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Diffusion Models Monocular Depth Estimation:

Overcoming Challenging Conditions

Supplementary Material

This document supplements the ECCV 2024 paper "Diffusion Models for
Monocular Depth Estimation: Overcoming Challenging Conditions", providing
additional implementation details and deeper insights.

1 Diffusion Distilled Data

For our image generation process, we use the diffusion model-based approach
described in our main paper. Specifically, we adopt the original T2I-Adapter
code [13] to generate challenging scenes from easy inputs. This model can be
conditioned not only by textual prompts but also by additional information like
semantic segmentation, image gradients, normals, depth maps, and more. For
our purposes, we primarily leverage the network’s ability to generate diverse
scenarios while preserving the 3D structure from a depth map. Specifically, we
provide the diffusion model with depth maps computed by an existing monoc-
ular depth network using the easy images. These images do not contain any
particularly challenging conditions for the considered depth network. As a re-
sult, this approach produces highly accurate depth maps in simpler scenarios.
Simultaneously, we incorporate textual prompts alongside these maps to specify
the desired challenging attributes. However, it is worth noting that for driving
scenes, we observed that the text-to-image diffusion model [13], when strongly
guided by depth inputs, often struggled to visually render sufficiently extreme
challenging conditions. This strong depth conditioning is necessary to ensure
that the 3D structure is perfectly preserved between easy and challenging im-
ages, which is crucial for our task. However, we have found experimentally that
while this approach maintains structural consistency, it sometimes limits the
model’s ability to generate truly challenging scene properties, especially in cases
such as nighttime. To address this limitation, we implemented a two-step pro-
cess that still relies entirely on diffusion models without using any real adverse
images. First, we used Stable Diffusion [1] to randomly generate highly chal-
lenging images without conditioning on depth, based solely on textual prompts
describing extreme conditions. Then, we passed these synthetically generated
challenging images as condition to T2I-Adapter [13] along with the depth map
aligned with the easy image and the desired text prompt. This approach allowed
us to generate images with very low visibility, especially for nighttime scenes, re-
sulting in truly challenging scenarios for monocular depth estimation networks,
while still preserving the underlying 3D structure of the unchallenging scene.
Importantly, this method maintains our commitment to using only generated
challenging data, as both steps utilize diffusion models.
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Moreover, before providing depth information to T2I-Adapter 1, we consis-
tently verify the resolution of the input depth map. If it is smaller than 1 Mpx,
we resize it to that resolution while keeping the same aspect ratio. We have found
that this approach produces higher quality and more realistic images for the cho-
sen diffusion model in all scenarios. After the generation process, we resize the
image back to its original resolution. Regardless of whether we are generating
images for ToM or driving scenarios, this procedure is applied consistently.

Given the versatility of diffusion models in creating highly diverse settings,
our primary focus centers on generating scenarios that pose significant challenges
for monocular depth networks. These challenges include scenarios in autonomous
driving under adverse environmental conditions such as rain, night-time scenarios
as well as the representation of non-Lambertian surfaces. However, it is impor-
tant to note that the potential of diffusion models is not confined solely to these
instances but extends to various other scenarios as well.

Regarding autonomous driving, we draw inspiration from experiments con-
ducted by [8] on two major datasets, nuScenes [4] and RobotCar [11]. To this
aim, starting from real autonomous driving scene images devoid of adverse atmo-
spheric conditions, our approach effectively produces images portraying complex
situations. This method establishes a coupling between easy and challenging im-
ages, which can be effectively leveraged in the fine-tuning phase of a monocular
depth network, as described in the methodology section of the main paper.

For nuScenes [4], we use 15,129 RGB images labeled as easy (clear day-
time conditions) to generate two distinct scenarios. Following a similar approach
to [8], we create rainy and nighttime scenes, totaling 30,258 images. However, our
method differs crucially from [8] in that we exclusively use simple daytime sam-
ples to generate random challenging conditions. In contrast, [8] requires access to
real challenging condition images from the target domain during training, match-
ing the test conditions (e.g., noise, luminosity, reflectivity). Our approach does
not need prior knowledge or real samples of specific challenging characteristics
in the target domain, which are typically unknown in real-world applications.

For this purpose, we use random textual prompts each for nighttime and
rainy scenarios. Examples of these prompts, chosen arbitrarily, include:

– "In a suburban neighborhood, rain-flooded streets reflect the warm glow of
streetlamps distorted by deluge puddles overwhelming windshield wipers"

– "Navigating a winding mountain road, the asphalt mirrors surrounding peaks
distorted by rippling puddles as windshield wipers fight the relentless down-
pour"

– "Driving at city intersections with headlight glare, dense fog, obscured vision,
treacherous navigation, wet streets, rain, and roads reflecting the foggy sky"

– ...

We want to emphasize that since text prompts are arbitrary and potentially
infinite in number, conducting an exhaustive analysis of how these prompts

1 For our experiments, we used the TencentARC/t2i-adapter-depth-midas-sdxl-1.0,
stabilityai/stable-diffusion-xl-base-1.0 and madebyollin/sdxl-vae-fp16-fix models.
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might impact a downstream monocular depth network during the fine-tuning
phase would be challenging and impractical, if not unfeasible. Our focus in this
work is to demonstrate that even entirely random choices of the specific target
environment can effectively address the problem at hand.

For the RobotCar experiments, we employ a set of prompts of the same
nature as those used previously, generating a total of 17,790 challenging images
from their corresponding easy counterparts, similarly to [8].

To create images depicting objects with non-Lambertian surfaces, we maxi-
mized the potential of diffusion models. We created approximately 20,000 images
at 1024 × 1024 resolution using Stable Diffusion [1], focusing on various cate-
gories of challenging objects such as "bottles," "goblets," "kettles," "glasses,"
and more. These categories are flexible and can be expanded based on specific
needs. Initially, we generated images of common objects with primarily opaque
surfaces, which are more manageable for a monocular network to process. Sub-
sequently, T2I-Adapter is employed to transform these images into their chal-
lenging counterparts featuring non-Lambertian surfaces. Below is a subset of
prompts utilized to generate these easy objects via Stable Diffusion:

– "Resting on a wooden closed countertop, matte wooden vessels embody the
shapes of two red wooden kettles, one black wooden jar, and tow yellow
wooden cups."

– "On a weathered wooden table, matte cardboard containers resemble various
shapes of two milk cartons, one cereal boxe, and two folded paper bags. Their
textured, non-reflective surfaces evoke a rustic charm, blending seamlessly
into a casual dining setting."

– "On a wooden table, matte black wooden objects mimic pink cups, a blue
teapot, and a red bowl."

– ...

Subsequently, the conditional diffusion model [13] transforms them into non-
Lambertian variations. Examples of textual prompts used for this process in-
clude:

– "Crystal-clear, see-through glasses on a table. The beige table surface and
room behind are perfectly visible through the transparent glass, as if looking
through windows."

– "Transparent glasses on a wooden table. The beige wall and room behind are
clearly visible through the glass. Mirrors on the wall reflect the scene. Each
glass’s outline is barely discernible, defined only by subtle light refractions."

– "Transparent goblets on a table. Each goblet is half-filled with different alco-
holic beverages (red wine, white wine, whiskey, cognac). The table is clearly
visible through the goblets. Each goblet’s silhouette is barely perceptible."

– ...

Similarly to the autonomous driving scenario, the selection of textual prompts
and their variations is entirely arbitrary and potentially infinite. Our goal is to
demonstrate the feasibility of this image generation process. However, in-depth
investigation into each prompt is deferred to future research.
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2 Additional Training Details

To ensure fair comparisons with similar methodologies, we follow the training
protocols and frameworks established by [8] to handle adverse weather con-
ditions, and [6] concerning transparent and reflective objects. Specifically, we
employ the same monocular networks—utilizing md4all for [8] and DPT-Large
for [6]—while seamlessly integrating their codebase into our setup. We substitute
their datasets with our generated datasets derived from the diffusion model.

In their study, [8] conducted a comparative analysis between two variants of
their framework, md4all-AD and md4all-DD, identifying md4all-DD as the su-
perior performer. This conclusion directly influenced our decision to incorporate
md4all-DD into our methodology.

Regarding the training specifics in [8] for the md4all-DD framework, they em-
ploy knowledge distillation from a baseline depth network (B) previously trained
on easy scenarios to a new student depth model (DD). This process enable the
student model to emulate the output behavior of the teacher model even when
handling challenging scenarios. During inference, the models utilize a ResNet-18
backbone and learn from image triplets sized at 576 × 320 for nuScenes and
544 × 320 for RobotCar. Operating with a single RGB input during inference
ensure an equal distribution of inputs across each condition.

In [6], their approach to handling non-Lambertian scenarios involve the use of
pre-trained weights from DPT-Large. Specifically, these weights are fine-tuned
using images portraying non-Lambertian objects sourced from Trans10K and
MSD datasets. The fine-tuning procedure extend across 20 epochs, maintaining
a batch size of 8, and applying a learning rate set at 10−7 with exponential decay
(gamma 0.95). Furthermore, they incorporate the loss function proposed in [15]
to guide and optimize the training process.

For additional experiments involving other networks such as DPT-Large [16],
MiDaS [15], ZoeDepth-NK [2], and Depth Anything-ViT-B [20], we incorporate
our framework and internal protocol. Specifically, the self-distillation phase in-
volves fine-tuning these networks starting from their official pre-trained weights.
For DPT and MiDaS, we use a batch size of 8 and train for 30,000 iterations.
Depth Anything is trained with a batch size of 8 for 5,000 iterations, while
ZoeDepth uses a batch size of 3 for 30,000 iterations. In all cases, we start with
an initial learning rate of 10−6, later reduced to 10

−7 after 25,000 iterations (or
proportionally for Depth Anything). We adopt the same loss function proposed
in [15]. To align with pre-training resolutions, image manipulations including
padding, cropping, and resizing are implemented. We maintain 384 pixels for
either the long or short side for most networks, except for Depth Anything,
where we use 518 pixels. We preserve aspect ratios through square cropping.
The AdamW optimizer [10] is employed for training. Augmentations, includ-
ing horizontal flips, color jittering, RGB shift, Gaussian noise, defocusing, and
motion blur [3], are applied consistently across all experiments.
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3 Qualitative Comparison – Generated Images

We collect some examples of images generated by [8] with ForkGAN [22], and our
pipeline using T2I-Adapter [13]. NuScenes [4]. Figure I reports examples from
nuScenes [4]. In the leftmost column (a), we present real images from the day-
clear domain. Columns (b) and (c) show ForkGAN-generated day-rain and night
samples, while (d) and (e) display our pipeline’s outputs for the same domains.
The pipeline in [8] mainly replicates rain artifacts and nighttime sensor noise,
due to using real images. Conversely, our images are more diverse, focusing on
light glare and road reflections without relying on images of real, challenging
conditions in the target domain.

(a) day-clear (b) → day-rain

[8]
(c) → night [8] (d) → day-rain

[13]
(e) → night [13]

Fig. I: From left to right: the original day-clear RGB image sourced from nuScenes [4];
the day-rain and the night images generated by [8] employing ForkGAN [22]; the day-
rain and the night images produced by our method employing T2I-Adapter [13].
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RobotCar [11]. In analogy, Figure II shows real images from RobotCar,
day domain. These are followed by nighttime images generated with ForkGAN
[22] (b) and our method based on T2I-Adapter (c). Again, the former method
reproduces some of the properties intrinsic to the RobotCar dataset – such as
the strong motion blur observed in most real nighttime images from the dataset
itself. In contrast, the images we generated with our pipeline are more general
and not strictly bound to the effects observed from RobotCar, since our method
does not exploit any nighttime real sample from it.

(a) day (b) → night [7] (c) → night [13]

Fig. II: From left to right: the original day RGB image sourced from the RobotCar
dataset [11], followed by the night image generated by [8] employing ForkGAN [22];
the night image generated by our method using T2I-Adapter [12].



7

4 Qualitative Comparison – Predicted Depth Maps in

Driving Scenarios

We now conduct a comparative analysis of the depth maps predicted by base-
line models [16], the approach proposed by [8], and our method across various
challenging driving scenarios.

NuScenes [4] – day-rain. Figure III depicts three samples extracted from
the nuScenes dataset, specifically from the day-rain domain (a). DPT model’s
predictions [16] (b) cannot infer the correct depth due to the challenging rain-
induced reflections on the road surface. Conversely, fine-tuning this model with
data either generated by [8] (c) or by our approach (d) remarkably enhances
the accuracy of predicting the road plane. Additionally, we can appreciate finer
detail in the predicted depths, such as distant cars, previously absent in the
original predictions.

(a) RGB - day-rain (b) DPT [16]
– Original

(c) DPT [16] ft.
Gasperini et al. [8]

(d) DPT [16] ft. Ours

Fig. III: From left to right: RGB image sourced from the nuScenes [4] validation set
(day-rain), the corresponding depth map generated by the original DPT [16], followed
by the fine-tuned DPT using the method proposed in [7]. Finally, DPT fine-tuned
employing our proposed diffusion-based method.

NuScenes [4] – night. The comparison in Figure IV focuses on NuScenes
within the night domain, showing three specific examples (column (a)). Again,
the original DPT predicts depth maps lacking several details, often failing in the
darkest areas of the image, e.g., where car lights do not brighten the scene. The
fine-tuning carried out on generated images (b,c) allows for recovering most of
the details lost in the original predictions, even those very hard to catch by the
human eye – e.g ., the traffic signal in the third example.

RobotCar [11] – md4all baseline [8]. In Figure V, our comparison shifts
to the RobotCar dataset, where we’ve selected seven samples from the night
domain (a). Here, we illustrate the shortcomings of the md4all baseline model [8].
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(a) RGB - night (b) DPT [16] – Original (c) DPT [16] ft. [8] (d) DPT [16] ft. Ours

Fig. IV: From left to right: RGB image sourced from the nuScenes [4] validation set
(night), the corresponding depth map generated by the original DPT [16], followed
by the fine-tuned DPT using the method proposed in [7]. Finally, DPT fine-tuned
employing our proposed diffusion-based method.

This model was trained only on daytime images, so it struggles with nighttime
images within the RobotCar dataset.

In contrast, the md4all-DD variants exhibit significantly improved robust-
ness, particularly when trained using methods outlined in [8] (c) or our ap-
proach (d). Our model showcases enhanced performance, surpassing even the
original md4all-DD instance. For instance, in the sixth row, while the original
md4all-DD model partially misses the car in front of the camera. Conversely, our
model, trained using our pipeline, accurately detects this car in the predicted
depth map.
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(a) RGB - night (b) md4all (baseline)
[8]

(c) md4all-DD [8] (d) md4all-DD [8] ft.
Ours

Fig. V: From left to right: RGB image sourced from the RobotCar [11] test set (night),
the corresponding depth map generated by md4all (baseline) [8], followed by the orig-
inal md4all-DD proposed in [7] and md4all-DD trained using our approach.
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DrivingStereo [19]. We conclude with some qualitative results from the
DrivingStereo dataset, for which we report eight examples of rainy images (a)
in Fig. VI. We recall the fact that other methodologies, such as [8], cannot be
applied in this scenario due to the absence of both the easy and challenging
images. By looking at predictions by the original DPT model [16] (b), we can
notice how the wet road surface again makes it struggle to predict smooth and
planar surfaces. On the contrary, by fine-tuning it on our data (c) the network
learns to properly deal with such challenging regions and consistently predict
more accurate depth maps. We argue that this evident difference in qualitative
terms is not fully reflected in the numbers reported in the main paper. This
is caused by the very sparse ground truth provided by DrivingStereo itself (d),
often missing in those challenging regions where DPT originally fails, greatly
disadvantaging our method, which can predict them correctly. Nevertheless, the
quantitative gain remains neat in reported tables of the main paper.

(a) RGB - day-rain (b) DPT [16] (c) DPT [16] ft. Ours (d) Sparse Ground
Truth

Fig. VI: From left to right: RGB image sourced from the DrivingStereo [4] dataset
(rain), the corresponding depth map generated by the original DPT [16], followed by
the fine-tuned DPT using our proposed diffusion-based method. Finally, the sparse
ground truth depth map. We note that depth ground truth provides only a few valid
pixels for challenging regions.
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(a) RGB (b) Depth (c) "Hazardous
Smog Blanketing

City Streets"

(d) "Low Visibility
in Urban Fog"

(e) "Stranded in a
Car During Intense

Hailstorm"

(f) "Urban Roads
with Extreme Sun

Glare"

(g) "Tropical
Cyclone’s

Downpour "

(h) "Heavy
Snowfall on a
Remote Forest

Road"

(i) "Frozen Night
Road Amid

Freezing Rain"

(j) "Lost in a
Desert Amidst a

Violent
Sandstorm"

(k) "Stranded in a
Flash Flood During

Daylight"

(l) "City with
Intense Nighttime

Lights"

Fig. VII: Visual examples of images generated with [13] showing different weather
conditions. These transformations result from modifying text prompts within the Apol-
loscapes [9] dataset.

5 Qualitative Results – Playing with Text Prompts

In this section, we collect additional qualitative examples to point out the full
potential of our method to generate vast amounts of challenging images over
which a depth estimation network can be fine-tuned to improve its robustness.

Starting from Real Images. We provide examples of images generated
starting from as few as three real images (a), respectively, from several datasets:
Apolloscapes [9] in Fig. VII, CityScapes [5] in Fig. VIII and Mapillary [14] in
Fig. IX. By predicting a depth map for each of these samples (b), we can gen-
erate countless images in various weather conditions by simply playing with the
text prompt. Once again, this reinforces the immense potential of our technique
in generating substantial volumes of training data. It holds promise for handling
diverse and challenging conditions that often pose difficulties for depth estima-
tion models. This approach simply necessitates having a set of images without
such challenges as a starting point.
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(a) RGB (b) Depth (c) "Hazardous
Smog Blanketing

City Streets"

(d) "Low Visibility
in Urban Fog"

(e) "Stranded in a
Car During Intense

Hailstorm"

(f) "Urban Roads
with Extreme Sun

Glare"

(g) "Tropical
Cyclone’s

Downpour "

(h) "Heavy
Snowfall on a
Remote Forest

Road"

(i) "Frozen Night
Road Amid

Freezing Rain"

(j) "Lost in a
Desert Amidst a

Violent
Sandstorm"

(k) "Stranded in a
Flash Flood During

Daylight"

(l) "City with
Intense Nighttime

Lights"

Fig. VIII: Visual examples of generated images depicting different weather conditions.
These transformations result from modifying text prompts within the CityScapes [5]
dataset.
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(a) RGB (b) Depth (c) "Hazardous
Smog Blanketing

City Streets"

(d) "Low Visibility
in Urban Fog"

(e) "Stranded in a
Car During Intense

Hailstorm"

(f) "Urban Roads
with Extreme Sun

Glare"

(g) "Tropical
Cyclone’s

Downpour "

(h) "Heavy
Snowfall on a
Remote Forest

Road"

(i) "Frozen Night
Road Amid

Freezing Rain"

(j) "Lost in a
Desert Amidst a

Violent
Sandstorm"

(k) "Stranded in a
Flash Flood During

Daylight"

(l) "City with
Intense Nighttime

Lights"

Fig. IX: Visual examples of generated images depicting different weather conditions.
These transformations result from modifying text prompts within the Mapillary [14]
dataset.

Starting from Textual Prompts only. Our pipeline can generate an ex-
tensive array of images for fine-tuning depth estimation models, even without
real images, by utilizing various text prompt combinations. Figure X illustrates
this process. The top row shows five easy images created using Stable Diffu-
sion [1] with text inputs only. The second row shows the depth maps predicted
by Depth Anything [20] using the authors’ original weights. These weights were
then used with [13] to produce diverse new images featuring glasses and trans-
parent objects. In Figure XI, we present additional examples involving various
objects such as goblets, mirrors, vessels, and more.
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Fig. X: Top row shows RGB images obtained from Stable Diffusion [1], portraying
mostly Lambertian surfaces on simple objects. The second row displays depth maps
computed by Depth Anything [20] from the simple object images in the first row. From
the third row onwards, all images are generated by T2I-Adapter [13] to transform the
simple object images into visuals featuring non-Lambertian surfaces, thereby incorpo-
rating reflective and transparent elements.
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Fig. XI: On the left, RGB images computed by Stable Diffusion [1], showing mostly
Lambertian surfaces on simple objects. The second row shows depth maps computed by
Depth Anything [20] from the simple object images in the left column. On the right, all
images are generated by T2I-Adapter [13] to transform the simple object images into
visuals featuring non-Lambertian surfaces, thus including reflective and transparent
elements.
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6 Qualitative Results – Depth Maps on Transparent

Objects

Finally, we report some examples of predicted depth maps for images framing
transparent objects.

Generated data. The depth estimation models are challenged by the im-
ages generated by our pipeline. As proof of this, Fig. XII shows four images on
the leftmost column (a), followed by depth maps predicted by DPT before (b)
and after (c) being fine-tuned on our data. On the first row, we show an easy
image framing wooden objects, generated through Stable Diffusion [1] with text
prompts solely. On the remaining rows, we show three images obtained by run-
ning [13] to generate challenging samples. On these samples, we can notice how
the depth maps predicted by the original DPT [16] model (b) are inaccurate on
some of the transparent objects, while they appear much more accurate after
our fine-tuning (c).
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(a) RGB (b) DPT [16] – Original (c) DPT [16] – Fine-Tuned

Fig. XII: The uppermost row within the initial column features the original easy
image generated by Stable Diffusion [1], illustrating simple objects. Subsequent rows
in the same column exhibit T2I-generated [13] images simulating scenarios involving
non-transparent, and reflective surfaces. Transitioning to the second column reveals
the corresponding depth maps predicted by the DPT [16] using the original weights
provided by the authors. Lastly, the third column presents depth maps derived from
the same network, refined through the implementation of our methodology.
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Booster dataset [21]. Fig. XIII depicts four images from the Booster train-
ing set (a), used in our evaluation. In the middle, we report the depth maps
predicted by Depth Anything [20] using the original weights made available by
the authors (b). Despite being accurate in most regions of the images, sometimes
it fails to properly estimate the depth of some transparent parts in the objects
– e.g ., as in the bottle on the top row. However, after fine-tuning it on our data,
Depth Anything can correctly recover the real 3D structure of any object in the
scene (c).

(a) RGB (b) Depth Anything [20] –
Original

(c) Depth Anything [20] –
Fine-Tuned

Fig. XIII: From left to right: RGB image sourced from the Booster [21] training set,
corresponding depth map generated by the original Depth Anything [20], and fine-
tuned Depth Anything utilizing our method.
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ClearGrasp dataset [17]. Fig. XIV shows five particularly challenging ex-
amples (a) from the ClearGrasp dataset. In the middle column, we can see how
DPT [16] initially fails to recognize most of the transparent objects present in
the scenes (b). Nonetheless, after being fine-tuned on our data generated from
text prompts solely, it can properly predict consistent depth for any of them (c).

(a) RGB (b) DPT [16] – Original (c) DPT [16] – Fine-Tuned

Fig. XIV: From left to right: RGB image sourced from ClearGrasp [17], correspond-
ing depth map generated by the original DPT [16], and fine-tuned DPT utilizing our
method.
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Trans10K dataset [18]. We collect some additional, qualitative results on
the Trans10K dataset, which unfortunately does not provide ground-truth depth
for quantitative evaluations. Fig. XV shows six examples from this dataset (a),
followed by the depth maps predicted by DPT [16] before (b) and after (c) fine-
tuning it on our data. Again, we can appreciate how our strategy allows for
greatly improving the perception of transparent objects.

(a) RGB (b) DPT [16] – Original (c) DPT [16] – Fine-Tuned

Fig. XV: From left to right: RGB image sourced from Trans10K [18], correspond-
ing depth map generated by the original DPT [16], and fine-tuned DPT utilizing our
method.
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Random Pictures from the Web. In conclusion, Fig. XVI shows web-
sourced images (a), with depth maps from Depth Anything [20] before (b) and
after (c) fine-tuning using our data.

(a) RGB (b) Depth Anything [20]
– Original

(c) Depth Anything [20]
– Fine-Tuned

Fig. XVI: Left to right: Web-sourced RGB image, depth map from original Depth
Anything [20], and depth map from our fine-tuned Depth Anything.
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7 Limitations

The application of our method comes with certain limitations. Firstly, the re-
liance on pre-trained diffusion models that require a substantial amount of data
for training. The quality and diversity of the generated images are dependent on
the training data and the architecture of the diffusion models. Additionally, the
effectiveness of the chosen T2I-Adapter [13] model is contingent on the source
of the training data, predominantly derived from models like MiDaS [15], po-
tentially introducing biases. While the 3D structure is generally well-preserved
between easy and challenging images, there can occasionally be discrepancies
that might lead to slightly different 3D structures, potentially impacting the
accuracy and reliability of the depth estimation results. Finally, despite the flex-
ibility offered by text prompts in shaping scenarios, achieving precise control over
the outputs of diffusion models remains a challenge. The text prompts may not
always capture the desired characteristics or attributes of the generated scenes,
highlighting the need for further research and development of more advanced
control mechanisms to achieve finer-grained control over the generated images.
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