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1 Further Discussions for Related Works

1.1 Our Setting VS Domain Adaptation

The domain adaptation task and the multi-task learning (our setting) all belong
to the field of Transfer Learning. Both domain adaptation and multi-task learn-
ing (our setting) aim to improve the performance from one task to another task.
Thus, with all these similarities, it is vital to point out the difference between
domain adaptation and multi-task learning (our setting). Here we first analyse
from the data aspect:

— In the domain adaptation setting, labeled data are available only in the
source domain. For the target domain, there are only a few labeled data or
no labeled data.

— In the multi-task learning (our setting), labeled data are available in both
the source task and the target tasks. For our style-diversified QBIR setting,
we collect 10,000 images for each style modality, which is available for CLIP
fine-tuning.

From the methodology aspect, prompt learning methods, including CoOP |29,
CoCoOP [28], MaPLe [10], are commonly used in both domain adaptation and
multi-task learning. Thus, we compare the performance of our FreestyleRet and
these baselines and demonstrate the effectiveness of our proposed framework.

1.2 Our Setting VS Other Retrieval Settings

Our FreestyleRet proposes a novel retrieval setting: Image Retrieval with Style-
Diversified Queries. However, during our survey of related works, we have identi-
fied several closely related retrieval tasks, including Composed Image Retrieval [22],
User Generalized Image Retrieval |14], Fashion Retrieval |7], Synthesis Image Re-
trieval [22], and Sketch Retrieval [24]. Consequently, we summarize these tasks
and highlight the differences and contributions of our novel task: Style-Diversified
Image Retrieval Task in comparison to them.
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Composed Image Retrieval Composed Image Retrieval (CIR) [13]/17,22]
aims to retrieve a target image based on a query composed of a reference image
and a relative caption that describes the difference between the two images.
Zero-shot CIR |1] is a derivative task associated with CIR, learning image-text
joint features without requiring a labeled training dataset. The CIR task has
been extensively studied in various Vision and Language tasks, such as visual
question answering |11},26] and visual grounding [3}4].

Difference: The composed image retrieval focuses on retrieving natural im-
ages from composed queries (image+text) and does not consider style-diversified
query inputs. However, our style-diversified retrieval setting achieves not only
style-diversified query-based retrieval ability but also achieves good performance
when retrieving from composed queries with various styles (sketch-+text, art-+text,
low resolution+text).

User Generalized Image Retrieval The User Generalized Image Retrieval
(UGIR) [14] is a task that retrieves natural images and text. Formally, UGIR
defines data belonging to one user as a user domain, and the differences among
different user domains as user domain shift. UGIR trains on a user domain and
tests on various user domains to evaluate their feature generalization.
Difference: The user-generalized image retrieval task focuses on exploring the
domain adaptation capability of retrieval models, where the domain refers to a
natural image dataset encompassing diverse categories of objects. However, in
our style-diversified retrieval setting, we adapt the domain of a wide range of
image styles as queries, including natural images, sketches, artistic images, and
blurry low-resolution images.

Fashion, Synthesis, and Sketch Retrieval Fashion Retrieval [5]7,/19], Syn-
thesis Image Retrieval [20,[22,[27], and Sketch Retrieval [12,[18] aim to retrieve
from one specific class of images, including the fashion clothes, synthesis natural
scenes, and sketch-based images. These tasks are applied in the search engines.
Difference: The fashion retrieval, synthesis retrieval, and sketch retrieval all fo-
cus on retrieving from single-style queries. However, our style-diversified retrieval
maintains the ability to retrieve based on queries with various styles, including
sketch images and synthesis art-style images.

1.3 Controllable Image Generation for Synthesis Datasets

Controllable Image Generation [2] aims to generate an image with a condition,
including text, image, etc. With the development of VAE, GAN [15|, and Diffu-
sion [9,21] models, deep-learning methods achieve outstanding quality in the vi-
sual generation domain. Due to the high image quality and the open-vocabulary
ability of generative models, researchers apply generative models to synthesize
images for dataset generations [16425]. In this paper, we apply AnimateDift [6]
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for our DSR dataset generation. In order to assess the potential hallucination
issues that may arise in generative models, we introduce the hps-v2 metric
to evaluate the quality of the generated images.
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Fig. 1: Concept distribution of our DSR dataset. Our dataset exhibits a diverse
distribution in different concept domains.

2 Supplements for Ablation Studies

We present the supplementary for the ablation studies to analyze the impact of
the baseline setting, the prompt-token inserting strategy, and the epoch amount
for our FreestyleRet framework.

2.1 Concept Distribution Analysis for our DSR Dataset

Fig. [T] shows the concept distribution of the images in our DSR dataset. Our
dataset exhibits a diverse distribution in different concept domains. The top-5
concept classes in our DSR dataset are “Scene”, “Architecture”, “Object”, “Ani-
mal”, and “Plant”. The sum of the proportions of the top five concept classes in
the dataset accounts for 31.4%, leaving ample space for a rich diversity of other
concept classes. This further substantiates the equilibrium of our dataset at the
concept level.

2.2 Details for the Baseline Settings and Implementations

In the experimental part, we select the commonly-used cross-modality pre-trained
models, CLIP and BLIP, as the baselines for our style-diversified retrieval task.
There are three settings for the pre-trained baseline models, including zero-shot
tuning, prompt tuning, and fine-tuning setting.

As shown in Table.1 in the main paper, for visual-linguistic baselines (CLIP-
finetune, BLIP-finetune), we finetune all their parameters with the learning rate
of 1le-6. For ImageBind and LanguageBind, we propose their zero-shot perfor-
mance due to their multi-modality capability. For prompt learning baselines
(VPT, CoCoOP, MaPLe), we train them on the DSR dataset with a learning
rate of le-5 and 40 epochs.

In Tab. [I} we make extra ablations on the performance of three tuning set-
tings. Comparing all three settings in line.1-3, the fine-tuning setting outperforms
others significantly in style-diversified retrieval, including sketch, art, and low
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resolution. However, both prompt-tuning and fine-tuning settings have similar
performance on text-image retrieval. Our FreestyleRet framework outperforms
all three tuning settings in text, sketch, art, and low-resolution settings.

Table 1: Evaluation of different baseline settings. Our model surpasses zero-shot
tuning, prompt tuning, and fine-tuning baselines.

# ‘ Method ‘ Text — Image ‘ Sketch — Image ‘ Art — Image ‘ Low-Res — Image
RQ@11 R@57 Ra1t R@57 Ra1t R@57 Ra1t Ra@51

1 CLIP-ZeroShot 66.1 94.7 47.5 7.3 58.5 93.7 45.0 75.7

2 CLIP-Prompt 72.2 96.4 63.6 93.6 58.2 90.4 78.8 97.1

3 CLIP-Finetune 73.8 97.4 784 95.6 70.2 96.6 84.0 97.1

4 BLIP-Prompt 74.3 95.3 67.1 90.9 51.1 85.3 7.2 95.8

5 BLIP-Finetune 80.1 98.7 75.3 94.8 63.7 93.4 83.7 96.3

6 FreestyleRet(C) 71.4 97.2 81.6 98.0 72.3 98.1 86.7 98.2

7 FreestyleRet(B) 81.6 99.2 81.2 97.1 74.5 97.4 90.5 98.5

Table 2: The ablation analysis for the prompt token inserting strategy. We
ablate three prompt-token inserting strategies in our FreestyleRet framework, including
inserting in the shallow layer, inserting in the deep layer, and inserting in both layers.

Experiments show that inserting in both shallow and deep layers achieves the best.

# Shallow Bottom S—»I | A—»I | LR—I
1 Random - 78.1 70.2 85.3
2 Style Space - 78.5 71.6 85.5
3 Gram Matrix - 79.0 70.9 84.2
4 - Random 78.5 70.3 83.5
- Style Space 79.4 70.7 84.7
6 - Gram Matrix | 79.2 70.8 83.8
7 Style Space Gram ‘ 81.6 ‘ 72.3 ‘ 86.7

2.3 Additional Ablation for Prompt Token Inserting Strategies

In the main paper, we conducted ablation experiments on the initialization
choices and the number of prompt-tuning tokens in the prompt-tuning structure.
In the supplementary material, we further performed ablation on the number of
layers in the prompt tuning structure. Specifically, in Table. [2| we compared
the performance of the model when only inserting prompt tokens in shallow
layers, only inserting prompt tokens in deep layers, and inserting prompt to-
kens in both shallow and deep layers. All experiments in Table. [2] are conducted
by our FreestyleRet framework on the DSR dataset. “S—I" represents sketch
to image retrieval. “A—I" represents art to image retrieval. “LR—I" represents
low-resolution to image retrieval.
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Compare line.7 with line.1-3 and line.4-6 in Table. [2] inserting prompt to-
kens in both shallow and deep layers outperforms other inserting strategies. In
comparison to the random initialization method (line.1&4), both style initial-
ization (line.2&5) and gram initialization (line.3&6) result in higher accuracy.
Additionally, the deep-layer prompt provides the encoder with a larger bias,
contributing to a slight increase in performance compared to the shallow-layer
prompt strategy.

2.4 Additional Ablation for the Model Structure

VGG Feature extractor: When extracting stylistic features from images, we
employ the VGG model as our feature extractor. Given that the VGG model
is structured as a stack of multiple convolutional neural networks, the selection
of which layer to use for image representation is a critical issue. To address
this, we conducted an ablation study (Table. |3) on the chosen number of layers
and demonstrated that the third convolutional layer performs optimally. This
phenomenon is also consistent with related works on image style transfer.
Clustering Iteration: In the process of style space generation, we utilize
the K-Nearest Neighbors (KNN) algorithm to cluster images of various styles,
thereby constructing a style space. We conducted an ablation study (Table.|3)) on
the clustering iterations within the KNN algorithm and verified that the optimal
performance is achieved when the number of iterations is set to 300.

Table 3: The ablation analysis for the VGG feature extractor and the clustering
iteration setting.

VGG Layer | Text—I  Sketch—I KNN Iter | Text—I  Sketch—I

Conv-2 79.4 80.9 200 80.7 81.5
Conv-3 81.6 82.0 300 81.6 82.0
Conv-4 80.3 80.7 400 81.6 81.9

2.5 Epoch Analysis for the FreestyleRet

To demonstrate the fast convergence and low computational cost of our FreestyleRet
framework, we conduct the epoch analysis for our FreestyleRet and visualize the
performance change under different epochs training.

As shown in Fig[2] our FreestyleRet framework achieves better performance
and faster convergence speed with 5-10 training epochs compared to other base-
lines such as prompting tuning BLIP, CLIP, and VPT models. These pre-trained
baseline models need at least 50 or more training epochs to converge.

Also, we observe that text and low-resolution retrieval converge after 5 train-
ing epochs, faster than art and sketch retrieval (10 epochs). The text modal and
the low-resolution style have less information gap between the natural image
modality, so their performance converges faster. On the other hand, the sketch
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Fig.2: The epoch analysis for our FreestyleRet framework. For the style-
diversified retrieval task, our lightweight framework achieves a rather good performance
under 10 epochs.

style and the art style, containing more style and textural information, require
more epochs (about 10) to achieve better retrieval accuracy. Additionally, each
training epoch only takes 4 minutes. The performance in the main body is an
average of epoch-5, epoch-10, and epoch-20 evaluation results.

Table 4: The Text-Retrieval performance of our FreestyleRet and baselines.

4 Method Image—Text ‘ Sketch—Text ‘ Art—Text Low-Res—Text

R@1 R@5 RQ@1 R@5 R@1 R@5 RQ@1 R@5
1 CLIP* 55.2 90.8 48.4 87.9 64.5 96.8 42.6 81.8
2 BLIP* 71.4 94.9 55.5 87.0 81.0 98.8 49.2 81.8
3 VPT 52.2 91.7 45.2 87.7 52.7 94.6 44.3 84.6
4 ImageBind 73.5 96.5 56.1 88.4 82.7 99.0 42.4 73.8
5 LanguageBind 80.5 98.3 63.9 91.6 87.2 99.7 56.9 86.8
6 FreestyleRet-CLIP 71.6 98.0 66.7 96.7 74.4 99.1 64.1 94.8
7 FreestyleRet-BLIP 82.8 99.0 71.0 96.4 86.6 99.7 69.5 96.9

3 Supplements for Experimental Results

In order to comprehensively validate the superiority of our FreestyleRet model
in handling the retrieval of queries with different styles, we conducted exten-
sive experiments involving cross-modal retrieval among various style-diversified
queries, including any queries to Text modality, any queries to Art modality, any
queries to Sketch modality, and any queries to Low-resolution modality.

We present the performance comparison between our FreestyleRet and other
baselines in Table. [f] (Any—Text), Table. 5] (Any—Art), Table. [6] (Any—Sketch),
and Table. |7| (Any— Low-resolution Images). All experiments are conducted on
the DSR dataset. Experimental results demonstrate that our FreestyleRet frame-
work achieves state-of-the-art (SOTA) performance in almost all retrieval scenar-
ios. Specifically, in complex scenarios including sketch and art style retrieval, our
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Table 5: The Art-Retrieval performance of our FreestyleRet and baselines.

4 Method ‘ Image—Art ‘ Sketch—Art ‘ Text—Art Low-Res—Art
etho

Ra1 R@s Ra1 Ra@s Ra1 Ra@s Ra@1 R@5
1 CLIP* 63.0 94.7 61.2 92.7 75.5 98.2 51.9 87.9
2 BLIP* 57.1 88.5 44.8 82.8 82.8 98.7 39.4 79.3
3 VPT 67.4 95.5 60.3 93.1 61.6 96.5 44.3 84.6
4 ImageBind 46.4 80.5 28.7 60.8 82.6 98.9 57.8 89.6
5 LanguageBind 65.8 93.2 41.1 7T 86.7 99.2 34.8 72.0
6 FreestyleRet-CLIP 72.9 97.8 66.5 96.2 85.0 99.6 62.8 94.1
7 FreestyleRet-BLIP 73.6 97.4 63.1 94.4 90.2 99.7 60.1 92.2

Table 6: The Sketch-Retrieval performance of FreestyleRet and baselines.

" ‘ Method ‘ Image— Sketch ‘ Art—Sketch ‘ Text—Sketch ‘ Low-Res—Sketch
Ra@1 Ra@5 Ra1 R@s R@1 R@5 Ra1 R@s
1 CLIP* 70.5 96.1 60.5 92.9 55.0 90.8 60.4 90.9
2 BLIP* 69.8 93.5 47.6 82.8 58.6 89.8 52.3 82.8
3 VPT 1.7 96.2 62.3 92.9 494 88.6 63.3 91.5
4 ImageBind 54.0 81.8 38.3 71.6 56.1 88.4 26.2 52.5
5 LanguageBind 74.6 96.1 57.5 87.0 65.7 94.0 54.5 83.8
6 FreestyleRet-CLIP 77.8 98.1 66.5 96.2 72.3 97.4 68.7 95.1
7 FreestyleRet-BLIP 80.5 97.7 66.8 94.9 76.6 97.7 71.1 94.3

FreestyleRet model outperforms other baseline models by a significant margin
of 6%-10% due to the integration of our style extraction module and style-based
prompt tuning module.

In Table. [, we observed that the fine-tuned BLIP model outperforms our
FreestyleRet model in the retrieval of Images to low-resolution images. This is
because there is a high semantic similarity between low-resolution images and
natural images, and simple prompt tuning allows the baseline model to achieve
good results. However, our model still surpasses the baseline in tasks involving
cross-modal retrieval from other modalities to low-resolution image modalities.

4 Supplements for Case Study

As shown in Fig. [3| and Fig. [4] we add more visualization results in our supple-
mentary material. Each sample has three images to compare the retrieval perfor-
mance between our FreestyleRet and the CLIP baseline on the DSR dataset. The
left images are the queries randomly selected from different styles. The middle
and the right images are the retrieval results of our FreestyleRet-BLIP model
and the original BLIP model, respectively.
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Fig. 3: The Visualization of our FreestyleRet-BLIP and the baseline BLIP model on
our DSR dataset.
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Table 7: The Low-Resolution Image Retrieval performance of our
FreestyleRet framework and baseline models.

2 ‘ Method ‘ Image—Low-Res ‘ Art—Low-Res ‘ Text— Low-Res ‘ Sketch—Low-Res
Ral R@5 R@1 R@5 RQ1 Ra@5 Ral Ra@5
1 CLIP* 79.3 97.2 53.0 89.2 46.0 82.3 59.5 92.4
2 BLIP* 89.0 40.8 73.9 87.0 51.5 84.4 51.4 82.3
3 VPT 75.5 95.7 56.7 90.3 45.6 85.7 61.9 91.6
4 ImageBind 59.9 83.1 25.2 49.8 424 73.8 30.7 56.8
5 LanguageBind 81.0 97.6 47.3 81.2 58.5 87.9 55.5 85.6
6 FreestyleRet-CLIP 80.2 97.5 62.6 95.2 68.7 96.6 67.4 95.3
7 FreestyleRet-BLIP 88.4 98.6 63.9 94.1 76.0 97.5 71.3 94.3
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Fig. 4: The Visualization of our FreestyleRet-BLIP and the baseline BLIP model on
our DSR dataset.
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