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Abstract. While near-infrared (NIR) imaging is essential for assisted
driving and safety monitoring systems, its monochromatic nature hinders
its broader application, which prompts the development of NIR-to-visible
translation tasks. However, the performance of existing translation meth-
ods is limited by the neglected disparities between NIR and visible imag-
ing and the lack of paired training data. To address these challenges,
we propose a novel object-aware framework for NIR-to-visible transla-
tion. Our approach decomposes the visible image recovery into object-
independent luminance sources and object-specific reflective components,
processing them separately to bridge the gap between NIR and visible
imaging under various lighting conditions. Leveraging prior segmentation
knowledge enhances our model’s ability to identify and understand the
separated object reflection. We also collect the Fully Aligned NIR-Visible
Image Dataset, a large-scale dataset comprising fully matched pairs of
NIR and visible images captured with a multi-sensor coaxial camera. Em-
pirical evaluations demonstrate our method’s superiority over existing
methods, producing visually compelling results on mainstream datasets.
Code is accessible at: https://github.com/Yiiclass/Sherry.
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1 Introduction

Near-infrared (NIR) imaging boasts unique benefits over conventional imaging,
including superior atmospheric penetration [11], anti-interference solid features,
and undetectability by the human eye. These attributes have driven the adoption
of NIR imaging in various fields, including medical diagnostics [4], agriculture [9],
transportation [24], assisted driving [22] and surveillance [23], particularly under
low-visibility or night-time conditions. However, NIR images lack the luminance
and chrominance compared to visible images, which are essential for detailed and
intuitive visual interpretation. In contrast, VIS images are more user-friendly,
offering rich details and vivid colors that provide a more intuitive visual experi-
ence. Furthermore, high-level vision tasks are primarily based on visible images,
with a vast collection of VIS images driving advancements in the field. Therefore,
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Fig. 1: (a): AM 1.5G standard spectrum of the Earth’s surface [36] (b): Spectral power
distribution of CIE standard light source. (c): Spectral reflectance curves of green vege-
tation [13], where chlorophyll absorbs mainly blue-violet and red light, resulting in low
reflectance in the visible range. (d): Green vegetation exhibits heightened reflectance
in the near-infrared spectrum, yielding pronounced camera response values.

developing effective NIR-to-VIS (NIR2VIS) translation techniques is essential to
unlock the full potential of NIR imaging across high-level vision applications.

With the advancement of deep learning, convolutional neural networks have
been applied to NIR2VIS translation tasks. Several studies [6,10,12,28–30,33,38]
have endeavored to estimate the corresponding VIS images from single NIR
images via an end-to-end network. However, these methods are predominantly
data-driven and often overlook the fundamental distinctions between NIR and
visible (VIS) images, leading to limited interpretability.

In real-world scenarios, illumination spectral variations are significant under
different lighting conditions. Figure 1a and Figure 1b depict the spectrum of
outdoor and indoor light sources, respectively. While this variation is less obvi-
ous for visible images thanks to adjustments like white balance in image signal
processors (ISP), its effect on the NIR band could not be easily ignored. Addi-
tionally, the limited availability of paired NIR-VIS data limits the effectiveness of
current NIR2VIS tasks. Currently, mainstream paired NIR-VIS data collection
entails the laborious process of swapping filters at different intervals with merely
a scale of hundreds. This process results in a dataset that is not only limited but
also misaligned, thereby limiting image capture to static scenes exclusively.

To handle the disparities between NIR and visible imaging, we propose an
object-aware framework specifically designed to enhance the NIR2VIS transla-
tion, which consists of an image decompose block, a luminance estimate block,
and an object-guided reflection block. As depicted in Figure 2, acknowledging the
substantial variance in illumination across the visible and NIR spectra, the image
decompose block splits the image into object-independent luminance sources and
object-specific reflections. This decomposition considers luminance as the light
energy impinging upon the scene, unaffected by the scene’s objects, and uses
a luminance estimate block to ascertain visible luminance. On the other hand,
we perceive reflection amount varieties, indicating that objects display distinct
reflection spectra across the NIR and visible spectral ranges. To facilitate the
understanding of reflective disparities among distinct objects across the NIR
and visible light spectra, the object-guided reflection block leverages the prior
knowledge of the state-of-the-art segmentation model to estimate reflections of



Object-Aware NIR-to-Visible Translation 3

distinct objects. The visible image is then recovered by combining the visible
luminance and reflection components. Furthermore, to address the limitations
of existing NIR-VIS datasets, we introduce the Fully Aligned NIR-VIS Image
Dataset (FANVID) collected using a multi-sensor coaxial prism camera. Our
FANVID contains 5144 pairs of fully aligned high-resolution NIR-VIS images.

Our main contributions can be summarized as follows:

– Observing the large variance for illumination on visible and NIR ranges, we
demonstrate that decomposing the illumination and object reflectance to
process them separately can effectively enhance NIR2VIS translation task.

– Incorporation of segmentation as an object-aware prior knowledge can facil-
itate the estimation of object reflectance.

– We collect a Fully Aligned NIR-VIS Image Dataset (FANVID) containing
fully paired data in dynamic scenes. The experimental results on mainstream
NIR-VIS datasets indicate our method’s superiority over leading methods
and yield more visually appealing results.

2 Related Work

In this section, we first review work related to NIR2VIS translation. Subse-
quently, we introduce the predominant NIR-VIS datasets. Next, we discuss the
colorization task, which shares the goal of recovering colors. Finally, we detail
the image-to-image conversion task, similar to the NIR2VIS task.
NIR2VIS. In recent years, advancements in deep learning have prompted nu-
merous studies exploring neural networks to bridge the spectral gap between
NIR and VIS images. Initial endeavors, such as Limmer et al . [29], introduced
an end-to-end NIR2VIS translation utilizing a multi-scale deep convolutional
neural network. This approach, which bypasses the need for prior knowledge,
directly infers low-frequency RGB values and integrates NIR’s high-frequency
attributes to construct the final VIS output. The subsequent adoption of gen-
erative adversarial networks (GANs) in studies [6, 12, 28, 33, 38] signifies a key
shift, enabling conversation of images from unpaired NIR-VIS datasets. Never-
theless, the inherent spectral overlap between the NIR and VIS camera sensi-
tivities poses a challenge in achieving precise color correspondence, limiting the
effectiveness of these methods. After that, Liu et al . [30] proposed modifications
to the single-band NIR spectrum input, introducing a technique to maximize
RGB three-channel variance through deep retrieval and optimal multiplexing
of the NIR spectrum. Despite this advancement, the method faces challenges
in simultaneously recovering luminance and chrominance from limited NIR-VIS
datasets, resulting in artifacts and unsatisfactory visual outcomes.
NIR-VIS Datasets. To gather pairs of NIR-VIS data, various camera systems
have been designed, primarily falling into three types. 1) Place an NIR CUT
filter in front of the camera to obtain VIS images and an NIR bandpass filter to
obtain NIR images, with paired images obtained by manually switching filters.
2) Use specifically designed color filter arrays (CFAs) to automatically switch



4 Gao et al.

filters, where different sections of the CFAs capture NIR and VIS data, respec-
tively. 3) Employ a multi-sensor coaxial camera to capture paired NIR-VIS data.
This system uses a prism with multiple sensors to acquire NIR and VIS data
concurrently. This method is also adopted for data acquisition in this study.

The mainstream datasets are primarily acquired using the first two meth-
ods. For instance, the EPFL [2] dataset comprises 477 pairs of NIR-VIS images
with a resolution of 1024×768. Lv et al . [32] establish a collection of 714 pairs of
NIR-VIS images, with a resolution of 2048×3072, which is currently unavailable.
The DVD [20] dataset contains 307 sets of NIR-VIS images with a resolution
of 1920×1080. Since NIR-VIS images are obtained by switching filters, this ap-
proach complicates data collection and results in imperfectly aligned images,
mostly of static scenes. Another dataset, FMSVP [34], features 64 videos with a
resolution of 240×320, captured using a coaxial camera system. However, the low
resolution and redundancy of information across video frames limit its utility.

Our dataset, FANVID, meticulously compiles 5144 pairs of NIR-VIS images
with a resolution of 2048×1536 using a multi-sensor coaxial camera system. The
data in this dataset are precisely matched and include dynamic scene infor-
mation, showcasing its superiority in quality and comprehensiveness. The de-
velopment and utilization of NIR-VIS datasets have been pivotal in advancing
NIR2VIS research. The initial reliance on manual methods to obtain paired NIR
and VIS images, as seen in datasets like EPFL, posed significant alignment chal-
lenges, particularly in dynamic scenes. The introduction of multi-sensor coaxial
camera systems represented a paradigm shift, enabling the simultaneous acqui-
sition of NIR and VIS data with precise alignment. This technological advance-
ment facilitated more accurate and dynamic dataset collections. Our compre-
hensive FANVID dataset exemplifies these improvements, surpassing existing
collections in alignment accuracy, image resolution, and scene dynamics.

Image Colorization. Image colorization fundamentally involves inferring color
information from grayscale images. This process is typically categorized into
two main approaches: guided-based and automatic. Guided-based colorization
leverages reference images or prior knowledge. For instance, an intuitive and
interactive method based on color palettes was introduced by [5]. Addition-
ally, various methods employing deep learning frameworks [15, 43] have been
developed for colorization using instance-specific images. Conversely, automatic
colorization functions without reliance on external references. Cheng et al . [8]
introduced a pioneering deep learning-based colorization technique. Subsequent
studies [17, 47, 48] have refined network architectures to enhance visual output.
InstColor [37] was developed to enable object-level colorization using object de-
tection. More recent research, such as that by Ji et al . [19] and Weng et al . [42],
has adopted transformer models to exploit global visual features, facilitating
comprehensive information extraction for colorization tasks.

Compared to VIS, NIR images lack both luminance and chrominance details,
whereas grayscale images only lack chrominance. Consequently, the NIR2VIS
translation presents a greater challenge than traditional colorization.
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Image-to-image Translation. Initially, Pix2Pix [18] utilized conditional gen-
erative adversarial networks for paired image-to-image translation, marking a
foundational step in the field. Subsequently, CycleGAN [52] introduced a cycle
consistency loss, enabling translation across unpaired image domains. In paral-
lel, Liu et al . introduced the UNIT framework [31], based on a shared latent
space concept, while Yi et al . developed DualGAN [45], which employs a dual
learning mechanism to enhance the quality of translations. This progress was
followed by the emergence of various image denoising [7, 26, 49, 50] and restora-
tion methods [27, 39, 41, 44, 51]. More recently, the field has seen the advent of
diffusion-based models [16,46], which have demonstrated significant effectiveness.

While image-to-image translation and NIR2VIS share similarities, they pos-
sess fundamental differences. Image-to-image translation typically utilizes a three-
channel RGB image as input, whereas NIR2VIS processing involves a single-
channel NIR image. This difference in channel information inherently affects the
translation results’ efficiency and accuracy.

3 Object-Aware Framework for NIR2VIS Translation

In this section, we begin with an exposition of the theoretical foundation of our
object-aware framework. Next, we present a comprehensive framework formula-
tion, highlighting the roles of individual network modules. Finally, we detail the
architectural design of each network module, explicating their specific functions.

3.1 Theoretical Foundation

The human color perception system keeps the perceived color of an object rel-
atively constant under different luminance conditions. For instance, although
the spectral distributions of indoor and outdoor light sources significantly dif-
fer, human color perception remains stable. Figures 1a and 1b depict indoor and
outdoor light source spectra, respectively, showing significant variance in the vis-
ible and NIR ranges across different lighting environments. In order to simulate
the color stability of the human eye under different lighting conditions, visible
light cameras commonly utilize image signal processors (ISP) that perform cor-
rections such as white balance, a procedure often oversimplified in NIR imaging
contexts. Consequently, distinguishing the image’s luminance source from other
components is essential to the task of NIR2VIS.

The classical Retinex theory explicates human color perception and assumes
an image can be decomposed into object reflectance (R) and environment lumi-
nance (L) components, where ⊙ denotes element-wise multiplication:

I = R⊙ L, (1)

Inspired by Retinex theory, our method introduces an innovative framework
tailored for the NIR2VIS translation task. Our approach is based on the premise
that the luminance component is primarily determined by external lighting con-
ditions and remains invariant across objects, as illustrated in Figures 1a, which
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Fig. 2: (a) Overall architecture of the object-aware framework for the NIR2VIS task.
(b) The network architecture of the decomposition block incorporates residual and
attention modules. (c) Luminance estimate block for encoder and decoder architectures.
(d) Object-guided reflection module based on transformer architecture.

depicts the solar spectrum curve. In contrast, the reflection component is in-
trinsically object-specific and varies between NIR and VIS spectra, exemplified
in Figure 1c, which presents the spectral reflectance curve of green plants. Our
framework strategically decomposes the image into R and L, pertinent to the
object’s reflection and overall luminance, respectively. This decomposition is
critical for understanding NIR2VIS translation, highlighting the necessity to
accurately learn the transformation of reflectance properties from NIR to VIS
bands, essentially capturing object-specific reflection characteristics.

In our object-aware framework, we focus on isolating the reflectance compo-
nent to understand the differences in the object’s reflection curves between the
NIR and visible light bands. This isolation is achieved by mitigating the effects
of luminance within the captured scene, ensuring that the reflectance compo-
nent accurately represents the intrinsic properties of the object, independent of
lighting conditions. The luminance component depends entirely on the intensity
of the light source and is unrelated to the object. We employ a luminance es-
timation network to recover this component, thereby delineating the impact of
the light source on the overall image composition.

Furthermore, to enhance our model’s ability to capture object-specific re-
flectance nuances, we integrate object priors via a segmentation algorithm [21].
This enhancement bolsters the framework’s ability to model the intricate re-
flectance characteristics unique to each object, thereby elevating the precision of
the NIR to VIS image translation.
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3.2 Framework Overview

In our proposed framework, we employ a series of networks to decompose and
subsequently transfer the NIR into its corresponding visible image. This process
begins with the decomposition of the input NIR image IN into reflection RN
and luminance LN components using DecomposeNet network:

RN,LN = DecomposeNet(IN), (2)

Next, LuminanceNet estimates the visible image luminance LV from LN:

LV = LuminanceNet(LN). (3)

At the same time, we use a segmentation algorithm results as object-aware
prior knowledge Pobj:

Pobj = Segmentation(IN). (4)

Then, Object-Guided ReflectionNet estimates the VIS image reflection RV
under the guidance of object-aware prior:

RV = Object-Guided ReflectionNet(RN,Pobj). (5)

Finally, the synthesized visible light image IV is obtained by element-wise
multiplication of RV and LV:

IV = RV ⊙ LV. (6)

3.3 Network Module Design

Decompose Block. DecomposeNet is the foundational component of our frame-
work, and it is responsible for disentangling input NIR images into reflectance
and luminance components. As shown in Figure 2b, this network employs a series
of convolutional layers, attention mechanisms, and residual connections to ana-
lyze the input image and separate these components effectively. The reflectance
output, RN, encapsulates the intrinsic characteristics of the object, while the
luminance output LN represents the scene’s lighting conditions. This decompo-
sition is crucial for subsequent stages of the NIR2VIS process, enabling targeted
manipulation and enhancement of each component.
Luminance Estimate Block. LuminanceNet is designed to process the iso-
lated luminance component further, refining it to align with the characteristics
observed in visible light images. As shown in Figure 2c, through the encoder and
decoder structure network, alongside bottleneck processing, the network adjusts
the NIR luminance details to match the VIS spectrum. This architecture pre-
serves essential luminance qualities, ensuring accurate translation and realistic
integration with the reflectance component during image reconstruction.
Object-Guided Reflection Block. ReflectionNet enhances the quality of the
reflectance component. As shown in Figure 2d, it leverages deep learning to en-
hance image details, focusing on material-specific characteristics. The network
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architecture is layered and complex, incorporating an initial embedding stage
that transforms the input reflectance into a feature-rich representation. Follow-
ing this, a series of encoder and decoder stages apply attention mechanisms and
convolutional layers to process these features, integrating external segmentation
or material-oriented information to guide the refinement process. The atten-
tion mechanisms within the network enable focused processing of relevant image
areas, enhancing details and reducing artifacts. The final output is a refined re-
flectance component with enhanced detail and material-specific accuracy, which
is crucial for reconstructing a high-fidelity visible light image from NIR data.

4 Fully Aligned NIR-VIS Image Dataset

To mitigate the limitations of existing NIR-VIS datasets and address the chal-
lenge of incomplete data pairing, we use a multi-sensor coaxial camera to collect
a Fully Aligned NIR-VIS Image Dataset (FANVID).

VIS band (400-700nm)

NIR1 band (700-800nm)

NIR2 band (800-1000nm)

Camera: JAI FS-3200T-10GE-NNC
Len: ML-0930M-9C

(a) (b)

Fig. 3: (a): Camera system to collect FANVID. (b): Spectral sensitivity of camera.

4.1 Camera Settings

For simultaneous NIR and VIS data acquisition, we use the JAI FS-3200T-10GE-
NNC, a 3CMOS multispectral coaxial camera with an ML-0930M-9C prism lens.
Figure 3 illustrates the camera’s configuration and spectral response. It can
capture images simultaneously across three spectral bands: 400-700 nm for visible
light, 700-800 nm for the NIR spectrum, and 820-1000 nm for the extended
NIR range. Precise image alignment requires meticulous synchronization of the
camera sensors’ exposure times, which is essential for our dataset’s accuracy.

4.2 Collected Data

Leveraging the capabilities of the multi-sensor coaxial camera, we collected 5144
image sets from diverse outdoor scenes, including streets, parks, traffic, and
campuses. The dataset was gathered over two months, covering various weather
conditions such as sunny, cloudy, rainy, and snowy, thereby encompassing a range
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NIR image in EPFL dataset VIS image in EPFL dataset NIR image in our dataset VIS image in our dataset

Fig. 4: The prevalent NIR-VIS dataset EPFL [2] exhibits misalignment in dynamic
scenes due to manual filter replacement. In contrast, our dataset, FANVID, is acquired
using a multi-sensor coaxial camera system, ensuring precise alignment of the images.

of spectral conditions. Each set contains three images that are precisely aligned:
one from the visible spectrum (400-700 nm), one from the NIR spectrum (700-
800 nm), and one from the extended NIR spectrum (820-1000 nm). Figure 4
delineates the alignment discrepancies in the EPFL dataset [2] due to manual
filter adjustments. Our dataset circumvents these issues, enhancing its utility
and providing a robust foundation for future research.

4.3 Privacy and Ethics

Our dataset collection was independently reviewed and approved by an Institu-
tional Review Board (IRB). Following IRB guidelines, we prioritize data privacy
and implement comprehensive security measures. We adhere to stringent ethi-
cal guidelines during data collection, respecting individuals’ privacy rights and
avoiding recording sensitive areas or activities [14]. To prevent personal iden-
tification, we anonymize all identifiable information, such as faces and license
plates, following the protocols in [25, 40]. These measures ensure the protection
of participants’ privacy and uphold the ethical integrity of our research.

5 Experiments

In this section, we first introduce the experimental settings, including datasets,
metrics, and compared methods. Next, we conduct quantitative and qualita-
tive comparative experiments to analyze our proposed method and related ap-
proaches. Finally, we conduct ablation experiments to examine the effectiveness
of our object-aware framework and the object prior.

5.1 Experimental Settings

Datasets. The datasets used for evaluation are our dataset FANVID, EPFL [2],
and ICVL [1]. Our dataset, FANVID comprises 5144 sets of data, each contain-
ing a visible light image and NIR images in the 700-800 nm and 820-1000 nm
bands. We convert the NIR images of the two bands into visible light images. The
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dataset is partitioned into 4502 images for training and 642 images for testing.
The EPFL dataset contains 477 paired images captured with Nikon D90 and
Canon T1i cameras equipped with VIS and NIR filters to isolate wavelengths
below and above 750 nm, respectively. However, 50 pairs exhibit alignment dis-
crepancies, as shown in Figure 4. This dataset includes 420 images for training
and 56 images for testing. The ICVL dataset includes 201 sets of hyperspectral
images acquired by a Specim PS Kappa DX4 hyperspectral camera and a rotary
stage for spatial scanning. This dataset spans 519 spectral bands from 400 nm
to 1000 nm, with a spectral resolution close to 1.25 nm. The dataset is divided
into 162 images for training and 39 images for testing.

Table 1: Quantitative comparison on the FANVID dataset. FANVID NIR1/NIR2, re-
spectively, indicate using the 700-800nm band NIR1 or 820-1100nm band NIR2 images
as input. All the methods have been retrained on both the NIR and RGB domains of
our FANVID dataset, ensuring consistency in inputs and uniformity in settings.

Method FANVID NIR1 FANVID NIR2
PSNR ↑ SSIM↑ Delta-E↓ FID↓ PSNR ↑ SSIM↑ Delta-E↓ FID↓

Retinexformer [3] 24.61 0.86 6.55 39.72 22.46 0.79 8.64 51.01
CT2 [42] 17.41 0.68 20.82 52.75 14.80 0.51 29.45 61.43

FastCUT [35] 18.65 0.71 15.94 44.29 16.74 0.63 20.03 58.96
pix2pix [18] 20.10 0.70 12.42 54.34 18.00 0.60 15.90 66.01
CycleGAN [52] 18.63 0.71 16.33 45.72 16.35 0.61 21.58 52.02

NIRcolor [6] 15.71 0.56 27.38 47.70 14.19 0.46 32.39 60.60
TLM [30] 20.65 0.75 11.23 49.79 18.76 0.66 14.47 63.25
Ours 25.57 0.87 5.78 37.15 23.37 0.80 7.61 48.98

Evaluation Metrics. To assess the performance of our NIR2VIS translation
method, we utilize four established metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), Fréchet Inception Distance (FID), and Delta-
E. Each of these metrics provides a distinct perspective on the quality and accu-
racy of the image translation. Furthermore, to assess the quality of the NIR2VIS,
we annotate 40 images in the FANVID test set and evaluate the translation qual-
ity by calculating the recognition rates of people, cars, bicycles, and motorcycles.
Compared Methods. To evaluate the effectiveness of our approach, we con-
duct three groups of comparative experiments shown in Table 1 and Table 2.
All methods are retrained on the NIR and VIS domains of the corresponding
datasets. The first group investigates the latest transformer-based image restora-
tion methods, including Retinexformer [3] for low-light enhancement work and
CT2 [42] for grayscale image colorization tasks. The second category investigates
several classic image-to-image translation algorithms, including pix2pix [18], Cy-
cleGAN [52], and FastCUT [35]. Lastly, we compare our proposed method with
the recent NIR2VIS methodologies, specifically NIRcolor [6] and TLM [30].
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Table 2: Quantitative comparison on the EPFL [2] and ICVL [1] dataset. All the
methods have been retrained on both the NIR and RGB domains of the EPFL/ICVL
dataset, ensuring consistency in inputs and uniformity in settings.

Method EPFL [2] ICVL [1]
PSNR ↑ SSIM↑ Delta-E↓ FID↓ PSNR ↑ SSIM↑ Delta-E↓ FID↓

Retinexformer [3] 17.93 0.64 14.89 130.67 27.12 0.89 7.78 88.31
CT2 [42] 12.68 0.29 27.03 116.73 17.96 0.70 20.91 134.53

FastCUT [35] 10.30 0.10 33.77 255.39 18.98 0.65 18.70 169.97
pix2pix [18] 16.90 0.55 16.17 121.02 24.84 0.81 9.70 124.05
CycleGAN [52] 15.13 0.55 21.87 119.64 19.58 0.63 18.25 169.91

NIRcolor [6] 13.99 0.53 29.37 150.60 16.36 0.69 25.52 142.85
TLM [30] 15.63 0.49 19.08 193.17 24.53 0.82 9.61 130.51
Ours 18.41 0.65 13.85 113.90 27.47 0.90 7.43 82.95

5.2 Main Results

The quantitative results in Tables 1 and 2 demonstrate the superior performance
of our approach across various datasets: FANVID, ICVL, and EPFL. The analy-
sis indicates that the image quality restored using the NIR1 band is significantly
better than that achieved with the NIR2 band. This disparity is attributed to
two primary factors. Firstly, the NIR1 band is spectrally closer to the visible
light spectrum, making its properties more similar to visible light compared to
the NIR2 band. Secondly, the NIR2 band typically has fewer associated natural
light sources, resulting in inherently lower intensity relative to the NIR1 band.

Our methodology not only secures higher PSNR and SSIM values but also
exhibits lower FID scores compared to existing methods, underscoring its effec-
tiveness in the detailed recovery of VIS images from NIR sources. Additionally,
the reduction in Delta-E values suggests enhanced color accuracy and vibrancy
of our result images. This advancement is primarily due to our novel strategy of
isolating the reflected light component from ambient brightness, combined with
applying object segmentation priors, which facilitates a more refined learning of
reflectance relationships from the near-infrared to the visible spectrum.

To complement our quantitative results, Figures 5 and 6 provide qualita-
tive comparisons from the FANVID, ICVL, and EPFL datasets. These visual
assessments reveal that conventional methods often produce images marred by
artifacts, blur, and desaturation. In contrast, our approach consistently yields
images that are clearer, more detailed, and exhibit richer, more accurate colors.

To evaluate the efficacy of our translation methodology, we annotate 40 im-
ages from the FANVID test set and assess the translation quality by determin-
ing the recognition rates of people and vehicles. Specifically, our assessment of
conversion performance utilized the YOLOv8n model, pre-trained on the COCO
dataset. As indicated in Table 3, our method exhibits superior detection accuracy
compared to existing methods. This result demonstrates that our object-aware
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NIR1 pix2pix [18] CycleGAN
[52]

Retinex-
former [3]

NIRcolor [6] TLM [30] Ours Ground
Truth

NIR2 pix2pix [18] CycleGAN
[52]

Retinex-
former [3]

NIRcolor [6] TLM [30] Ours Ground
Truth

Fig. 5: Visual quality comparison results on our dataset. The first two rows display
conversion results using NIR1 band images as input, while the last two rows present
results using NIR2 band images as input. Please zoom in for better visualization.

approach significantly enhances the accuracy of object contour detection, pro-
viding substantial benefits for subsequent computer vision tasks. Additionally,
we evaluated the visible light translation effect using mainstream segmentation
methods, as depicted in Figure 7. When the NIR image is utilized as the input,
grass areas are erroneously classified as snow. However, the visible light images
converted through our method are classified accurately.

Quantitative and qualitative analyses prove our object-aware method’s ef-
ficacy for the NIR2VIS translation problem. Our method starts from the per-
spective of physical imaging and decouples the visible light image into object-
independent light source components and object-specific reflection components.
By introducing segmentation results as object priors, the corresponding visi-
ble light image is effectively restored. Our method not only surpasses existing
performance techniques but also produces visually appealing results.

5.3 Ablation Study

In this section, we conduct ablation studies to assess the efficacy of our method.
Specifically, we omit the decomposition process that enables direct learning from
NIR to VIS mapping and exclude the object prior to determine their respective
impacts. The results of these ablation experiments are presented in Table 4.
Impact of Image DecomposeNet. To ascertain the effectiveness of the im-
age decomposeNet in our framework, we conducted an experiment where the
decomposition process is omitted, thereby forcing the model to learn a direct
NIR to VIS mapping (denoted as w/o Decom in Table 4). The elimination of
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NIR1 pix2pix [18] CycleGAN
[52]

Retinex-
former [3]

NIRcolor [6] TLM [30] Ours Ground
Truth

NIR2 pix2pix [18] CycleGAN
[52]

Retinex-
former [3]

NIRcolor [6] TLM [30] Ours Ground
Truth

Fig. 6: Visual quality comparison results on the EPFL [2] and ICVL [1] dataset. The
first and second rows display the results on EPFL, while the third and fourth rows
present the conversion results on ICVL. Please zoom in for better visualization.

Table 3: Detection results on FANVID dataset.

Method Person Car Bicycle Motorcycle

Retinexformer [3] 0.825 0.855 0.733 0.649
CT2 [42] 0.862 0.903 0.695 0.762
pix2pix [18] 0.706 0.828 0.554 0.575
CycleGAN [52] 0.843 0.915 0.590 0.746
TLM [30] 0.834 0.906 0.492 0.727
Ours 0.878 0.949 0.754 0.813

NIR Ours

Fig. 7: Segmenta-
tion results.

DecomposeNet resulted in a reduction of PSNR by 1.24 and 1.16 on the FANVID
NIR1 and NIR2 input, respectively. Analogous tendencies were discerned within
the EPFL and ICVL datasets. This decline is mirrored across other evaluation
metrics as well, underscoring the decomposeNet’s vital role in enhancing the
NIR2VIS translation accuracy. Typically, our method segregates the luminance
and reflection components, enriching the model’s ability to adapt and learn the
nuanced relationships between NIR reflections and VIS counterparts. The ab-
sence of this decomposition compromises the model’s efficacy, resulting in less
detailed and vibrant image translations.
Influence of Object Prior Integration. Moreover, we explored the signifi-
cance of integrating object priors into our framework. For this purpose, we re-
placed the object prior utilization with a self-attention mechanism in computing
the decomposed reflection component (denoted as w/o Prior in Table 4). The re-
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Table 4: Ablation Study of DecomposeNet and object prior.

Dataset Method PSNR ↑ SSIM↑ Delta-E↓ FID↓

FANVID NIR1
w/o Decom 24.33 0.85 6.78 44.54
w/o Prior 24.71 0.85 6.40 43.03
Ours 25.57 0.87 5.78 37.15

FANVID NIR2
w/o Decom 22.21 0.78 8.92 56.41
w/o Prior 22.54 0.79 8.49 56.36
Ours 23.37 0.80 7.61 48.98

EPFL [2]
w/o Decom 17.70 0.64 14.95 118.48
w/o Prior 17.92 0.49 14.57 261.48
Ours 18.41 0.65 13.85 113.90

IVCL [1]
w/o Decom 26.83 0.89 8.19 85.22
w/o Prior 26.65 0.82 8.08 166.12
Ours 27.47 0.90 7.43 82.95

moval of object priors led to a notable decrease in PSNR values on the FANVID
NIR1 and NIR2 input, dropping by 0.86 and 0.83, respectively. A similar trend
was observed for the EPFL and ICVL datasets. This decline extended across all
employed metrics, emphasizing the object priors’ role in enhancing translation
accuracy. Object priors equip the network with contextual cues, enabling more
precise differentiation and processing of distinct image regions. Consequently,
this facilitates more accurate learning of the reflective properties across various
objects and scenes, manifesting in improved NIR to VIS image translations.

6 Conclusion

In this paper, we introduce an object-aware framework designed to enhance the
NIR-to-visible image translation process. Specifically, by recognizing the dis-
parities between NIR and visible imaging under diverse lighting conditions, we
decompose the visible light image reconstruction into two distinct components:
object-independent luminance and object-specific reflection elements. This sep-
aration allows the framework to effectively discern the differential reflectance
properties of objects across NIR and visible light spectra. Furthermore, we in-
corporate prior knowledge from a state-of-the-art segmentation model, which im-
proves the network’s capability to delineate and interpret the reflective dynamics
of various objects between the NIR and visible ranges. To facilitate this frame-
work, we collect a well-aligned large-scale NIR-VIS dataset, the Fully Aligned
NIR-VIS Image Dataset (FANVID). Quantitative and qualitative experiments
validate the effectiveness of our approach, demonstrate its superiority over ex-
isting methods, and produce more visually appealing results.
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