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Abstract. Deep-learning based gaze estimation methods suffer from
sever performance degradation in cross-domain settings. One of the pri-
mary reason is that the gaze estimation model is confounded by gaze-
irrelevant factor during estimation, such as identity and illumination. In
this paper, we propose to tackle this problem by causal intervention, an
analytical tool that alleviates the impact of confounding factors by us-
ing intervening the distribution of confounding factors. Concretely, we
propose the Feature-Separation-based Causal Intervention (FSCI) frame-
work for generalizable gaze estimation. The FSCI framework first sepa-
rates gaze features from gaze-irrelevant features. To alleviate the impact
of gaze-irrelevant factors during training, the FSCI framework further
implements causal intervention by averaging gaze-irrelevant features us-
ing the proposed Dynamic Confounder Bank strategy. Experiments show
that the proposed FSCI framework outperforms SOTA gaze estimation
methods in varies cross-domain settings, improving cross-domain accu-
racies by up to 36.2% over the baseline and 11.5% over SOTA methods,
respectively, without touching target domain data.

Keywords: Gaze estimation · Causal intervention · Domain generaliza-
tion

1 Introduction

Human gaze direction offers a wealth of information, reflecting the underly-
ing cognitive and emotional status behind human behavior in social environ-
ments [29]. Serving as a crucial clue in understanding human actions, gaze esti-
mation has widespread applications in various fields such as virtual/augmented
reality [18,30,37], human-computer interaction [15,32,33], healthcare [4,17], and
assisted driving [1, 22, 31]. In recent years, leveraging the superior performance
of Convolutional Neural Network (CNN) in extracting image features, CNN-
based gaze estimation methods demonstrate good performance in the within-
dataset tests. However, due to the domain gap in data distribution across dif-
ferent domains, performance of CNN-based methods decreases significantly in
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Fig. 1: Left: The head pose and gaze distributions in the ETH-XGaze [41] dataset,
showing the difference between the head pose/gaze distribution and their correspond-
ing conditional distributions. Right: The overall structure of the proposed Feature-
Separation-based Causal Intervention (FSCI) framework. FSCI employs causal inter-
vention to mitigate the influence of gaze-irrelevant feature on gaze estimation.

cross-domain settings. To address the issue, Unsupervised Domain Adaptation
(UDA) approaches have been proposed [16,24,34]. These approaches utilize some
samples from the target domain and employ unsupervised methods to enable the
model to learn the target domain distribution. However, the applicability of UDA
is limited, as they require knowledge about the target domain.

More recently, researchers have begun to focus on the Domain Generalization
(DG) problem. DG methods aim to enhance the generalization ability of gaze
estimation models without utilizing any target domain data. Recent works have
proposed to utilize adversarial training [7] and adversarial disturbance [39] for
generalizable training. The DG problem is both more practical and challenging,
which still requires further exploration.

To study the Domain Generalization problem, we revisit the logic behind
tasks in the field of computer vision. Today’s computer vision systems are good
at telling us “what” and “where”, yet bad at knowing “why” [35], e.g., why the
gaze direction is as it is? Causal intervention can address such questions. A
classic example is the influence of temperature (T ) on ice cream sales (x) and
the number of drowning deaths (y), creating the false impression that x and
y are directly proportional. The T confounds the causal relationship between
x and y. By intervening on x (for instance, closing all ice cream stores), the
information from x does not transfer to y, thereby eliminating the spurious
correlation between x and y.

Backing to the above question: “why the gaze direction is as it is?”, we try to
provide an answer using causal intervention under the DG setting. We dive deep
into the cause and effect of the domain gap. Since it is impossible for human-
collected datasets to cover all scenarios, there will inevitably be biases in the
distribution of gaze-related factors (e.g ., head pose and gaze) and gaze-irrelevant
factors (e.g ., illumination and identity). As a result, the gaze estimation model
captures spurious correlations between gaze-irrelevant factors and gaze during
source domain training. However, such spurious correlation does not stand in
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target domains, since the distribution bias is domain-specific. Thus, the spuri-
ous correlation captured by gaze estimation model is the cause of performance
degradation in cross-dataset tests.

To address above problem, we propose the Feature-Separation-based Causal
Intervention gaze estimation framework (FSCI framework), a Domain General-
ization method that improves the generalization ability of gaze estimation models
without touching target domain data. The target of the FSCI framework is to
learn the true Causes of the gaze, i.e. estimating gaze from the eye appearance
for better generalization. The proposed FSCI framework employs Causal Inter-
vention to prevent the gaze estimation model from being Confounded by the
spurious correlations caused by distribution bias in source domain. Specifically,
we first establish the causal graph of key elements in gaze estimation task, in-
cluding the input image Z, gaze-irrelevant feature I, head pose feature H, gaze
feature G and gaze direction g. According to the causal graph, we propose the
Feature Separation Module (FSM) to separate gaze feature, head pose feature
and gaze-irrelevant features. Then, we propose the Causal Intervention Mod-
ule (CIM) to alleviate the impact of gaze-irrelevant factors in gaze estimation.
By calculating the moving average of the confounder factor I, the proposed
CIM employs the do-calculus P (g|do(I)) to alleviate the spurious correlation
between the gaze-irrelevant features and gaze during source domain training.

Experiments show that the proposed FSCI framework improves the cross-
domain gaze estimation performance significantly, outperfoming State-of-the-Art
(SOTA) gaze Domain Generalization methods. Further analysis demonstrates
that the proposed FSCI framework alleviates the impact of gaze-irrelevant fea-
tures from two aspects: (1) the impact of spurious correlation between gaze-
irrelevant factors and gaze; (2) the impact of spurious correlation between head
pose distribution and gaze distribution generated by the common cause of gaze-
irrelevant factors (explained in Sec. 3). The contributions are as follows:

– We propose the Feature-Separation-based Causal Intervention gaze estima-
tion framework (FSCI framework), a gaze domain generalization method
that utilizes causal intervention to alleviate the impact of gaze-irrelevant
factors during gaze estimation for better generalization ability.

– We introduce Dynamic Confounder Bank, a continuous and dynamic imple-
mentation of the do-calculus in gaze estimation task. The Dynamic Con-
founder Bank could potentially benefit other regression tasks.

– Experimental results show that the FSCI framework achieves consistent im-
provement over four different cross-domain tasks with two different backbone
models, ranging from 27.6% to 36.2% , and achieving up to an 11.5% im-
provement over SOTA methods.. It improves the generalization ability of
gaze estimation models significantly without using target domain data.

2 Related work

The appearance-based gaze estimation method overcomes the limitations of
early gaze estimation techniques, which required the construction of 3D eye-
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ball models. These methods only requires eye images [11, 21, 26, 34, 42], face
images [16,19,43], or both [2, 8, 20] to estimate gaze direction.

Zhang et al . [42] proposed a CNN-based gaze estimation method, leveraging
the CNNs’ ability to extract image features, marking the first instance of gaze
direction estimation from eye images. Zhang et al . [43] utilized full-face images
as input and applied a CNN with spatial weighting to feature maps, effectively
encoding facial images. Cheng et al . [9] observed the phenomenon of "two eye
asymmetry" in estimating gaze direction using both the left and right eyes.
Based on this observation, they proposed an Asymmetric Regression Evaluation
Network, which significantly improves the performance of gaze estimation. Al-
though the above methods have good performance in the within-dataset setting,
their performance typically degrades significantly in new domains.

2.1 Domain Generalization

Domain generalization tasks require models to be trained on a source domain
and then tested for performance in a target domain. Chen et al . [6] proposed a
Dilated-Net architecture, which employs multiple pooling or downsampling lay-
ers to extract better features from eye images. Cheng et al . [7] mitigated the
impact of gaze-irrelevant factors, such as illumination and identity, on cross-
domain gaze estimation by extracting purified gaze features. Xu et al . [39] re-
garded gaze-irrelevant factors as detrimental interference and utilized them to
disrupt training data, enabling the model to adapt solely to gaze-related features.

2.2 Unsupervised Domain Adaptation

Unlike DG, UDA tasks require the unsupervised use of samples from the target
domain as a crucial means to enhance the model’s generalization capability in
the target domain. Guo et al . [13] proposed a UDA method that can alleviate
the impact of inter-personal diversity. Bao et al . [3] found that human gaze
vectors possess rotational consistency and, based on this property, proposed a
UDA method. Wang et al . [36] proposed a gaze adaptation method, namely
Contrastive Regression Gaze Adaptation, which pulls features corresponding to
similar gaze directions closer. However, regardless of the type of UDA method,
information from the target domain is required, which undoubtedly increases the
limitations on the applicability of UDA methods.

2.3 Causal Inference

In computer vision, causal relationships may exist between different features
of images. Unlike simple statistical correlation methods, which cannot address
causal relationships, causal inference can effectively tackle this issue. Wang et
al . [35] proposed an unsupervised feature representation learning method based
on causal intervention. Yang et al . [40] argued that harmful biases, which can
be regarded as confounders, mislead the learning process of models. Chen et
al . [5] proposed a method to address the issue of spurious correlations between
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Fig. 2: Illustration of our gaze estimation causal graph. After intervening on Z, the
path Z → I will be blocked.

questions and answers in Visual Question Answering tasks by synthesizing coun-
terfactual samples. In addressing VQA problems, Liu et al . [23] considered that
some concepts frequently appearing in linguistic and visual modalities should be
treated as confounders and proposed a VQA model based on causal inference.
In the field of computer vision, causal inference has emerged as a highly effective
tool for addressing problems involving causal relationships.

3 Causal Inference in Gaze Estimation

In this section, we first formulate a tailored causal graph for the Gaze Estimation
(GE) task in Sec. 3.1. Then, we bridge the gap between theoretical causal graph
and specific implementation through a series of formula derivation in Sec. 3.2.

3.1 Causal Graph in Gaze Estimation

Following prior study [28], we formulate the causal graph for the Gaze Estimation
task as a directed acyclic graph G = {N , E}, consisting of variable nodes N and
causal effect links E . In GE tasks, there are five key variables, including the input
image Z, gaze-irrelevant feature I, head pose feature H, gaze feature G and gaze
direction g, as shown in Fig. 2. (a). As for causal effect links, we use solid arrows
to denote true causal effects and dashed arrows to denote spurious causal effects.
Next, we provide a detailed explanation of the causal graph.

Z → H → G → g. The input image content Z determines the head pose
of the subject H. The head pose of the subject also affects the appearance of
the subject’s eyes, result in H → G. Thus, the causal path Z → H → G → g
represents the desired true casual effect from the input image to gaze, i.e. the
gaze direction should be estimated from gaze and head pose feature.

Z → I. The input image content Z determines the distribution of gaze-
irrelevant features I such as illumination, identity, complexion and etc. Funda-
mentally, the distribution of I comes from the collecting procedure and environ-
ment of the dataset. The distribution of I is domain-specific since the collecting
procedure and environment of each dataset is different.

I 99K G. Since it is impossible for a dataset to cover all scenarios, the dis-
tribution of gaze-irrelevant factors and gaze is inevitably biased. The extracted
gaze feature G would be affected by the gaze-irrelevant features I due to the
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spurious correlation between them observed by the gaze estimation model during
source domain training. For example, in dataset A, if a large number of data
is collected during mobile phone usage at night, gaze estimation model trained
in dataset A would tend to produce downward gaze directions on dark images.
However, this spurious correlation does not hold in other datasets, leading the
model to produce inaccurate estimations in cross-dataset tasks.

I 99K H 99K G. Due to the same reason as I 99K G, head pose is also affected
by gaze-irrelevant factors. Furthermore, because the I is the common cause of H
and G (hence I is also known as confounder [27]), the confounder I causes the
negative effect of misleading the model to learn spurious correlations between H
and G. Following the same example in last paragraph, models trained in dataset
A could tends to produce downward gaze directions because subjects usually
lower their heads when using mobile phone.

Above analysis demonstrates that the gaze-irrelevant factors affects the gaze
estimation process from two paths: I 99K G and I 99K H 99K G. Since above
spurious correlation is domain-specific, it decreases the accuracy of gaze estima-
tion models in cross-domain tasks. In the next section, we try to alleviate the
impact of I by front-door adjustment.

3.2 Causal Intervention via Front-door Adjustment

In causal inference, eliminating the influence of I means computing the dis-
tribution P (g|do(I)), where do(I) denotes the intervention on I to eliminate
spurious correlations caused by distribution bias in source domain. For details
on the do(·), refer to [27]. Following previous study [23], to apply front-door
adjustment, an additional mediator should be inserted between I and G, which
construct a front-door path Z → I → M 99K G, as shown in Fig. 2 (b). By
using front-door adjustment [27],

P (g|do(I)) =
∑

m P (g|do(I),M = m)P (M = m|do(I))
=

∑
m P (g|do(M = m))P (M = m|I)

=
∑

I′
∑

m P (g|M = m, I = I ′)P (M = m|I)P (I = I ′).
(1)

The above Eq. (1) holds based on the total probability formula and the causal
structure after intervention. According to Eq. (1), as it involves computing the
series twice, the computational cost of reproducing this process using neural
networks would be very huge. However, the Normalized Weighted Geometric
Mean (NWGM) [38] can be used to address this issue. Based on Eq. (1), by
using NWGM,

P (g|do(I))
NWGM
≈ P (g|E[M |I],EI). (2)

Through front door adjustment, the path Z → I is cut off, which mitigate
the influence of I on gaze estimation. Subsequently, as shown in Fig. 2.(b), the
spurious correlation between H and G is also eliminated, due to I no longer
being a common cause of both (the spurious correlation I 99K G is eliminated).
As shown in Fig. 2(c), the results of the intervention can be reflected in two
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Fig. 3: The overview of the proposed Feature-Separation-based Causal Intervention
gaze estimation framework, which consists of two modules: 1) the Feature Separation
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aspects, firstly, the spurious correlation between I and G is eliminated, and
secondly, the spurious correlation between H and G caused by G L99 I → H is
also eliminated, which is proved through experiments in Sec. 5.4. In Sec. 4, we
design a network model corresponding to Eq. (2) to address the negative impact
of I in the gaze estimation process.

4 Method

For DG tasks, our framework consists of two modules: the Feature Separation
Module (FSM) and the Causal Intervention Module (CIM). To mitigate the
influence of I through CIM, we employ the FSM to extract input image features,
separating them into three parts: head pose feature, gaze feature, and gaze-
irrelevant feature.

4.1 Feature Separation Module
Fig. 3 illustrates the workflow of the FSM. Initially, the cross-attention layer
separates the information from different channels, extracted by the ResNet [14]
convolutional layer, into three distinct feature vectors: H, G, and I. During the
training phase, to ensure that the information among H, G, and I does not
overlap, we classify them using a single-layer fully connected layer. Moreover,
to align the information in H and G with head pose feature and gaze feature,
respectively, we regress H and G using different single-layer fully connected
layers. The FSM loss function is as follows:

Lsep(H,G, I,hl, gl) = L1(ϕ1(H),hl) + L1(ϕ2(G), gl)
+LCE(ϕ3({H,G, I}), {lH , lG, lI}),

(3)
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where L1(·, ·) is L1 loss function, and LCE is Cross Entropy loss function.
ϕ1(·), ϕ2(·), and ϕ3(·) represent different fully connected layers, respectively.
lh, lg, and lI are the one-hot classification labels corresponding {H,G, I}. hl

and gl represent the ground truth label of head pose and gaze, respectively.
During the training phase, we employ an optimizer to separately optimize the
parameters of the FSM.

4.2 Causal Intervention Module

Fig. 3 illustrates the process of CIM, which deconfounds the features separated
by the FSM through causal intervention. Assume that the feature space is Rn.
Eq. (2) only provides the probability of [g|do(I)]. However, the value of [g|do(I)]
is required in the GE. From the perspective of probability measure, Eq. (2) can
be understood as estimating the gaze direction g under specific conditions and
then using the probability measure function P to map the estimated value of g
to a probability. Inspired by [35], we parameterize a network to obtain [g|do(I)],

[g|do(I)] ≈
[
g|E[M |I],EI

]
= W1EI, (4)

where W1 ∈ Rn×n is a learnable parameter. From causal graph Fig. 2 (b), we
can see that M is only influenced by I, which means the information of E[M |I]
can be derived from EI. W1EI indicates that, by mapping EI, the model can
learn the causal effect of E[M |I] and EI to g. However, [g|do(I)] only represents
the causal effect of I to g. In the input images, head pose information and gaze
information are the primary sources of gaze-related information. Therefore, we
aggregate these features to estimate gaze direction g:

g ≈ ϕ(W1EI +G+W2H), (5)

where W2 ∈ Rn×n is a learnable parameter. W2H represents mapping the head
pose feature into the head-pose-related gaze feature, which serves as supplemen-
tary information of gaze-related features to assist gaze estimation. ϕ(·) denotes
a two-layer fully connected network used to regress this gaze-related information
to the gaze direction g. The loss function of CIM is L1 loss. Next, we present
the process of the Dynamic Confounder Bank.

Dynamic Confounder Bank. To alleviate the impact of factors causing
spurious correlations, a common strategy in previous work is to construct a
confounder dictionary [23,35,40]. However, this strategy is not applicable to our
method (explained in Sec. 5.3). Therefore, we propose the Dynamic Confounder
Bank strategy, which is divided into two stages: 1) Use the moving average
method to calculate EI; 2) Estimate the causal effect of I on g by mapping EI.

During the training phase, since the model can only process a batch of sam-
ples at a time, it cannot directly compute EI. To address this issue, we employ
the moving average method to approximate the value of EI. Assume that the
number of samples in a batch is NB , and the current batch is the t-th batch,
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with N0 = 0 and [EI]0 = (0, · · · , 0)T . the formula is as follows:

[EI]t = Nt−1

Nt−1+NB
[EI]t−1 +

NB

Nt−1+NB
Mean({I}Batch),

Nt = Nt−1 +NB ,
(6)

where Mean(·) denotes the mean function, [EI]t represents the estimated value
of EI after the first t-batches. {I}Batch represents the set of all I values ex-
tracted from the samples within the current batch. Using Eq. (6), Our method
can compute EI online. Since I represents the gaze-irrelevant features, EI can
thus be understood as the average of all gaze-irrelevant features. When training
completes, EI is frozen for inference.

4.3 Implementation Details
Our method is implemented using the Pytorch framework. We employ ResNet18
as the backbone, with the fully connected layer and global pooling layer removed
from ResNet18. The batch size is set to 512. We use two identical Adam opti-
mizers to update the parameters of FSM and CIM, respectively. The learning
rate for the optimizers are set to 10−4, with β = (0.5, 0.95).

5 Experiments

5.1 Data Preprocessing

We validated our method on four commonly used gaze datasets: ETH-XGaze(DE)
[41], Gaze360(DG) [16], MPIIFaceGaze(DM ) [43], and EyeDiap(DD) [12]. Fol-
lowing previous gaze Domain Generalization studies [7, 39], we use DE and DG

as source domain because they provide a larger gaze distribution range.

Data preparation. For DE , DM , and DD, we follow the technique in [43] to
normalize the face image. For DG, we only use frontal face images and do not
employ the normalization technique [43]. Above data processings are consistent
with [7, 24, 36, 39]. Since DG does not provide head pose labels, we generate
head pose annotations for DG using Mediapipe [25]. Finally, we scale all the face
images from the datasets to 224 × 224 and normalize the pixel values to [0, 1].
Some of the data preprocessing codes are provided by [10].

5.2 Comparison with State-Of-The-Art Methods

For DG tasks, we compared the performance of FSCI with other SOTA gaze
estimation (GE) and gaze domain generalization methods on four cross-domain
tasks: DE → DM ,DE → DD,DG → DM ,DG → DD. The experimental results
are shown in Tab. 1. We report the cross-domain performance of gaze estimation
methods [6,8,43] according to [7]. Results demonstrate that our method not only
achieves consistent improvement compared to the baseline ResNet-18 method,
but the proposed FSCI framework also outperforms all SOTA GE and gaze DG
methods in all cross-domain tasks. The above results prove the effectiveness of
the FSCI framework.
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Table 1: Comparison with state-of-the-art domain generalization methods. Results
are angular error in degrees.

Method DE → DM DE → DD DG → DM DG → DD

ResNet18 9.07 10.15 9.75 11.41
Full-Face [43] 12.35 30.15 11.13 14.42
Dilated-Net [6] - - 18.45 23.88
CA-NET [8] - - 27.13 31.41
PureGaze [7] 7.08 7.48 9.28 9.32
Xu et al . [39] 6.50 7.44 7.55 9.03
FSCI(ours) 5.79 6.96 7.06 7.99

5.3 Ablation Study

To prove the effectiveness of each component of the FSCI framework, we con-
ducted two ablation experiments. Tab. 2 studies the impact of the backbone
network, FSM and CIM. Tab. 3 demonstrates the effectiveness of the Dynamic
Confounder Bank by comparing it to other processing strategies that alleviate
the impact of factors causing spurious correlations in SOTA casual interven-
tion methods. For brevity, in all of the following content, we refer to the factors
causing spurious correlations as confounding factors.

Ablation Study on Backbone Architecture and Proposed Modules.
Results in Tab. 2 demonstrate three conclusions: (1) Both FSCI-ResNet18 and
FSCI-ResNet50 show superior performance in four cross-domain experiments
compared to ResNet18 and ResNet50, indicating that the FSCI framework is
applicable to different backbones. While ResNet50 generally preforms poorly
on DG → DD, as noted in [7, 41], FSCI-ResNet50 still improves by 13.8% over
ResNet50. (2) In FSCI-ResNet18×3, we replace the FSM with three ResNet18
trained by Lsep for feature separation. Compared to the FSCI, cross-domain
performance of FSCI-ResNet18×3 drops in all tasks, proves the effectiveness
of the FSM. (3) Without the CIM , the cross-domain accuracy of the FSCI
framework drops in seven out of eight settings, demonstrating the effectiveness
of the proposed CIM . For detailed experimental results on the FSM and the
separated features, please refer to the supplementary materials.

Ablation Study on Processing Strategies for Confounding Factors. In
this part, we analyze the effectiveness of the Dynamic Confounder Bank, the key
component of implementing causal intervention in FSCI framework. In causal
intervention for computer vision methods, a common approach to addressing
confounding factors is to construct a confounder dictionary [23, 35, 40]. This
dictionary stores the feature vectors corresponding to discrete confounding fac-
tors. The construction of a confounder dictionary can be divided into two steps:
1) Assigning confounding type labels to each sample in the given dataset; 2)
Extracting features of all samples in the dataset using a pre-trained feature



De-confounded Gaze Estimation 11

Table 2: Ablation study on backbone network and proposed modules. Method 4,
8 are our proposed methods with different backbones. In ResNet×3, we replace the
FSM with 3 ResNet trained by FSCI-ResNet×3 for feature seperation. Results are
angular error in degrees.

Method DE → DM DE → DD DG → DM DG → DD

1 ResNet18 9.07 10.15 9.75 11.41
2 FSCI-ResNet18×3 8.72 8.01 8.24 9.18
3 FSCI-ResNet18 w/o CIM 7.67 7.48 8.33 9.75
4 FSCI-ResNet18 5.79 6.96 7.06 7.99
5 ResNet50 7.59 8.70 8.75 11.83
6 FSCI-ResNet50×3 5.96 6.58 7.17 12.99
7 FSCI-ResNet50 w/o CIM 6.17 7.23 8.07 10.00
8 FSCI-ResNet50 5.47 6.68 6.19 10.20

Table 3: Ablation study on different processing strategies of gaze-irrelevant feature.
The experiment compared the proposed Dynamic Confounder Bank strategy with the
confounder dictionary strategy. Results are angular error in degrees.

Task Confounder dictionaries FSCIId Id×Skin Id×Skin×Illum

DE → DM 5.96 5.77 5.83 5.79
DE → DD 8.38 8.18 8.25 6.96

extractor and categorizing them according to each sample’s corresponding con-
founding type label, then using the class mean of each confounding label as the
confounding variable corresponding to that label. In Tab. 3, we constructed three
confounder dictionaries according to three potential confounding factors in the
Gaze Estimation task, i.e. Identity, complexion, and illumination:

– Id: Using the identity of individuals in each sample image as the confounding
label (15 confounding variables).

– Id×Skin: Using the Cartesian product of the identity and complexion as
the confounding label (30 confounding variables).

– Id×Skin×Illum: Using the Cartesian product of the identity, complexion,
and image brightness (divided into three brightness intervals) as the con-
founding label (90 confounding variables).

As shown in Tab. 3, there is no clear superiority between the two strate-
gies for addressing confounding factors in the DE → DM cross-domain task.
However, in the DE → DD cross-domain task, the Dynamic Confounder Bank
strategy significantly outperforms the confounder dictionary strategy. Compared
to the Dynamic Confounder Bank strategy, building a confounder dictionary re-
quires additional sample labels, which incurs a certain cost of manual annota-
tion. Moreover, the confounder dictionary stores confounding factors in a discrete
form. Since it is impossible to identify all confounding factors in the dataset, the
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construction of a confounder dictionary inevitably faces the issue of missing con-
founding factors. While solving the above issues, the Dynamic Confounder Bank
strategy also achieves relatively better performance in cross-domain tasks.

5.4 Verification of Causal Intervention

Theoretically, the spurious correlation I 99K G and H 99K G will be both
weakened if the FSCI framework successfully alleviates the influence of I, as
explained in Sec. 3 and Fig. 2. Following this theory, we conduct further analysis
to verify the effect of the FSCI framework in the following sections.

Impact of Spurious Correlation I 99K G. To quantificat the impact of
I 99K G, we aim to examine the model’s resilience to disturbance of gaze-
irrelevant factors. However, it is difficult to disturb gaze-irrelevant factors such
as identity while keeping gaze and head pose information completely the same.
Alternatively, we apply random noises to the input image in the DE → DM task
as an approximation. As shown in Fig. 4, the proposed FSCI framework demon-
strates significantly better resistance against Gaussian Noise than the Baseline
model. When applying a Gaussian Noise with 0.2 STD, the estimation error of
the baseline model increases for 4.13◦. On the contrary, the estimation error of
the FSCI framework only increases for 1.29◦, which is 68.8% smaller than the
baseline. In Fig. 5, we apply 3 more different types of noise, the FSCI frame-
work consistently shows better stability. Above results prove that the proposed
FSCI framework weakens the spurious correlation I 99K G significantly during
gaze estimation, which improves the generalization ability of the model.

Impact of Spurious Correlation H 99K G. To verify the spurious correlation
H 99K G learned by the gaze estimation model, we visualize the distributions
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poses were obtained by K-Means clustering.

of gaze estimation deviation before and after causal intervention in different
head pose clusters in the DE → DM task, as shown in Fig. 6. The estimation
results before intervention are gaze predictions from the FSM. Ideally, without
the spurious correlation H 99K G, the distribution of the deviation should be
identical across different head pose clusters, i.e. distributes in a circle around
the (0, 0) point. Obviously, the distributions of deviation before intervention
drift from the (0, 0) point. The spurious correlation H 99K G seems stronger in
head pose cluster 2 (HP2) since the distribution of deviation drifts further. After
we apply causal intervention by CIM, the distributions of estimation deviation
become more compact, and the centers of the distributions are closer to (0, 0)
point. These results indicate that the CIM successfully reduce the impact of
spurious correlation H 99K G. Consequently, the FSCI framework demonstrate
better cross-domain accuracy after causal intervention.

Fundamentally, the source of the spurious correlation H 99K G is that gaze-
irrelevant features I is the common cause of head pose feature H and gaze
feature G. Thus, we further verify the gaze estimation error with respect to H
and I. As shown in Fig. 7, we visualize the heatmaps of gaze estimation er-
rors under different head poses for various complexions before and after casual
intervention. Due to clear complexion categorization, we select it as a represen-
tative factor of I. Ideally, if G is completely free from the influence of I and H,
the distribution of errors with respect to head pose should be the same across
different complexions, i.e., the distribution of Fig. 7 (a-1) and (b-1) should be
the same, and Fig. 7 (c-1), (c-2) should be zeros. Obviously, values of Fig. 7
(c-2) is smaller than (c-1), indicates that the differences of estimation errors
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Fig. 7: (a), (b) Heatmaps of gaze estimation errors under different head poses for var-
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errors on samples from different complexions. After intervention, the differences in es-
timation errors between different complexions and head poses are reduced.

between different complexions are reduced after intervention. In Fig. 7, (d), we
calculate the average estimation error of different complexions. The differences
of estimation error between complexions is reduced by 42.9% after intervention.
This phenomenon confirms our theory that the FSCI framework alleviates the
impact of the spurious correlation H 99K G by minimizing the influence of gaze-
irrelevant features I. Note that the FSCI framework only weakens the spurious
correlation H 99K G. There is still a true correlation between head pose and
gaze H → G. Thus, it is normal that there is a difference of estimation errors
between various head pose clusters. An intuitive explanation is that the difficulty
of gaze estimation task varies under different head poses.

6 Limitations and Conclusions

Limitation. The proposed FSCI framework effectively mitigates the impact of
confounding factors. However, the performance of CIM is somewhat dependent
on the quality of the separated features. Although our experiments demonstrate
that FSM is effective and enables CIM to work well, we believe that better fea-
ture separation would further enhance our final results.
Conclusion. In this paper, we propose a gaze domain generalization method
based on causal inference, named the FSCI framework. To alleviate the in-
fluence of gaze-irrelevant factors during gaze estimation, the proposed FSCI
framework separates different features and employs causal intervention to the
gaze-irrelevant features through the Dynamic Confounder Bank strategy. Ex-
perimental results show that the FSCI framework outperforms SOTA gaze DG
methods in various cross-domain tasks. Further analysis demonstrates that the
FSCI framework successfully reduce the impact of spurious correlation I 99K G.
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