It demonstrates performance on par with or surpassing state-
of-the-art (SOTA) task-specific models. We hope our benchmark and
Uni3DL model will serve as a solid step to ease future research in unified
models in the realm of 3D vision-language understanding. Project page:
https://uni3dl.github.io/.

Keywords: 3D Vision-Language Understanding · Unified Model · Point
Cloud Processing

1 Introduction

3D perception technology stands as a fundamental element in the automatic un-
derstanding and operation within the physical world. It enhances various appli-
cations, including autonomous driving, robotic navigation, object manipulation,
and virtual reality. 3D perception encompasses a broad spectrum of vision and
vision-language tasks, such as 3D instance segmentation [10,21,24,29,35,37,53,
66, 70], semantic segmentation [30, 45, 47–49, 60, 67], visual grounding [5, 25, 73],
object detection [31,68], retrieval [9,54] and captioning [41,63], and has witnessed
remarkable advancements.

Despite these successes, task-specific models in 3D perception often lack gen-
eralizability, constraining their effectiveness across diverse tasks. In contrast,
the broader scientific community, as exemplified by the grand unified theory
(GUT) in physics [3,32], has consistently emphasized the importance of unifica-
tion. Similarly, there is a growing trend towards unified models that integrate
vision and language tasks, a concept that has demonstrated significant success
in 2D domains [1, 34, 50, 58, 71, 78]. For example, CLIP [50] employs vision-
language contrastive learning for zero-shot transfer across different classification
tasks. Mask2former [13, 14] leverages a transformer-based architecture for uni-
fying generic segmentation tasks. Moreover, XDecoder [78] and Uni-Perceiver
v2 [34] adopt functionality unification modeling [33], covering both vision-only
and vision-language tasks. These unified models exhibit greater versatility, effi-
cient data utilization, and adaptability compared to task-specific models, result-
ing in heightened efficiency and conservation of resources during development.

Extending these successes of unified vision-language modeling in the 2D do-
main [34,50,71,78] to 3D perception tasks remains a formidable challenge. This
difficulty primarily stems from the substantial architectural differences between
2D and 3D models, along with the limited availability of extensive 3D datasets
for pre-training purposes. Recent studies [65,72,76], explore adapting CLIP for
3D vision-language modeling. They achieve this by matching projected multi-
view images with text inputs. Nevertheless, these methods are mainly designed
for 3D object classification. Point-LLM [63] and 3D-LLM [23] directly operate
on raw point clouds and explore Large Language Models (LLMs) for 3D visual
understanding tasks, including 3D object classification, captioning, and visual
question-answering. 3D-VisTA [77] constructs a large-scale 3D scene-text pairs

https://uni3dl.github.io/
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dataset, and perform vision-language pre-training for 3D data without the need
of 2D pre-trained models.

Current unified vision-language models in 3D are summarized in Table 1, the
scope of tasks supported by current 3D vision-language models is comparatively
limited, with dense prediction tasks such as semantic and instance segmentation
receiving less attention. Furthermore, many existing models require multi-view
images rather than direct training on 3D point clouds. These approaches, while
performing well, often result in the loss of critical information (e.g., 3D geometry)
and lead to increased model complexity and overhead (multiple projected views
required).

In response to these challenging issues, we introduce a unified model for
3D perception that operates on raw point clouds and language. Uni3DL starts
with a 3D encoder to extract point features and a text encoder to extract text
features, followed by a carefully designed query transformer that enables inter-
action between latent queries, point features, and text features. A task router
with multiple highly shared functional heads is designed to selectively produce
task-specific outputs for diverse 3D vision-only and vision-language tasks. Our
contributions are summarized as:

– We present Uni3DL, a unified model tailored for 3D vision and language
comprehension. Its versatile architecture allows for the processing of both
point clouds and text inputs, generating diverse outputs including masks,
classes, and texts. The model can be directly applied to 3D dense prediction
tasks (e.g., instance segmentation).

– With a carefully designed query transformer decoder and task router, our
model supports a wide range of vision-only and vision-language tasks within
a single, unified architecture, and enjoys seamless task decomposition and
substantial parameter sharing across tasks.

– Our results demonstrate enhanced or comparable performance against other
multi-task and specialized models across a range of 3D vision-only and vision-
language tasks.

2 Related Work

2.1 Unified Vision-Language Models in 2D

The pursuit of unified architectures across diverse tasks is a long-standing goal in
computer vision and machine learning. Models like CLIP [50] and ALIGN [28]
have made significant progress in merging vision and language through con-
trastive pre-training on extensive web-sourced image-text pairs, enabling natu-
ral language-based zero-shot transfer for various tasks. Yet, these methods have
predominantly been applied to classification tasks, indicating room for broader
application.

To broaden the scope, existing unified models can be classified into two pre-
dominant categories: I/O unification and functional unification [33]. Inspired by
sequence-to-sequence (seq2seq) modeling in NLP [51], I/O unification employs a
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Methods MV Pretrained FM SemSeg InstSeg GndSeg GndLoc Class Retr Det Capt

PointCLIP v2 [76] ✓ CLIP [50], GPT-3 [4] ✓ ✓ ✓ ◦
UniT3D [12] ✓ BERT [19] ✓ ✓
3DJCG [5] Glove [46] ✓ ✓
ULIP [64] ✓ CLIP [50] ✓ ✓

ULIP-2 [65] ✓ CLIP [50] ✓ ✓
3D-VisTA [77] GPT-3 [4] ◦ ◦
Point-LLM [63] ULIP-2 [65], Vicuna [15] ✓ ✓
Point-Bind [20] ✓ OpenCLIP [27] ✓ ✓
Uni3DL (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of various vision-language models in 3D, highlighting their ca-
pabilities across diverse tasks. It specifically indicates the utilization of Multi-View
(MV) images and delineates the types of Pretrained Foundation Models (FMs) em-
ployed. ◦ denotes the method is capable of doing the task but requires additional
task-specific modules. The abbreviations employed in this comparison are as follows:
SemSeg for Semantic Segmentation, InstSeg for Instance Segmentation, GndSeg for
Grounded Segmentation, GndLoc for Grounded Localization, Class for Classification,
Retr for Retrieval, Det for Detection, Capt for Captioning.

unified decoder to generate homogenous token sequences, which are subsequently
processed by task-specific decoders. Notable methods such as Flamingo [1],
OFA [58], and GIT [57] primarily focus on image-level tasks, such as image cap-
tioning and visual question answering (VQA). Following research like Pix2Seq
v2 [11], Unitab [69], and Unified-IO [40] extend this approach by incorporating
discrete coordinate tokens in seq2seq modeling for localization tasks. Vision-
LLM [59] and MiniGPT-2 [8] further enhance vision-language reasoning capa-
bilities using pre-trained large language models. In contrast, functional unifica-
tion models, exemplified by X-Decoder [78] and Uni-Perceiver v2 [34], generate
heterogeneous outputs and utilize various routers or headers to produce final
outputs for diverse tasks. These models typically comprise a vision encoder, a
text encoder, and a unified decoder. Our work aligns with the functional unifi-
cation approach, but with a special focus on 3D vision-language tasks, diverging
from the conventional 2D paradigm.

2.2 Unified Vision-Language Models in 3D

Initial efforts in 3D vision-language modeling, such as PointCLIP [72], Point-
CLIP v2. [76], CLIP2Point [26], and ULIP [64], focus on adapting the CLIP [50]
model for 3D applications. Rather than directly processing point clouds, these
methods typically rely on projected multi-view images from point clouds during
training or testing. Furthermore, these works are mainly designed for 3D object
classification and require additional complex components, like 3DETR [42], for
scene-level tasks, e.g., object detection.

Building on these developments, Point-LLM [63] marries 3D visual encoders
with large language models (e.g., Vicuna [15]), and engages in a dual-stage train-
ing process of feature alignment and instruction tuning. This approach equips
Point-LLM with proficiency in 3D object classification, captioning, and dialogue.
UniT3D [12] introduces a unified transformer-based architecture for 3D vision-
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language alignment using both bi-directional and seq-to-seq training objectives,
which is further fine-tuned for 3D dense captioning and visual grounding. Addi-
tionally, 3D-VisTA [77], a pre-trained transformer specialized in 3D vision and
text alignment, demonstrates proficiency in multiple tasks including 3D visual
grounding and question answering. A notable innovation of 3D-VisTA is the in-
troduction of the Scanscribe dataset, a pioneering dataset for 3D vision-language
pre-training. Nevertheless, 3D-VisTA [77] requires complex task-specific heads
for different tasks.

In conclusion, current models mostly only support limited tasks and require
complex task-specific module design, as summarized in Table 1. Furthermore,
they generally depend on multi-view rendering images. Our Uni3DL, however,
extensively extends the range of tasks it can handle, particularly emphasizing
dense prediction tasks such as semantic segmentation, instance segmentation,
and grounded segmentation, all within a unified architecture using highly shared
parameters. A distinctive aspect of our approach is its direct operation on point
clouds, thereby bypassing the need for multi-view images.

3 Uni3DL

3.1 Method overview

Uni3DL is a versatile architecture tailored for diverse 3D vision-language tasks,
including 3D object classification, captioning, text-3D cross-modal retrieval, se-
mantic and instance segmentation, and visual grounding. This architecture en-
compasses four integral modules: a Text Encoder for text feature extraction;
a Point Encoder dedicated to point feature learning; a Query Transformer
Module with a sequence of cross-attention and self-attention layers to learn re-
lations among object and text queries and point features; and a Task Router,
adaptable and comprising multiple functional heads, including a text genera-
tion head for generating text outputs, a class head for object classification, and
a mask head for producing segmentation masks, a grounding head for text-to-
object grounding, and a 3D-text matching head for 3D-text cross-modal match-
ing. With the combination of these functional heads, the task router selectively
combines functional heads for different tasks. For example, the instance segmen-
tation task combines object classification and mask prediction heads.

Given an input point cloud P, our Uni3DL leverages a 3D U-Net EI to extract
hierarchy point features V, along with a text encoder ET to obtain text features
FT ∈ RLT×C . Point features, text features, along with learnable latent queries
FQ ∈ RQ×C are fed into a unified decoder network to predict mask and semantic
outputs, formulated as:

Om,Os = D([FQ;FT ],V), (1)

where Om and Os denote mask outputs and semantic outputs, [; ] denotes feature
concatenation.
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Fig. 2: Overview of the Uni3DL Model. The Uni3DL is engineered for multifaceted 3D
data tasks, including classification, retrieval, captioning, semantic and instance seg-
mentation, as well as visual grounding. The architecture is composed of four principal
modules: ① a Text Encoder for text feature extraction; ② a Point Encoder for
point feature learning; ③ a Query Transformer Module, which is the cornerstone
of the system with a sequence of cross-attention and self-attention operations between
latent queries, text queries and voxel features derived from the Point Encoder; and ④ a
Task Router module, which comprises, as needed for the given task, text generation
head for generating descriptive text, a grounding head for text-to-object grounding, a
class head for object classification task, a mask head dedicated to segmentation, and
a text-3D matching head for 3D-text cross-modal matching. The text generation head
functions in an autoregressive manner and predicts one token at each forward step.

3.2 Point Cloud and Text Encoder

The architecture of our point feature extraction network employs a sparse 3D
convolutional U-net structure based on the MinkowskiEngine framework [16],
featuring both an encoder and a decoder network. A colored input point cloud,
denoted as P ∈ RN0×6, undergoes quantization into N0 voxels represented as
V0 ∈ RN0×3, with each voxel capturing the average RGB color from the points
it contains as the initial voxel features. Several convolutional and downsampling
layers are sequentially applied to extract high-level voxel features, followed by
deconvolutional and upsampling layers to recover voxels to their original res-
olutions. Supposing the U-Net has S stages of feature blocks, at each stage
s ∈ [1, .., S], we can get voxel features Vs ∈ RNs×Cs , where Ns denotes the
number of valid voxels at stage s, and Cs denotes the corresponding feature di-
mension. We then project all voxel features to the same dimension D, resulting
in a set of feature maps {Vs ∈ RNs×C}Ss=1. The last feature map (VS) is used as
point embeddings to calculate per-point mask, while the remaining feature maps
{Vs}S−1

s=1 are fed into the transformer module to enhance latent and text queries.
For text inputs, we use the CLIP tokenizer [50] along with a transformer-based
network for text feature learning.
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3.3 Query Transformer Module

We follow query-based transformer architecture [6, 38, 52, 78] to design our de-
coder network. Given voxel features {Vs}S−1

s=1 , our transformer module refines
latent queries FQ and text queries FT by a sequence of L decoder layers. At
each layer l = [1..., L], we refine queries by cross-attending to voxel features,
formulated as:

[F̂l
Q; F̂

l
T ] = Cross-Att([Fl−1

Q ;Fl−1
T ],Vs). (2)

We repeat this process for each feature level s = [1, 2, ..., S − 1].
Masked Attention. To enhance object localization capability, we follow the
attention block design in Mask2Fomer [13] and use masked attention instead of
vanilla cross-attention where each query only attends to masked voxels predicted
by the previous layer.
Voxel Sampling. Point clouds in a batch usually have different numbers of
points, leading to differing voxel quantities. Current transformer implementa-
tions generally require a fixed length of inputs in each batch entry. To enable
efficient batch-wise training, for each feature level s, before feeding voxel features
into the decoder network. The sampled voxel features are then utilized across
all cross-attention layers following [52].

We further enhance object and text queries through self-attention layers and
feed-forward layers, formulated as:

[F̂l
Q; F̂

l
T ] = Self-Att([F̂l

Q; F̂
l
T ]); [Fl

Q;F
l
T ] = FFN([F̂l

Q; F̂
l
T ]). (3)

3.4 Task Router

To support diverse 3D vision-language tasks, we design multiple functional heads
thus different tasks can be achieved by compositions of heads. As a result, there
is a high degree of parameter sharing across different tasks. For instance, the
mask head is utilized for semantic, instance, and grounded segmentation tasks.
Specifically, the 3D instance segmentation task includes two functional heads,
object classification, and mask prediction; while the 3D grounded segmentation
task requires a mask head and a grounding head. Consequently, the Uni3DL
model harnesses a consistent set of parameters, while applying unique routing
strategies for each specific task, ensuring efficient task decomposition and sub-
stantial parameter reuse across different tasks. We show the head composition
of different tasks in Table 2.
Object Classification Head. We select the first Q output semantic outputs
for object classification. Given refined semantic queries Os ∈ RQ×C , and K
semantic classes with additional background class. We first feed all K + 1 class
names to the text encoder to get class embeddings Cemb ∈ R(K+1)×C , and
calculate classification probabilities as Oc = Os ·CT

emb, where · denotes the dot
product between matrices.

During training, we calculate cross-entropy loss between predicted classifi-
cation probabilities Oc and ground truth (GT) class labels Cgt to formulate
classification loss as:

Lcls = λclsCE(Oc, Cgt), (4)
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Task Obj-Cls Mask Grounding Text-Gen Matching
Semantic Segmentation ✓ ✓
Instance Segmentation ✓ ✓

Grounded Segmentation ✓ ✓
Captioning ✓
Retrieval ✓

Shape Classification ✓

Table 2: Head compositions of different tasks. Obj-Cls denotes object classification
head, Text-Gen denotes text generation head, and Matching denotes text-3D matching.

where CE denotes cross-entropy loss.
Mask Head. Given mask output Om ∈ RQ×C , and full-resolution voxel features
VS ∈ RN0×C , we calculate voxel mask as Om = Om ·VT

S . The output voxel mask
Om ∈ RQ×N0 , where each row denotes an object mask for the corresponding
latent query.

During training, given ground truth object mask Mgt, we calculate mask loss
as:

Lmask = λbceBCE(Om,Mgt) + λdiceDICE(Om,Mgt), (5)

where BCE and DICE denote binary cross-entropy loss and dice loss respectively.
Grounding Head. Visual grounding requires matching text descriptions to vi-
sual objects. We first generate text embeddings Temb ∈ RNr×C by feeding all
grounding sentences to the text encoder. We select the first Q output seman-
tic queries Os ∈ RQ×C as object embeddings. Then, we calculate object-text
similarity by

St = Softmax(eη Temb · (Os)T ), (6)

where St ∈ RNr×Q and η denotes a learnable scaling parameter. Softmax oper-
ation is applied on the last dimension.

Following DETR [6], we use Hungarian matching to get ground truth match-
ing labels Tgt ∈ RNr . We modified the original mask matching module in DETR
to adapt it for voxel masks. We then calculate cross-entropy loss as:

Lgc = CE(St, Tgt). (7)

Following the common practice of 3D visual grounding practice [5, 7], we
design a lightweight classification head that takes text queries as inputs and
predicts the existence of all K candidate object categories. Given input text
queries Temb ∈ RNr×C , a single-layer MLP network is utilized to predict the
probabilities matrix Tcls ∈ RNr×K over K candidate object categories. We then
calculate multi-label classification loss as:

Lgtxt = BCE(Tcls,T
gt
cls), (8)

where Tgt
cls ∈ RNr×K denotes the ground truth labels of category existence.

Additional grounding mask Lgmask is calculated similarly to the mask head.
The overall grounding loss is calculated as:

Lgrd = λgcLgc + Lgmask + Lgtxt. (9)
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Text Generation Head. In the context of 3D captioning, our method be-
gins by generating text embeddings for each token within the vocabulary, which
comprises V tokens, utilizing the text encoder. Subsequently, we use the last LT

semantic outputs generated by the decoder network and calculate the dot prod-
uct against the token embeddings, resulting in an affinity matrix Scap ∈ RLT×V .
The cross-entropy loss is calculated as:

Lcap = λcapCE(Scap, ycap), (10)

where ycap is the ground truth token indices.
During training, a causal masking strategy is adopted in all self-attention

layers of the decoder network. During inference, our model predicts one token
at each time and gets 3D captions in an autoregressive way.
Text-3D Matching Head. This head can be used for text-3D cross-modal re-
trieval and (zero-shot) 3D shape classification tasks. To predict text-3D match-
ing, the last output semantic token is used as the shape embedding with a
dimension of R1×C . Given a batch of B text-shape pairs, the matching head
computes the similarities between 3D shape embeddings and corresponding text
embeddings as Sret ∈ RB×B , and calculates retrieval loss as:

Lret = λretCL(Sret, yret), (11)

where ycap ∈ R1×B denotes the ground truth matching indices. CL denotes
vision-language contrastive loss defined in CLIP [50].
Multi-Task Training. During pretraining, we simultaneously train the whole
network with all functional heads. The overall loss is formulated as:

L = Lcls + Lmask + Lgrd + Lcap + Lret. (12)

4 Experiments

4.1 Dataset

ScanNet (v2) [17] captures more than 1,500 3D scans. Following the official
benchmark, we use 1,201 scenes for training, 312 for validation. There are in
total 20 semantic labels, 18 of which are instance classes.
ScanRefer [7] dataset contains 51,583 referring descriptions of 11,046 objects
from 800 ScanNet scenes. We use 562 scenes for training and 141 scenes for
evaluation.
Cap3D Objaverse [41] dataset, is derived from Objaverse with around 800K
objects. It features 660K 3D-text pairs, created using an automated caption-
ing process. We randomly select 80% for training and the remaining 20% for
evaluation3.
3 To ensure a fair comparison with PointLLM, we filter out 200 objects used for

benchmark evaluation from our training set and report the performance on the same
200 objects.
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For model evaluation, we additionally use S3DIS [2] to evaluate semantic and
instance segmentation, Text2Shape [9] to evaluate text-3D cross-modal retrieval.
S3DIS dataset contains 6 large-scale areas with 271 scenes, and 13 semantic
categories are annotated. Following previous works, we use 68 scenes in Area 5
for validation and the others for model training.
Text2Shape [9] contains 8,447 table instances and 6,591 chair instances from
the ShapeNet dataset, along with 75,344 natural language descriptions. We use
the same training/test split as [9].

4.2 Implementation Details

In this work, we employ 150 latent queries and one additional latent query for
scene-level tasks. The point encoder-decoder network is based on Minkowski
Res16UNet34C [16] and pretraiend from Mask3D [52], and we use 12 transformer
layers for the language encoder. Our Query Transformer module consists of 15
(L = 15) transformer layers. The segmentation weights λcls, λbce, λdice are set
2.0, 5.0, 5.0, grounding classification weight λgc to 0.4, captioning and retrieval
weight λcap, λret are set to 2.0.

During pretraining, we employ datasets including ScanNet (v2) instance seg-
mentation, ScanRefer, and Cap3D Objaverse. Notably, ScanRefer is based on
ScanNet, and Cap3D Objaverse shares numerous object categories with Scan-
Net. The alignment in object types and functional heads across these tasks justi-
fies their combined processing in the same batch for joint training. The training
process spans 50 epochs using the AdamW optimizer [39], taking approximately
20 hours on four NVIDIA A100 GPUs. During inference, the top 200 (for S3DIS)
and top 500 (for ScanNet (v2)) instances with the highest classification scores
are retained for the instance segmentation task. Details about the pretraining
and task-specific fine-tuning setups can be found in the supplementary material.

4.3 3D Semantic/Instance Segmentation

We compare 3D semantic segmentation, object detection, and instance segmen-
tation performance with previous STOA methods in Table 3. From the table,
our Uni3DL method achieves better or comparable performance on general seg-
mentation and detection tasks on S3DIS and ScanNet (v2)datasets. Figure 3
shows qualitative results of our Uni3DL on S3DIS and ScanNet (v2) datasets.

4.4 3D Visual Grounding

We compare the 3D grounded segmentation performance of our Uni3DL with
TGNN (GRU) [25] in Table 3. Our method achieves significantly better perfor-
mance than TGNN method as indicated by instance-average IoU, and accuracy
at the IoU thresholds of 0.25 and 0.5. It should be noted we report grounded seg-
mentation performance rather than grounded localization to ensure a fair com-
parison with TGNN. Grounded segmentation is more challenging than grounded
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Method
Semantic Segmentation Object Detection Instance Segmentation Grounded Segmentation 3D Captioning 3D Retrieval
S3DIS (Area 5) SN Val SN Val SN Val S3DIS (Area 5) ScanRefer Cap3D Text2Shape
mIoU mAcc mIoU bAP50 bAP25 mAP mAP50 mAP50 mAP25 mIoU Acc@0.25 Acc@0.5 B-1 R M R@1 R@5

MinkowskiNet42 [16] 67.1 74.4 72.2 - - - - - - - - - - - - - -
FastPointTransformer [45] 68.5 76.5 72.1 - - - - - - - - - - - - -
PointNeXt-XL [49] 71.1 77.2 71.5 - - - - - - - - - - - - - -
StratifiedTransformer [30] 72.0 78.1 73.1 - - - - - - - - - - - - - -
PointTransformerV2 [60] 71.6 77.9 74.4 - - - - - - - - - - - - - -
EQ-Net [68] 71.3 * 75.3 - - - - - - - - - - - - -
Swin3D [67] 72.5 * 75.2 - - - - - - - - - - - - - -
Swin3D† [67] 73.0 * 75.6 - - - - - - - - - - - - - -
VoteNet [62] - - 33.5 58.6 - - - - - - - - - - - -
3DETR [43] - - - 47.0 65.0 - - - - - - - - - - - -
CAGroup3D [56] - - - 61.3 75.1 - - - - - - - - - - - -
PointGroup [29] * * * * * 34.8 56.7 57.8 * - - - - - - - -
MaskGroup [75] * * * * * 42.0 63.3 65.0 * - - - - - - - -
SSTNet [35] * * * * * 49.4 64.3 59.3 * - - - - - - - -
SoftGroup [55] * * * 59.4 71.6 50.4 76.1 66.1 * - - - - - - - -
Mask3D [52] * * * 56.2 70.2 55.2 73.7 68.4 75.2 - - - - - - - -
Mask-Att-Free† [31] * * * 63.9 73.5 58.4 75.9 69.1 75.7 - - - - - - - -
TGNN (GRU) [25] - - - - - - - - - 26.1 35.0 29.0 - - - - -
TGNN (BERT) [25] - - - - - - - - - 27.8 37.5 31.4 - - - - -
InstructBLIP-7B [18] - - - - - - - - - - - - 11.2 13.9 14.9 * *
InstructBLIP-13B [18] - - - - - - - - - - - - 12.6 15.0 16.0 * *
PointLLM-7B [63] - - - - - - - - - - - - 8.0 11.1 15.2 * *
PointLLM-13B [63] - - - - - - - - - - - - 9.7 12.8 15.3 * *
FTST [9] - - - - - - - - - - - - - - - 0.2 1.6
FMM [9] - - - - - - - - - - - - - - - 0.2 2.4
Y2S [22] - - - - - - - - - - - - * * * 2.9 9.2
Parts2Words (no parts) [54] - - - - - - - - - - - - - - - 5.1 17.2
Ours 72.7 79.3 76.2 67.7 77.1 60.9 80.9 65.3 74.3 32.3 39.4 36.4 31.6 33.1 14.4 5.7 19.7

Table 3: Performance of our Uni3DL on different segmentation and VL tasks. Uni3DL
achieves the best performance on 14 out of 17 metrics. ‘SN’ denotes the ScanNet (v2)
dataset. ‘*’ indicates the model is capable of the task without a reported metric, and
‘-’ signifies the model lacks this specific capability. The results highlighted in bold and
underline denote the best and second-best outcomes, respectively, for each column.
Note that Swin3D† uses extra training data (Structure3D [74]).

localization because minor boundary inaccuracies in segmentation masks mini-
mally impact segmentation IOU, but can significantly alter bounding box loca-
tions. Figure 4 shows qualitative results of our method. More qualitative results
and grounded localization performance are presented in the supplementary file.

4.5 3D Captioning

From Table 3, our Uni3DL model outperforms existing methods in 3D captioning
on the Cap3D Objaverse dataset. On the BLEU-1 [44] and ROUGE-L [36] scores,
our method beats precious STOA methods by a large margin (more than 20%).
Qualitative analyses, illustrated in Figure 5, demonstrate our caption predictions
closely align with the ground truth. Additional qualitative results are presented
in the supplementary file.

4.6 Text-to-3D Retrieval

We evaluate text-to-3D retrieval performance on the Text2Shape ShapeNet sub-
set. From Table 3, our Uni3DL model achieves better text-to-3D retrieval perfor-
mance than previous STOA task-specific methods, including FTST [9], FMM [9],
Y2S [22], and Parts2Words [54], as indicated by recall scores R@1 and R@5. Note
that for the Parts2Words method, we primarily compare its performance without
using part information for a fair comparison. Qualitative results are provided in
the supplementary file.
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Input Ours Sem. GT Sem. Ours Inst. GT Inst.

Fig. 3: 3D Segmentation results on S3DIS (top) and ScanNet (bottom) datasets.

Input GT Ours
Refer: a brown wooden nightstand. it’s between
the end of the bed and close to the wall.

Input GT Ours
Refer: this is a green toolbox. the green toolbox
is in front of a red toolbox on the floor next to a
piano.

Fig. 4: Results of grounded segmentation on the ScanRefer dataset. Grounded masks
are shown in green.

GT: a small white
NASA space shuttle
airplane flying in the
sky.
Ours: a small white air-
plane flying in the air

GT: an old red and
white car with an
American flag painted
on it.
Ours: an old red and
white race car with
its rear paintings
featuring stickers

GT: a white house
with a roof.
Ours: a white house
with a roof and stairs

GT: a small blue toy
car with red accents
and a helmet on top.
Ours: a small blue toy
vehicle, resembling a
car with wheels

Fig. 5: 3D captioning results on Cap3D Objaverse dataset.

4.7 Zero-Shot 3D Object Classification

We evaluate the zero-shot 3D classification performance on the ModelNet10/40
dataset [61]. Experiments demonstrate that our Uni3DL model achieves com-
petitive performance compared to previous SOTA methods. Additional details
can be found in the supplementary file.

4.8 Ablation Study

Effect of Pretraining. We evaluate the impact of pretraining on downstream
tasks. Ablation experiments are conducted by training separate models from
scratch for various tasks, including ScanNet (v2) semantic segmentation, S3DIS
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instance segmentation, ScanRefer grounded segmentation, and Text2Shape re-
trieval. As evidenced in Table 4, the pretraining stage significantly enhances
performance across all downstream tasks. We show the qualitative comparison
of the baseline model trained from scratch and our finetuned model on the S3DIS
instance segmentation dataset in Figure 6. From this figure, the baseline model
fails to capture the geometry structures of objects and may produce noisy masks;
our finetuned model can better extract objects with consistent boundaries.

Input Baseline Inst. Ours Inst. GT Inst.

Fig. 6: Instance (Inst.) segmentation results on S3DIS dataset. We show results of the
baseline method trained from scratch and our finetuned model.

Task
Semantic Segmentation Instance Segmentation Grounded Segmentation Retrieval

SN Val S3DIS (Area 5) ScanRefer Text2Shape
mIoU/mAcc mAP50 / mAP25 Acc@0.25/Acc@0.5 R@1/R@5

From scratch 72.3/81.8 61.7/71.7 33.8/31.4 2.4/7.7
Ours 76.2/84.8 65.3/74.3 39.4/36.4 5.7/19.7

Table 4: Ablation of pertaining.

Effect of different pertaining tasks. We further investigate the effect of each
pertaining task, including instance/grounded segmentation, 3D captioning, and
text-to-3D retrieval. In Table 5, we keep grounded segmentation while evaluat-
ing the significance of remaining pretraining tasks. From Table 5, we have the
following findings: 1) Instance segmentation benefits both grounded segmenta-
tion and text-3D cross-modal retrieval. Without instance segmentation task, the
grounded segmentation Acc@0.25 drops from 37.8% to 35.8%. This is because
the grounding task itself is based on instance identification. Instance segmen-
tation also helps to better learn object-text alignment and benefits text-to-3D
cross-modal retrieval. 2) Caption and retrieval tasks benefit each other. With-
out pertaining on the captioning task, the text-3D cross-modal retrieval accuracy
drops from 5.5% (resp., 15.5%) to 5.0% (resp., 12.8%) in terms of text-to-shape
R@1 (resp., R@5) on the Cap3D dataset. Without pertaining on the retrieval
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task, the captioning performance drops from 16.8% (resp., 13.7) to 13.7% (resp.,
11.2) in terms of B-1 (resp., ROUGE-L) scores on the Cap3D dataset.

Task
Grounded Segmentation Captioning Retrieval

ScanRefer Cap3D Cap3D
Acc@0.25/Acc@0.5 B-1/R T2S R@1/R@5

Ours (β=1) 37.8/34.2 16.8/13.7 5.5/15.5
- Retrieval 38.8/35.8 13.5/11.2 N/A
- Captioning 38.3/35.5 N/A 5.0/12.8
- Instance Segmentation 35.8/31.0 18.2/14.9 4.0/11.0

Ours (β=0.5) 38.1/36.5 15.7/10.3 5.5/10.5
Ours (β=2) 36.4/34.0 18.3/13.4 6.0/16.0
Ours (β=5) 35.2/31.3 17.7/12.0 4.0/15.5
Ours + alt. (β=1) 36.8/33.6 14.8/14.4 5.0/13.0

Table 5: Ablation of pertaining tasks and scene-object task balance. Ours + alt. means
our model with alternative training.

Scene-object task balance. During the pretraining phase, we include both
object understanding (including object captioning, and text-to-3D cross-modal
retrieval) and scene understanding (specifically, instance and grounded segmen-
tation) tasks. Achieving a proper balance between these two types of tasks—each
characterized by unique data distributions—is crucial in our multi-task train-
ing framework. To manage this balance, we modulate the weights assigned
to the object understanding tasks (λcap, λret) using different scaling factors
(β = 0.5, 1, 2, 5), where β = 1 represents the baseline setting. As demonstrated
in the middle section of Table 5, increasing parameter β from 0.5 to 2 slightly
improves performance in two object understanding tasks; however, further in-
crement to 5 hurts the performance. Meanwhile, increasing β from 0.5 to 5
marginally diminishes the results in scene understanding tasks. It should be
highlighted that adjusting the parameter β from 0.5 to 5 has a small impact on
performance across tasks, mostly less than a 2% change, demonstrating Uni3DL’s
robustness to variations in balancing weights.
Alternative training. We explore alternate training between object and scene-
level tasks. Results in the lower section of Table 5 indicate that alternate training
results in marginally inferior performance compared to joint training.

5 Conclusion

We introduce Uni3DL, a unified model for generalized 3D vision and language
understanding tasks. We design a query transformer to attentively align 3D
features with latent and text queries. A task router module with multiple func-
tional heads is designed to support diverse vision-language tasks, including 3D
object classification, 3D semantic/instance segmentation, 3D object detection,
3D grounded segmentation, 3D captioning, and text-3D cross-modal retrieval.
Experiments on multiple benchmark datasets show comparable or even superior
performance of our Uni3DL model compared to the previous SOTA methods.
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