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Abstract. As deep neural networks evolve from convolutional neural
networks (ConvNets) to advanced vision transformers (ViTs), there is an
increased need to eliminate redundant data for faster processing without
compromising accuracy. Previous methods are often architecture-specific
or necessitate re-training, restricting their applicability with frequent
model updates. To solve this, we first introduce a novel property of
lightweight ConvNets: their ability to identify key discriminative patch
regions in images, irrespective of model’s final accuracy or size. We
demonstrate that fully-connected layers are the primary bottleneck for
ConvNets performance, and their suppression with simple weight recali-
bration markedly enhances discriminative patch localization performance.
Using this insight, we introduce PaPr, a method for substantially pruning
redundant patches with minimal accuracy loss using lightweight ConvNets
across a variety of deep learning architectures, including ViTs, ConvNets,
and hybrid transformers, without any re-training. Moreover, the simple
early-stage one-step patch pruning with PaPr enhances existing patch
reduction methods. Through extensive testing on diverse architectures,
PaPr achieves significantly higher accuracy over state-of-the-art patch
reduction methods with similar FLOP count reduction. More specifically,
PaPr reduces about 70% of redundant patches in videos with less than
0.8% drop in accuracy, and up to 3.7× FLOPs reduction, which is a
15% more reduction with 2.5% higher accuracy. Code is available at
https://github.com/tanvir-utexas/PaPr.

1 Introduction

Deep neural networks have grown from simple convolutional neural networks
(ConvNets) to complex transformer models, aiming for better accuracy with more
computation [10,18]. Vision transformers (ViTs) excel by focusing on important
parts of images with long-range attention and large-scale pre-training [17,39]. This
success, however, comes at the cost of increased computational cost. Operating
these large networks efficiently for downstream applications is crucial. Most visual
tasks demand precisely pinpointing key image regions against complex back-
grounds. Higher image resolution improves accuracy by capturing more details
but also adds unnecessary background processing, burdening large models [44].
This highlights the need to cut down on redundant data in high-resolution images
to maintain both speed and performance with advanced techniques [2, 34].

https://github.com/tanvir-utexas/PaPr
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Fig. 1: (a) Existing patch pruning methods gradually reduce patches over the model.
This requires additional training of mask generators in intermediate layers. (b) Proposed
PaPr directly prunes redundant patches early in the network by leveraging pretrained
lightweight ConvNets and directly speeds-up off-the-shelf models without re-training.

Identifying key image regions demands a comprehensive understanding of
the image and model operations. Incorrect key region estimation can impair pre-
training performance by eliminating crucial areas. Traditional approaches [2,25,28,
34,56] for pruning redundant patch regions are hindered by three main limitations:
(1) They often necessitate complex training of extra modules, which becomes
increasingly difficult as baseline models evolve with more data, enhanced training
methods, and deeper structures [25,41,56]. Re-training these modules for each
model update is impractical. (2) Without a complete image understanding, these
methods incrementally prune patches across the network, leading to unnecessary
computations in early layers, which is particularly problematic for deeper models.
(3) Many rely on specific architectural features for patch reduction, such as
class tokens or attention maps, limiting their use to a narrow set of network
designs [12, 28]. Hence, there is a pressing need for a patch pruning solution that
is adaptable to various modern architectures without additional training, can
eliminate redundant patches in a single-step, thereby making it suitable for a
broad spectrum of networks while streamlining each model update (See Fig. 1).

Recent work on patch reduction [2, 23, 55] focuses mostly on transformers
rather than ConvNets due to their impressive performance on various tasks,
their aforementioned limitations notwithstanding. While ConvNets achieve lower
ImageNet-1k top-1 accuracy than large ViTs (68.7% in MobileOne-S0 [49] vs.
88.7% in ViT-Huge [44]), they exhibit a remarkable ability to efficiently process
the key image regions with hierarchical inductive bias. Our empirical investigation
reveals that, as we broaden the evaluation metric (increasing k in top-k evalua-
tions, see Fig. 4), the benefits of deeper models diminish, especially with a large
number of image classes (e.g., 1000 in ImageNet). This suggests that shallower
models excel at identifying discriminative areas as their bigger counterparts,
rendering them ideal for patch pruning.

Leveraging this insight, we propose PaPr, a novel Patch Pruning method that
employs pretrained lightweight ConvNets for efficient, one-step patch pruning in
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a wide variety of deep learning models, maintaining accuracy while significantly
cutting computational demands. Our findings show lightweight ConvNets have
remarkable ability in identifying discriminative image regions but struggle in
fine-grained prediction. To address this, PaPr relies on Patch Significance Maps
(PSMs), which are generated using only the convolutional layers of ConvNets
through uniform class weight recalibration in FC layers. Astonishingly, PSMs
consistently highlight critical image regions across ConvNets of varying sizes and
accuracies (Fig. 6), thereby amplifying the efficacy of ultra lightweight ConvNets.

ConvNets inherently preserve the positional property of patches for their
inductive bias, while ViTs use cross-attention to blend patch features, leading to
variability in patch relevance across models. Unlike previous methods that prune
redundant patches gradually over multiple steps across intermediate layers of
ViTs [2,23,41], our approach, PaPr, simplifies this process by eliminating non-
essential patches at once, immediately after extraction (see Fig. 3), by leveraging
lightweight ConvNets to assess patch significance. This direct, one-step pruning
approach significantly cuts computational demands and is also compatible with
other patch reduction techniques (see Fig. 5). PaPr’s ability to separate crucial
patch identification from fine-grained class prediction enhances a wide range
of pre-trained models without further training, ensuring high accuracy with
notable speed ups. By bypassing the complex training required for conventional
patch selectors, PaPr capitalizes on the comprehensive capabilities of minimalist
ConvNets for efficient patch pruning in larger models.

Our experiments demonstrate PaPr’s effectiveness across various architectures
and pre-training methods, achieving significant reduction in redundant patches for
ViTs, large-scale ConvNets (e.g., ConvNext [32]), and hybrid transformers (e.g.,
Swin [31]), outperforming state-of-the-art (SOTA) patch reduction methods by a
large margin. Notably, PaPr can be easily integrated with most existing patch
reduction methods to reduce patches early in operation. More specifically, PaPr
boosts ToMe [2] accuracy by 4.5% for a computational budget similar to ViT-B.
Moreover, PaPr can accelerate training akin to token merging techniques, unlike
most patch pruning methods that fail to boost training speed [34,41,56]. PaPr
shows robust patch localization performance with ultra lightweight ConvNets
(<0.3% accuracy loss) for 42× reduction in proposal FLOPs, thereby enabling
its use for larger off-the-shelf models. Remarkably, in video recognition, PaPr
cuts down around 70% of redundant patches, resulting in up to 3.7× FLOPs
reduction with minimal impact on accuracy (≈ 0.8%).

We summarize our main contributions as follows:

– We propose PaPr, a novel background patch pruning method that can
seamlessly operate with ViTs, ConvNets, and hybrid transformers, without
further training while leveraging batch processing.

– We propose a simple weight recalibration method in ConvNets to precisely
and efficiently locate discriminative patches, irrespective of model size.

– We facilitate the use of ultra-lightweight ConvNets to speed-up large models,
such as ViTs, with a seamless framework and negligible accuracy loss.
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– We present extensive qualitative and quantitative results across numerous
model architectures in both image and video applications.

2 Related Work

2.1 From ConvNets to Vision Transformers

ConvNets have been pivotal in computer vision, offering computational efficiency
through kernel reuse and localization [8, 18–20,29,42,46, 49,59]. Yet, they strug-
gle in capturing long-range dependencies, a gap bridged by ViT [10]. Inspired
by the success of transformers from natural language processing (NLP), ViTs
excel in long-range feature modeling through cross-attention, outperforming
ConvNets albeit with higher computational demands and extensive training
data requirements [7, 48, 51, 57]. Efforts to alleviate these issues include self-
supervised [17,47,52,60] and weakly-supervised [39,44] pre-training, although
challenges in computational complexity and optimization remain. Hybrid archi-
tectures, merging ConvNets’ inductive biases with ViTs’ cross-attention, offer
a balanced solution by reducing computational load while maintaining perfor-
mance [6, 9, 11, 15, 27, 30, 31, 33, 54]. Recent ConvNets advancements [32, 53], with
improved training and large-scale data, now rival ViTs, questioning whether
architectural innovations or enhanced training primarily drive performance gains.

Addressing the computational demands of these models, we focus on enhanc-
ing operational efficiency by pruning redundant patches without architectural
modifications or re-training, maintaining performance while streamlining updates.

2.2 Class Activation Mapping for Explainable Deep Learning

Class Activation Mapping (CAM) techniques provide explainable visual reasoning
for neural network predictions by highlighting activation regions1 crucial for
decisions [1, 21, 38, 43, 61]. While ConvNets utilize convolutional operations to
preserve spatial information, making them apt for such visualizations, ViTs link
attention weights to class tokens for prediction [4, 36]. However, CAM’s reliance
on accurate class predictions for effective feature localization is a significant
drawback, as ConvNets’ lower accuracy when compared to ViTs may lead to
incorrect object localization. Despite ViTs’ superior fine-grained classification
capabilities, it is unclear if they prioritize the same discriminative regions as
ConvNets. Additionally, CAM approaches often require gradient tracking [5, 43]
or complex feature map decomposition [35], complicating batch processing and
necessitating extra optimization steps.

Our work diverges from traditional CAM by aiming to consistently identify
discriminative patches across different architectures, focusing computational
resources on the most relevant areas without being constrained by class prediction
accuracy. This approach enables more efficient processing by allowing larger
models to concentrate on the most significant regions, identified by lighter
networks, thus significantly reducing computational demands.
1 “Patch” and “region” have been used interchangeably based on the context.
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Fig. 2: (a) Baseline ConvNet gradually reduces the feature map to produce F =
{fk(x, y)}Kk=1, followed by global average pooling and fully connected (FC) layers to
predict yp. (b) In PaPr, we operate on F by suppressing the FC layer. Initially, we
extract pixel mean over K channels to produce discriminative region proposal R. Later,
simple upsampling operation generates the patch significance map (PSM) P of target
dimension. Finally, patch mask M for top z% patches is obtained from P.

2.3 Patch Reduction for Faster Inference

Several approaches have sought to enhance computational efficiency by reducing
redundant patches in neural networks, with early strategies involving additional
adapters or controllers to identify and prune less significant patches [24,26,41,58].
These methods, however, necessitate separate adapter training for each network
and are slow to adapt due to the need to learn from the dynamics of other layers.
In the context of ViTs, efforts have leveraged architectural features such as class
tokens and attention maps for patch relevance, yet these solutions often fail to
generalize across various architectures like hybrid transformers [31] or larger
ConvNets [32,53], thus limiting their applicability [12,25,34,56]. Furthermore,
while some have explored patch merging in ViTs and a combination of merging
and pruning [2,3,23], these approaches lack a holistic image understanding by not
considering the entire image context in their optimizations, leading to incremental
and sub-optimal patch reduction.

Our work diverges from these traditional patch reduction methods by propos-
ing a single-step, early-network patch removal strategy, that seamlessly integrates
with any architecture without re-training.

3 Methodology

Our methodology introduces a novel approach to discriminative patch pruning
across various deep learning architectures, leveraging the innate capabilities of
lightweight ConvNets. By generating a PSM, we efficiently identify and prune
non-essential patches in a single step, enhancing computational efficiency with-
out compromising accuracy. This process is universally applicable, seamlessly
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integrating with ViTs, ConvNets, and hybrid models, thereby addressing the
limitations of previous methods with a scalable, architecture-agnostic solution.

3.1 Extracting Discriminative Regions with ConvNets

Despite achieving relatively lower top-1 accuracy on the ImageNet benchmark,
lightweight ConvNets exhibit a competitive edge in top-10 accuracy when com-
pared to their larger ViT counterparts (Fig. 4). This phenomenon underscores
ConvNets’ capability to effectively localize regions of interest through their
convolutional layers, despite potential limitations in fine-grained classification
attributed to the fully-connected (FC) layer. Our methodology leverages this in-
sight by proposing discriminative patch regions while minimizing the influence of
the FC layer (see Fig. 2), thereby enhancing the large off-the-shelf model’s focus
on most salient image regions proposed by lightweight ConvNets (see Fig. 3).

Given an input image X ∈ RH×W×3, with height H and width W , we denote
by fk(x, y) the feature map generated by the kth kernel in the last convolutional
layer of typical ConvNets, ∀k ∈ {1, 2, . . . ,K}. Here, each pixel (x, y) in fk(x, y)
corresponds to a patch window of size (H/d × W/d) in the input image X,
reflecting a spatial down-scaling factor of d through the convolutional layer
stack. Typically, global average pooling (GAP) is applied to each feature map
fk(x, y), yielding F = {Fk}Kk=1 ∈ RK , where Fk =

∑
x,y

fk(x, y) ∈ R. Finally, a

fully connected (FC) layer W ∈ RC×K with elements wk
c processes F to generate

class predictions yp ∈ RC across C classes as follows:

yp = WF =
∑
c

∑
k

wk
c

∑
x,y

fk(x, y) =
∑
x,y

R(x, y), (1)

where R ∈ Rh×w encapsulates the weighted mean class activation mapping of
the convolutional feature map.

We note that the reliance on class activation weights wk
c is influenced by

the model’s final accuracy, thereby posing a challenge for smaller models. Our
objective transcends mere accuracy enhancement, aiming to precisely locate
discriminative patches rich in information irrespective of the model size or its final
classification performance. Recognizing that discriminative region localization
is pivotal for detailed classification, and acknowledging the competitive top-10
accuracy of lighter ConvNets, we posit that an extremely lightweight ConvNet
suffices for initial discriminative region proposal.

To counteract the influence of the weak linear FC layer W in convolutional
region proposal, we propose an adjustment where wk

c = 1/KC, ∀k ∈ {1, . . . ,K},
facilitating the generation of a discriminative region proposal R ∈ Rh×w, where

R(x, y) =
∑
c

∑
k

1

KC
fk(x, y) =

1

K

∑
k

fk(x, y). (2)

This strategy allows us to leverage ConvNets for what they excel at: pin-
pointing critical image areas. By reducing reliance on class activation weights, we
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efficiently generate discriminative region proposals directly from convolutional
outputs. This approach not only enhances the interpretability and efficiency of
the localization process but also enables the application of more complex models
for subsequent detailed analysis, optimizing the use of computational resources.

3.2 Patch Significance Map

With the discriminative region proposal R ∈ Rh×w, where each pixel (x, y)
quantifies the significance of corresponding patches in the original image, we
proceed to establish a precise mapping to our intended feature map (Fig. 2). This
mapping ensures the preservation of spatial relationships within the feature map.

Consider a target feature map F ∈ Rh′×w′×K , with each pixel (x′, y′) encap-
sulating a feature vector from a specific image patch. To align R with F , we
employ an upsampling operation U : Rh×w → Rh′×w′

, transforming R into the
Patch Significance Map (PSM) P ∈ Rh′×w′

. Consequently, each element of P di-
rectly corresponds to the patch significance within F for the given discriminative
task. The next step involves utilizing P to discern and prune non-essential patch
features from F . By sorting the values within P , we acquire a pruning mask M:

M = reshape(argsort(flatten(P))),M ∈ Rh′×w′
, (3)

enabling batch-wise patch pruning. Specifically, we identify the indices corre-
sponding to the top-z% patches as per M, facilitating the retention of only
the most salient patches in F , thereby enhancing computational efficiency in
subsequent processing stages.

As part of our discussion on various architectures, we detail the application of
this patch reduction technique. For enhanced visualization of the PSM, we apply
min-max normalization to P, adjusting for outliers and scaling the significance
scores to visually depict the importance of different patches.

3.3 Integrating PSM with Vision Transformers

The ViT processes an input image X ∈ RH×W×3 by extracting N -dimensional
patch token features Xp ∈ RN×d from a (k × k) patch window using strided
convolutions, where N = HW/k2 (Fig. 3). Positional embeddings are then added
to these patch tokens Xp to retain spatial information, followed by the application
of successive cross-attention mechanisms. For classification tasks, the model either
introduces a class token tcls ∈ Rd or utilizes the mean of the output patch tokens.

The encoder employs multi-headed cross-attention (MHA) on the patch token
embeddings Xp, with each MHA block consisting of multiple linear layers and a
cross-attention layer. The computational complexity of these operations suggests
that reducing the number of tokens N can significantly decrease computational
demands. A key strength of the ViT architecture is its adaptability to varying
numbers of tokens N , though at a higher computational cost. Prior work [2,41,56]
has primarily aimed at reducing patch tokens within intermediate encoder layers,
often requiring additional training due to the variability in token representations
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Fig. 3: (a) In vanilla ViT, PaPr operates right after the patch extractor module. Hence,
all transformer blocks can operate only with the most discriminative patches. (b)
Hierarchical model blocks comprise of window based kernel operator (e.g., Convk ×
k/local attention), followed by pixel operator (e.g., linear layer, Conv1x1). Pixel operator
consumes more than 60% of total computation. PaPr is used to split the foreground
patches to be operated with pixel operator. Background patches are zero-ed out, and
finally, re-assembled with foreground output patches.

across different architectures. These methods typically achieve only gradual token
reduction, limited by the distributed nature of information across tokens.

In contrast, our approach seeks to eliminate redundant tokens early in the
processing pipeline, immediately following initial patch extraction. This strategy
offers multiple advantages: (1) Leveraging the convolutional nature of the initial
patch extraction allows for a direct mapping between our PSM P and the patch
tokens Xp, obviating the need for additional mechanisms to determine token
redundancy. (2) It facilitates generalizability across transformer models without
the need for retraining, potentially accelerating training by concentrating on
essential patches. (3) It permits seamless integration of existing intermediate
layer token reduction techniques following our initial patch pruning process.

3.4 Integrating PSM with Hierarchical Models

ConvNets and hybrid transformers, such as Swin [31], primarily operate with
window-based local operations in contrast to full-attention based operation in
vanilla transformers. Such window-based local processing makes patch pruning
particularly complicated, in contrast to vanilla transformers. However, these
models maintain the location property of representative image patches all through
the network, which leaves the door open to prune redundant patches. Nevertheless,
the window-based operation is particularly difficult to prune.

In general, each block of hierarchical layers consists of window-based spatial
kernel/attention operators, followed by pixel operators (usually, modeled with
1×1 convolutional layers or linear layers). In contrast to windowed convolutions or
cross-attention, these pixel operators are particularly suitable for patch pruning.
Interestingly, in the SOTA ConvNets and hybrid transformers, more than 60% of
total computations are performed with such pixel operators (63.3% in Swin [31],
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Fig. 4: ImageNet-1k evaluation for vary-
ing top-k accuracy targets. The accuracy
gain with bigger model largely shrinks, as
k increases. This suggests shallower Con-
vNets have understanding of object loca-
tions and visual property, despite their
lower top-1 accuracy.

Fig. 5: Integrating PaPr with ToMe [2].
We use the Augreg pretrained ViT-B-16 ar-
chitecture as the baseline. We sweep token
merging ratio (r) for different pruning ratio
(z). Integration of PaPr achieves Pareto-
optimal performance, thus, PaPr can en-
hance existing patch reduction methods.

96.2% in ConvNext [32]). Based on the patch significance map from PaPr, we
only use the pixel operator on most significant patches, and simply perform
zero-padding on the remaining patch regions. The zero padding operations are
performed to mostly recover the feature map shape to be used with subsequent
spatial operators. Hence, the speed-up is mostly achieved by eliminating redundant
computations in pixel operators (See Fig. 3).

Let’s assume that the feature map before applying pixel operators is given by
Aw. Based on the PSM P, we initially identify the foreground and background
pixel features as Af , and Ab, respectively. Later, the pixel operator layers are
applied on foreground pixels Af , and a zero-padded representation is used for
the background pixels Ab. Finally, the output representation Ac is reassembled
with modulated foreground pixels Af and zero-padded background pixels Az,
given by Eq. (4):

Af , Ab = Split(Aw,P),

Az = Zeros(Ab), Af = Linear(Af ),

Ac = Reassemble(Af , Az).

(4)

4 Image Experiments

4.1 Experimental Setup

We experiment on image classification task on the ImageNet-1k benchmark
dataset, following prior work [2, 12, 23, 34, 55]. We use the MobileOne-s0 [49]
model as the proposal model for all architectures, unless otherwise specified. We
report training-free results of PaPr, unless otherwise specified. For the perfor-
mance metric, we report top-1 accuracy, GFLOPs, and the throughput (img/s).
Throughput is measured on a single RTX-A5000 GPU with 24GB VRAM. We
reproduced all baseline models under the same setup for a fair comparison.
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Table 1: Performance comparison on Au-
gReg models. PaPr achieves the best perfor-
mance, while operating with token merging.
z denotes patch keeping ratio in PaPr.

Models Methods Acc1 GFLOPs Img/s

Baseline 81.39 4.61 975
ToMe [2] 76.96 2.29 1978

TokenFusion [23] 77.12 2.29 1982
GTP-ViT [55] 71.03 2.31 1970
PaPr (z=0.45) 76.21 2.29 1988

PaPr (z=0.55) (+ToMe) 77.76 2.19 2073

ViT-S-16

PaPr (z=0.5) (+ToMe) 76.27 1.97 2315

Baseline 84.59 17.59 307
ToMe [2] 80.38 8.78 615

TokenFusion [23] 80.7 8.78 618
GTP-ViT [55] 80.98 8.78 610
PaPr (z=0.5) 82.11 8.98 605

PaPr (z=0.55) (+ToMe) 82.34 8.21 660

ViT-B-16

PaPr (z=0.5) (+ToMe) 80.88 6.82 785

Baseline 85.82 61.61 91
ToMe [2] 83.5 30.99 180

TokenFusion [23] 83.91 30.99 182
GTP-ViT [55] 81.56 30.99 181
PaPr (z=0.5) 83.87 30.83 183

PaPr (z=0.55) (+ToMe) 83.99 26.33 210

ViT-L-16

PaPr (z=0.55) (+ToMe) 83.5 25.12 224

Table 2: Performance comparison on
MAE models. Since MAE uses masked
pretraining, PaPr is particularly suitable
for MAE inference. PaPr achieves signif-
icantly higher performance than others.
z denotes patch keeping ratio in PaPr.

Models Methods Acc1 GFLOPs Img/s

Baseline 83.74 17.59 307
ToMe [2] 78.82 8.78 615

TokenFusion [23] 79.23 8.78 618
GTP-ViT [55] 79.14 8.78 610
PaPr (z=0.5) 82.4 8.98 605

ViT-B-16

PaPr (z=0.4) 81.4 7.72 700

Baseline 85.95 61.61 91
ToMe [2] 84.24 30.99 180

TokenFusion [23] 84.33 30.99 182
GTP-ViT [55] 84.15 30.99 181
PaPr (z=0.5) 85.06 30.83 183

ViT-L-16

PaPr (z=0.4) 84.76 27.72 201

Baseline 86.89 167.4 36
ToMe [2] 85.48 82.53 72

TokenFusion [23] 85.71 82.53 73
GTP-ViT [55] 85.54 82.53 71
PaPr (z=0.5) 86.4 83.04 71

ViT-H-16

PaPr (z=0.4) 86.13 74.59 81

4.2 Performance on Various Vision Transformers

We study performance of PaPr in diverse ViT architectures, along with various
pre-training methods. We also present training results, along with training-free
results to compare with existing methods.

Training-free method comparison. We consider two different pre-training
methods for comparative analysis on various ViT architectures. We use supervised
pretrained Augreg models [45], and self-supervised pre-trained masked autoen-
coder (MAE) models [17], following prior work [2]. We compare with three recent
training-free patch reduction methods, such as ToMe [2], TokenFusion [23], and
GTP-ViT [55]. Additionally, we show the performance comparison on class-token
free ViT models to highlight the architecture agnostic performance. In general,
PaPr achieves better accuracy, with lower computational costs compared to
state-of-the-art (SOTA) methods.

Augreg models: For AugReg pre-training with ViT-Base, PaPr achieves 2.14%
higher accuracy over ToMe, with comparable FLOPs as shown in Tab. 1. In
addition, by combining PaPr with ToMe, we achieve additional 22.3% FLOP
reduction, while maintaining higher accuracy. We further study the compatibility
of PaPr with existing patch reduction methods as ToMe. After the initial patch
pruning with PaPr, we integrate ToMe only at the bottom-half layers due to its
higher sensitivity in earlier layers. As shown in Fig. 5, integration of PaPr can
directly boost ToMe performance thereby achieving Pareto optimality.
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Table 3: Performance analysis on class-
token free ViT models. PaPr performance
gain is not limited to specific architectures.

Model Method Acc1 GFLOPs Img/s

Baseline 84.33 10.58 484
GTP-ViT [55] 80.5 5.73 880

ToMe [2] 80.21 5.73 890

ViT-Medium
GAP-16

256 PaPr (z=0.5) 81.8 5.5 932

Baseline 85.6 26.06 182
GTP-ViT [55] 81.95 13.59 340

ToMe [2] 82.5 13.59 344

ViT-Medium
GAP-16

384 PaPr 83.95 12.94 360

Table 4: Training performance analysis
on DeIT-s. PaPr achieves competitive per-
formance with higher training speed.

Methods Acc1 GFLOPs Im/s Batch
Proc.

Train
Speed

Baseline 79.8 4.6 960 ✓ 1x
DynamicViT [41] 79.3 2.9 1510 ✗ 1x

A-ViT [56] 78.6 2.9 - ✗ 1x
ATS [12] 79.5 2.9 1512 - 1x

SP-ViT [25] 79.3 2.6 - ✗ 1x
ToMe [2] 79.4 2.7 1575 ✓ 1.5x

TokenFusion [23] 79.5 2.7 1580 ✓ 1.5x
PaPr (z=0.55) 79.2 2.7 1585 ✓ 1.6x

Table 5: Performance comparison on Con-
vNext CNN models. PaPr can achieve com-
petitive performance without training, and
can seamlessly adapt to model updates.

Models Methods Train-Free Acc1 GFLOPs Img/s

Baseline N/A 83.84 15.38 265
DynCNN [40] ✗ 83.08 10.21 375ConvNeXt

Base-1k PaPr (z=0.65) ✓ 82.75 10.42 395

Baseline N/A 85.81 15.38 265ConvNeXt
Base-22k PaPr (z=0.65) ✓ 84.27 10.42 395

Baseline N/A 84.31 34.4 135ConvNeXt
Large-1k PaPr (z=0.65) ✓ 83.26 22.9 203

Baseline N/A 86.61 34.4 135ConvNeXt
Large-22k PaPr (z=0.65) ✓ 85.67 22.9 203

Table 6: Performance comparison on
Swin hybrid transformer models. PaPr can
adapt to much bigger models with higher
operating resolutions without training.

Models Methods Train-Free Acc1 GFLOPs Img/s

Baseline N/A 83.42 15.47 258
DynSwin [40] ✗ 83.18 12.1 327Swin

B-1k PaPr (z=0.65) ✓ 81.7 12.25 325

Baseline N/A 85.16 15.47 258Swin
B-22k PaPr (z=0.65) ✓ 82.27 12.25 325

Baseline N/A 86.25 34.53 135Swin
L-22k PaPr (z=0.65) ✓ 84.53 26.96 175

Baseline N/A 87.25 104.08 42Swin
L-22k-384 PaPr (z=0.65) ✓ 86.47 81.44 54

MAE models: MAE used self-supervised pre-training by reconstructing masked
image patches to train large ViT models [17]. Later, the model is fine-tuned with
full resolution images without masking, which cannot exploit its latent ability to
learn from fewer patches. Interestingly, PaPr introduces masked inference, which
is particularly suitable for MAE models. Hence, we observe significantly higher
accuracy with PaPr compared to other training-free methods, e.g., with ViT-B,
PaPr achieves 4.5% higher accuracy over ToMe for similar FLOPs (see Tab. 2).

Class token-free models: Several existing patch reduction methods operate with
the class token in ViTs to evaluate the patch relevance [12,28,34]. However, instead
of class tokens, global pooling of patch tokens is used in many cases [16, 37].
Results presented in Tab. 3 demonstrate the superiority of PaPr for such cases.

Training-based methods comparison. We compare training performance
of existing methods for the patch reduction on DeIT-s [48] model in Tab. 4.
Prior pruning based methods cannot speed-up the training for learning the mask
predictor [25,41,56]. However, PaPr achieves competitive performance as prior
methods, while achieving large speed-up as other token merging methods [2,23,55].
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Table 7: Sweeping ConvNet proposal
model in PaPr with z = 0.5. PaPr can
achieve similar performance irrespective
of proposal model size. Thus, PaPr can
use a much smaller and faster proposal
model to speed-up larger models.

Proposal Accuracy1(%)

Model GFLOPs ViT-B-16 ViT-L-16

ResNet-18 [18] 1.81 81.1 83.84
ResNet-50 [18] 4.09 82.33 84.09
ResNet-152 [18] 11.51 82.51 84.08

MobileOne-S0 [49] 0.27 82.24 84.06
MobileOne-S2 [49] 1.35 82.28 84.16
MobileOne-S4 [49] 2.98 82.35 84.32

Fig. 6: Proposal models locate similar
patches with PaPr for different pruning
ratio (z ) irrespective of model size.

Table 8: Training-free performance compar-
ison on Kinetics-400 video evaluation. Each
video has 16×2242 input size. PaPr achieves
significantly better performance for reduc-
ing spatio-temporal redundancy in videos.

Model Method Acc1 GFLOPs Views

XViT ATS [12] 80.0 259 1x3

TimeSformer-L ATS [12] 80.5 3510 1x3

Baseline 81.21 180 3x5
PaPr(z=0.45) 81.18 76 3x5ViT-B

MAE PaPr(z=0.35) 80.15 59 3x5

Baseline 85.26 598 3x5
ToMe [2] 84.5 281 1x10

PaPr(z=0.5) 85.12 275 3x5
ToMe [2] 82.5 184 1x10

ViT-L
MAE

PaPr(z=0.3) 84.53 160 3x5

Table 9: Proposal ConvNet sweep
in video recognition with ViT-B-MAE
model as the baseline. PaPr achieves
competitive performance with lighter
proposal models for different z values.

Proposal Keep
Ratio(z)

Acc1
(%) Views

Model GFLOPs

X3d-s [13] 1.25 0.5 81.11 3x5
X3d-m [13] 2.45 0.5 81.19 3x5

ResNet-50 [14] 41.9 0.5 79.96 3x5
ResNet-101 [14] 85.67 0.5 79.97 3x5

X3d-s [13] 1.25 0.4 80.86 3x5
X3d-m [13] 2.45 0.4 80.93 3x5

ResNet-50 [14] 41.9 0.4 78.85 3x5
ResNet-101 [14] 85.67 0.4 79.32 3x5

4.3 Performance on Various Hierarchical Models

We study the performance on two variants of hierarchical models, such as pure
convolutional models, and hybrid transformer models. We compare with training
based DynamicCNN [40], and DynamicSwin [40] methods (trained for 120 epochs),
whereas PaPr operates without training.

Analysis on convolutional models. We use the SOTA ConvNext [32] archi-
tecture for the analysis as shown in Tab. 5. The training-free operation in PaPr
makes it seamlessly usable with new model updates. We analyze ImageNet-1k
and ImageNet-22k performance of same models. For the ConvNext-Base model,
PaPr achieves 99.6% accuracy of DynamicCNN with 7.1% higher throughput. By
simply using ImageNet-22k weights, PaPr can achieve additional 2% accuracy
improvement without training, while having the same computation cost.
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Fig. 7: Robustness of PaPr compared to CAM based methods. PaPr can perform even
when the ConvNet proposal confidence (c) is very low. In contrast, existing CAM based
methods fail in such cases, despite being significantly slower while not enabling batch
processing and use of gradients in some cases.

Analysis on hybrid transformer models. We study the hierarchical Swin
transformer models for patch reduction with PaPr, as given in Tab. 6. PaPr
achieves 98% of DynamicSwin accuracy using similar FLOPs without re-training.
Nevertheless, by leveraging bigger models, larger pre-training, and higher resolu-
tion, PaPr can seamlessly adapt to achieve higher accuracy.

4.4 Robustness of PaPr across various ConvNet proposals

PaPr can operate with ultra-lightweight ConvNets for generating robust proposals.
We study different ConvNet architectures for proposal generation, as shown in
Tab. 7. Interestingly, PaPr shows small reductions of final accuracy (0.3%),
when using MobileOne-S0 based proposals compared to ResNet-152 (42× higher
FLOPs) in ViT-B. When visualizing the PSM for different pruning ratio as in
Fig. 6, we notice the similar PSMs irrespective of model size. Hence, PaPr can
utilize ultra-lightweight ConvNets to mask patches without sacrificing accuracy.

4.5 Comparison with Class Activation Mappings (CAMs)

Existing CAM methods mostly focus on explainability to highlight image regions
responsible for final prediction. However, such objectives rely on final prediction
performance, which can be much lower for light ConvNets. Moreover, for local-
ization, many of these methods use gradients, and optimization methods that
limit batch processing. Nevertheless, we study the impact of such CAM methods
( [43, 50, 61]) in PaPr framework, in challenging scenarios where the baseline
ViT-B has higher prediction confidence (c) on target class, and the proposal
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Fig. 8: Visualization of PaPr localization in videos. Video has inherent high sparsity.
PaPr effectively localizes the discriminative regions for using holistic spatio-temporal
understanding with small ConvNets. Thus, it significantly reduces the computational
burden for larger models in downstream video recognition tasks.

MobileOne-S0 has lower confidence (see Fig. 7). In most cases, the baseline CAM
method significantly lowers the final accuracy after patch pruning. In contrast,
PaPr maintains robust confidence for its precise localization. Moreover, PaPr
can enhance confidence of baseline models in several scenarios by suppressing
the redundant patches, e.g., in Sample 5, the c increased by 22% with PaPr.

5 Video Experiments

We study the training-free performance on Kinetics-400 [22] validation sets, as
shown in Tab. 8. We use SOTA ATS [12], and ToMe [2] methods for comparison.
We use PaPr on SOTA ViT-MAE [47] models with lightweight X3d-s [13] model
for proposal generation. We follow the baseline [47] 3× 5 view (3 spatial view and
5 temporal view) approach, and separate the views from model FLOP counts
similar to other works as it can be arbitrarily chosen. Since ViT-MAE removes
class tokens in fine-tuning, ATS [12] cannot be adapted to these models. For
ViT-L, PaPr achieves 3.7× FLOPs reduction of the baseline model for a negligible
0.8% accuracy drop. We also study the impact of various proposal models on
the final performance, as shown in Tab. 9. We use SlowOnly-ResNet [14] and
X3d [13] models for comparison. Increasing model size for different pruning shows
minimal impact on final performance. Finally, we visualize the patch masking
of PaPr in videos, as shown in Fig. 8. By removing the redundant details, PaPr
significantly boosts the performance of bigger models for fine-grained predictions.

6 Conclusion and Future Work

In this paper, we introduce a novel patch pruning method, namely PaPr, that can
effectively speed-up off-the-shelf pre-trained models inference without re-training.
We propose a simple modification of ConvNets, that allows extracting a precise
discriminative PSM from ultra lightweight ConvNets with unparalleled speed. In
PaPr, such PSMs are leveraged to directly reduce the redundant data regions in
a single-step to guide larger model computations on most discriminative regions
for achieving computational efficiency. Moreover, PaPr can be easily integrated
with most existing patch reduction methods due to its simple structure.
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