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Abstract. Image Retrieval aims to retrieve corresponding images based
on a given query. In application scenarios, users intend to express their
retrieval intent through various query styles. However, current retrieval
tasks predominantly focus on text-query retrieval exploration, leading to
limited retrieval query options and potential ambiguity or bias in user in-
tention. In this paper, we propose the Style-Diversified Query-Based Im-
age Retrieval task, which enables retrieval based on various query styles.
To facilitate the novel setting, we propose the first Diverse-Style Retrieval
dataset, encompassing diverse query styles including text, sketch, low-
resolution, and art. We also propose a light-weighted style-diversified re-
trieval framework. For various query style inputs, we apply the Gram Ma-
trix to extract the query’s textural features and cluster them into a style
space with style-specific bases. Then we employ the style-init prompt
learning module to enable the visual encoder to comprehend the texture
and style information of the query. Experiments demonstrate that our
model outperforms existing retrieval models on the style-diversified re-
trieval task. Moreover, style-diversified queries (sketch+text, art+text,
etc) can be simultaneously retrieved in our model. The auxiliary informa-
tion from other queries enhances the performance within the respective
query, which may hold potential significance for the community. 1
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1 Introduction

Query-based image retrieval (QBIR) [36] refers to the task of retrieving relevant
images from a large image database based on the user’s query or search term.
1 † corresponding author. ∗ equal contribution. Code and Dataset available in here.
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Fig. 1: (a). Previous Retrieval Models focus on text-query retrieval exploration, ne-
glecting the retrieval ability for other query styles. (b). Our style-diversified retrieval
setting considers the various query styles that users may prefer, including sketch, art,
low-resolution, text, and their combination. Our model makes fine-grained retrieval
based on the shape, color, and pose features from style-diversified query inputs.

QBIR has numerous applications, ranging from image search engines [13] to
cross-modality downstream tasks [21,22]. It plays a crucial role in enabling users
to locate and obtain related visual content based on their retrieval intent.

The diversification of user retrieval intents poses a significant and unresolved
problem in QBIR [26]. Selecting appropriate queries to express user intents and
enabling models to accommodate diverse query styles are crucial challenges.
However, the current exploration in the field of QBIR has primarily focused on
text-image retrieval [24, 32] and text-video retrieval [15, 16], with less emphasis
on other query types [17]. To address the issue of limited query style adaptability
in current retrieval models, we propose a novel setting: style-diversified query-
based image retrieval in Fig. 1(b). The objective of this setting is to enable
retrieval models to simultaneously accommodate various query styles, aiming to
bridge the user intent gap caused by the lack of query adaptation versatility.

We propose the diverse-style retrieval dataset (DSR) as the evaluation dataset
of our style-diversified QBIR task. As shown in Fig. 2(a), the dataset contains
10,000 natural images and four corresponding query styles: text, sketch, low-
resolution, and art. (i). Text: the text-form query to describe the retrieval in-
tent. (ii). Sketch: hand-drawn sketch by users to provide shape and pose features.
(iii). Low-Res: users capture regions of interest from images and convert them
into low-resolution images to serve as queries. (iv). Art: artistic-style images as
retrieval queries.

We further propose a lightweight plug-and-play framework, FreestyleRet, for
the style-diversified retrieval task. For query inputs with different styles, we
calculate each query’s Gram Matrix [2, 27] as the query’s style representation,
due to the Gram Matrix’s ability to capture the textural information and spa-
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tial relationships between channels in the input image. Then, we construct the
high-dimensional style space by clustering all-style queries’ gram matrices and
taking the clustering centers as the style basis in the style space. With the
well-constructed style space, we introduce the application of a style-init prompt
tuning module on a frozen visual encoder [24,32], thereby enabling the encoder
to adapt to various-style queries in a cost-effective manner. Specifically, given
a query input, we employ its corresponding Gram matrix in conjunction with
the weighted projections within the style space onto the diverse style basis as
the initialization mechanism for prompt tokens in the prompt tuning procedure.
Finally, we use the query feature from the visual encoder for further retrieval.

The proposed framework has three compelling advantages: First, The style-
space construction and the style-init prompt tuning strategy enable the frame-
work to adapt to various query styles. Experimental results on two benchmark
datasets demonstrate the advantages of our model. Second, Our framework is
compatible with the retrieval of multiple query types simultaneously, thereby
promoting the single-query retrieval performance. Third, the prompt tuning
structure lowers the computation cost and achieves plug-and-play abilities on
various pre-trained visual encoders. The main contributions are as follows:

– We are the first to propose the style-diversified QBIR task and the dataset,
DSR, to address the users’ intent gap problem in retrieval applications.

– Our framework is lightweight and plug-and-play. With the style space con-
struction module and the style-init prompt tuning module, our framework
achieves excellent performance when retrieving style-diversified queries.

– More encouragingly, the style-diversified queries can be simultaneously re-
trieved in our framework and mutually enhance each other’s performance,
which may have a far-reaching impact on the retrieval community.

2 Related Works

Query-based Image Retrieval. Query-based Image Retrieval (QBIR) [36]
aims to retrieve relevant images from a large database based on a given query. In
QBIR, the query can take different forms. The earliest query form is images in-
cluding natural-image retrieval [7] and face retrieval [18]. With the development
of cross-modal representation learning, text-style query tasks are extensively in-
vestigated, including text-image retrieval [24,32] and text-video retrieval [15,16].
Limited research incorporates other query styles such as sketch [5, 6] and scene
graph [17]. Compared to conventional tasks that retrieve from one given query,
our style-diversified retrieval setting allows retrieving from text, sketch, art, and
low-resolution queries simultaneously. Thus, establishing a pipeline that can
understand style features and extract semantic features from style-diversified
queries is the main challenge of our setting.
Prompt Tuning. The objective of Prompt Tuning [20, 25] is to enhance the
transferability of pre-trained models to downstream tasks in a cost-effective man-
ner by incorporating learnable tokens into the fixed pre-trained models. Prompt
Tuning was first proposed as text-prompt [3,29] in the language model and then
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Fig. 2: We propose the Diverse-Style Retrieval Dataset (DSR), containing 10,000
natural images and their corresponding queries with various styles, including Sketch,
Art, Low-Resolution (Low-Res), and Text. We make art quality evaluation by HPS-v2
metric [40] to demonstrate the quality of our generated art queries.

gained popularity [14] in vision-language models. Specifically, CoOP [46] and Co-
CoOP [45] learn class-specific continuous prompts. MaPLe [19] further transfers
text features to the visual encoder during prompt tuning to avoid overfitting.
However, these methods focus on class-level transferability, having limitations
on extracting semantic features from style-diversified images.
Multi-Task Learning and Domain Adaptation. Multi-task learning [43]
is a learning paradigm aiming to learn multiple tasks simultaneously. Compared
to other similar paradigms including domain adaptation [10] and domain gen-
eralization [44], the data of each task in multi-task learning is well-labeled. In
our style-diversified QBIR setting, we collect abundant well-labeled images for
each image style, which can enable the fine-tuning and convergence of CLIP-
level models. Thus, our style-diversified QBIR setting belongs to the multi-task
learning paradigm. From the methodology aspect, prompt learning methods,
including CoCoOP [45], CoOP [46], MaPLe [19], are commonly used in both
domain adaptation and multi-task learning [30, 41]. Thus, We apply them as
baselines for a fair comparison. A detailed comparison between the multi-task
learning (our setting) and the domain adaptation task is provided in the supple-
mentary material.

3 Dataset Construction

In the context of the style-diversified QBIR task, we adopt two datasets for
evaluation: the Diverse-Style Retrieval dataset and ImageNet-X.
Diverse-Style Retrieval Dataset: A small but fine-grained dataset con-
structed for style-diversified QBIR. Shown in Fig. 2(a), it consists of 10,000
natural images paired with corresponding queries of four styles: text, sketch,
low-res, and art. (i). Text: the text query used to express the retrieval intent.
(ii). Sketch: hand-drawn sketch by users to provide shape and pose features.
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(iii). Low-Res: users capture regions of interest from images and convert them
into low-resolution images to serve as queries. (iv). Art: artistic-style images as
queries. With the rise of the AIGC [4,39,42], generating images of different styles
has become more convenient. Therefore, based on ten thousand natural images
from FSCOCO [6], we utilize AnimateDiff [11] to generate corresponding artis-
tic style images. We employ downsampling algorithms to generate low-resolution
images. As for sketch images, FSCOCO provides high-quality sketch images for
each natural image.

To demonstrate the validity of our Diversified-Style Retrieval dataset, we
make a user study for the style-diversified queries. Both sketch and low-resolution
queries are close to the user input because the sketch images in FSCOCO are
drawn by 100 non-expert participants and the resolution of our low-resolution
queries is similar to the user’s image segmentation. As for the art queries in the
DSR dataset, we apply a solid image quality benchmark, HPS-V2 [40], to score
our art queries. Based on Fig. 2(b), we can demonstrate that the artistic queries
in the DSR dataset exhibit a higher aesthetic quality compared to the art drawn
by humans.
ImageNet-X: A large but coarse-grained dataset for style-diversified QBIR.
Based on ImageNet [8], ImageNet-X contains 1M natural images and their cor-
responding sketch-form and art-form versions. Compared to DSR, the images
in ImageNet-X are simple, containing only one object. We generate the low-
resolution form for images and reconstruct ImageNet-X as the dataset for style-
diversified QBIR.

4 Methodology

Given a gallery of natural images NI and a query qi from the style-specific query
set Qs. The goal for query-based image retrieval is to rank all images i ∈ NI

so that the image corresponding to the query qi is ranked as high as possible.
For our style-diversified QBIR setting, the goal is similar, ranking all images
correctly with queries for various style-specific query sets {Qs}ns=1.

Our model consists of three main submodules: (1) a Gram-based Style
Extraction Module for generating the gram matrix of an input query, repre-
senting the query’s textural feature (Sec.4.1). (2) a Style Space Construction
Module for building up the query style space by clustering queries’ gram ma-
trices and taking the cluster centers as the style basis (Sec.4.2). (3) a Style-Init
Prompt Tuning Module for style-specific prompt tuning a pre-trained vi-
sual encoder by initializing the prompt tokens based on the gram matrices and
the style prototypes (Sec.4.3). The overview framework of our FreestyleRet is
illustrated in Fig. 3.

4.1 Gram-based Style Extraction Module

For query inputs with diverse styles, it’s vital to distinguish and extract their
different style features. Considering the outstanding representation of the im-
age style provided by the Gram matrix [2,27], we propose the gram-based style
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Fig. 3: The Overall Framework of our FreestyleRet. For a style-diversified query
input, we first extract the query’s textural feature by calculating the query’s gram
matrix from the Gram-based Style Extraction Module. Then we construct the style
space of queries by clustering all gram matrices and taking each clustering center as
the style basis in style space. We further extract the query’s style feature by weighted
summarizing style bases based on the distance between the input query and every style
basis in the style space. Finally, in the Style-Init Prompt Tuning Module, we use the
gram matrix and the style feature to initialize prompt tokens, leading both textural and
style information to the feature encoder for further style-diversified retrieval prediction.

extraction module to capture the style representation for input queries by cal-
culating their Gram matrix.

First, we apply the frozen VGG model [33] to get the query’s visual feature.
Compared with other image feature extractors including ViT [9] and ResNet [12],
the VGG model is lightweight and has strong feature extraction ability during the
gram matrix calculation in image style transfer works [35, 38]. The VGG model
is constituted by a concatenation of 16 layers, consisting of stacked convolutional
and fully connected layers, meticulously structured to capture complex patterns
in the visual data. For the query input qi, we use the third convolutional layer
output, shaping 112× 112× 128, as the visual feature vi of the query qi. fd(.) is
used to downsample vi.

Then, we calculate the gram matrix for query qi. Specifically, the Gram
Matrix g of a set of vectors t1, ..., tn in an inner product space is the Hermitian
matrix of inner products: gjk =< tj , tk >. g represents the texture feature of
vectors t1, ..., tn. In our scenario, we calculate the gram matrix gi for qi as follows:

gi = (fd(vi))
Tfd(vi), (1)

where gi represents the textural feature of the query qi.

4.2 Style Space Construction Module

For style-diversified query inputs, we construct the style space S for queries to
encode their specific styles. To generate the style-specific basis B = {bj}4j=1 for



FreestyleRet 7

the style space, we cluster the gram matrices of all queries in various styles and
apply each clustering center as the style-specific basis bj for the style space B.

During the clustering procedure, we apply the K-Means algorithm to cluster
the gram matrix set G for all queries from query sets in the dataset, where
G = {gi},∀qi ∈ Qs. We first random initialize four clustering centers µ1, ..., µ4
as the basis of the style space. Then we calculate the nearest center ci comparing
each gram matrix gi ∈ G with existing clustering centers:

ci = argmax
j

||gi − µj ||2, (2)

where j = 1, ..., 4. We redistribute all queries to their nearest center based on
the ci. Then we refine the position of µj by averaging all queries belong to µj :

µj =

∑m
i=1 Num{ci = j} × gi∑m

i=1 Num{ci = j}
, (3)

We repeat the iteration of Eq.2 and Eq.3 until the clustering centers’ positions
converge. The well-trained clustering centers µ1, ..., µ4 act as the style-specific
basis for the constructed style space. We further use these style-specific bases to
represent the style feature si of an input query qi. Specifically, the style feature
si is calculated by weighted summarizing all the style bases according to the
cosine similarity w between qi and µj ,∀j ∈ [1, 4].

wj =
ecos(qi,µj)∑4
j=1 e

cos(qi,µj)
, si =

4∑
j=1

wjµj , (4)

The weighted summarizing calculation enables the model to generate the qi’s
style feature adaptively.

4.3 Style-Init Prompt Tuning Module

To build up a lightweight and plug-and-play framework, we apply the prompt
tuning procedure on a frozen pre-trained visual encoder to make the frozen
visual encoder understand the various-style query inputs. As shown in Fig. 3,
during the prompt tuning, we insert four trainable prompt tokens into both the
shallow layer and the bottom layer of the vision transformer encoder, to tune
the visual encoder comprehensively. The prompt tokens are introduced to every
transformer layer’s input space. For i-th Layer Li in the transformer, we denote
the collection of input learnable prompts Pi as

Pi = {pki ∈ Rd|k ∈ N, 1 ≤ k ≤ m}, (5)

where d = 1024 represents the token dimension in the transformer layer. m = 4
represents the prompt token number for each transformer layer. The style-init
prompt tuning module for ViT is formulated as follows:

[xi,_, Ei] = Li(xi−1, Pi−1, Ei−1), i = 1, ..., n (6)
fi = Head(xn), (7)
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where n represents the transformer layer number, xi represents the [CLS]’s em-
bedding at Li’s input space, Ei is qi’s image patch embeddings. Head represents
the MLP to generate visual feature fi using the [CLS] embedding of qi.

We apply style-specific initialization for prompt tokens in both shallow and
deep layers in the visual encoder to achieve multi-scale style feature fusion.
Specifically, given an input query qi, we initialize the prompt tokens in the shal-
low layer based on the gram matrix from Eq.1 and initialize the tokens in the
deep layer based on the style feature si calculated from Eq.4. Further experi-
mental analysis in Table. 3 shows that differentiated style initialization across
different layers can boost the performance of the ViT-based visual encoder.

4.4 Training and Inference

As shown in Fig. 3, our FreestyleRet iterates the dataset twice during the training
process. We first construct the style space during the first iteration. Then we
apply the well-constructed style space for style-init prompt tuning during the
second iteration. The overall loss L of our model is the triplet loss:

dist(x, y) = 1− cos(x, y), (8)

L =
1

B

B∑
i=1

(max(0,dist(Fi, Pi)− dist(Fi, Ni) + α)) (9)

where F represent the image features F = {fi}n1 . P represents the positive
samples and N represents the negative samples. During the training, we take the
ground-truth retrieval answer as P . For N we randomly select another image
from the same query-style set as qi. We set the hyperparameter α to 1.0.

Our inference process iterates the test dataset once, using the gram-based
style extraction module and the well-constructed style space to get the textural
feature from the gram matrix and style feature for the input query. Then we
apply the style-init prompt tuning module for retrieval.

5 Experiments

5.1 Experimental Baselines and Settings

For the baseline selection, we apply two multi-modality pre-trained models (Im-
ageBind, LanguageBind), two cross-modality pre-trained models (CLIP, BLIP),
and the three most recent cross-modality prompt learning models (VPT, Co-
CoOP, MaPLe) for the fair comparison. Specifically, we fine-tune the cross-
modality models (CLIP, BLIP) on DSR and ImageNet-X datasets for conver-
gence. we also train the prompt learning baselines on both datasets to adapt
style-diversified inputs. As for the multi-modality models, we evaluate the zero-
shot performance on the sty-diversified retrieval task due to multi-modality mod-
els’ comprehensionability on multi-style image inputs.
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Table 1: Retrieval performance for Style-Diversified QBIR task. We evaluate
the R@1 and R@5 metrics on two benchmark datasets, the Diverse-Style Retrieval
dataset and the ImageNet-X dataset. The two forms of our FreestyleRet framework,
FreestyleRet-CLIP and FreestyleRet-BLIP, outperform in multiple scenarios with dif-
ferent query styles compared with other baselines including multi-modality models,
cross-modality pre-trained models, and prompt learning models.

# Method
Text → Image Sketch → Image Art → Image Low-Res → Image

R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑ R@1↑ R@5↑
Diverse-Style Retrieval Dataset

1 CLIP-ZeroShot 66.1 94.7 47.5 77.3 58.5 93.7 45.0 75.7
2 CLIP-Finetune 73.8 97.4 78.4 95.6 70.2 96.6 84.0 97.1
3 BLIP-Finetune 80.1 98.7 75.3 94.8 63.7 93.4 83.7 96.3
4 ImageBind 71.0 95.5 50.8 79.4 58.2 86.3 79.0 96.7
5 LanguageBind 79.7 98.1 63.6 89.1 67.5 92.9 78.6 94.5
6 VPT 69.9 96.1 73.3 97.0 66.7 96.5 81.4 96.0
7 CoCoOP 71.4 94.6 77.5 97.2 69.3 97.1 83.8 97.6
8 MaPLe 73.1 95.9 80.3 97.9 70.6 97.2 85.9 97.7
9 FreestyleRet(C) 71.4 97.2 81.6 98.0 72.3 98.1 86.7 98.2
10 FreestyleRet(B) 81.6 99.2 82.0 98.4 74.5 97.4 90.5 98.5

ImageNet-X Dataset [8]
11 CLIP-Finetune 42.6 72.7 41.3 73.9 38.5 65.3 74.1 95.7
12 BLIP-Finetune 63.9 90.7 53.6 88.1 49.6 84.8 89.5 97.8
13 ImageBind 57.3 89.7 53.6 86.2 49.8 79.3 81.2 94.3
14 LanguageBind 68.9 92.3 62.0 91.5 60.3 89.9 87.4 99.5
15 VPT 43.3 85.3 48.6 84.2 41.6 88.5 72.7 89.3
16 CoCoOP 64.4 91.7 54.8 90.4 52.6 86.6 73.9 95.0
17 MaPLe 65.2 94.8 56.2 87.5 53.4 89.3 74.2 96.2
18 FreestyltRet(C) 64.8 94.3 57.7 90.5 56.4 90.2 77.4 96.5
19 FreestyleRet(B) 74.9 96.3 74.6 93.3 71.2 96.5 97.5 99.7

For the experiments on the DSR and the ImageNet-X datasets, FreestyleRet
is trained on one A100 GPU with batch size 24 and 20 training epochs. The
learning rate is set to 1e-5 and is linearly warmed up in the first epochs and
then decayed by the cosine learning rate schedule. All input images are resized
into 224× 224 resolution and then augmented by normalized operation.

5.2 Main Results

We apply two benchmark datasets, the ImageNet-X and the DSR dataset, for
our style-diversified retrieval task. The results in Tab. 1 yield three observations:

(i). Cross-modality pre-trained models, prompt models, and multi-
modality models have the potential for improvement in the style di-
versified retrieval task. Line.1 in Tab. 1 shows that zero-shot CLIP performs
badly compared with our FreestyleRet. This limitation arises from the inability
of vision-linguistic models like CLIP to distinguish visual inputs with different
styles from those of natural images in the feature space. With the finetuning
process, pre-trained models have significant improvements, as shown in line.2-3
and line.11-12. As for the multi-modality models, ImageBind and LanguageBind,
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Table 2: Retrieval performance with multi-style queries simultaneously. The
additional query inputs (sketch, art, low-res) can boost the text-image retrieval capabil-
ity in our FreestyleRet while showing a negative influence on baseline models, including
CLIP and BLIP.

# Method
Sketch Art Low-Resolution

Text→I Sketch+Text→I Text→I Art+Text→I Text→I Low-Res+Text→I

1 CLIP-finetune 72.2 65.0(−7.2) 72.2 57.8(−14.4) 72.2 84.7(+12.5)

2 BLIP-finetune 74.3 74.2(−0.1) 74.3 58.3(−16.0) 74.3 88.3(+14.0)

3 FreestyleRet 71.4 82.5(+12.6) 71.4 76.6(+6.7) 71.4 86.7(+16.8)

line.4-5 and line.13-14 show that multi-modality models have style-diversified re-
trieval abilities. Shown in line.6-8 and 15-17, the prompt learning models also
have style-diversified retrieval abilities but still need improvements when facing
sketch and art query styles.

(ii). The CLIP-form and BLIP-form models of our FreestyleRet
framework outperform both cross-modality and multi-modality mod-
els. Claimed in Sec.4.3, our FreestyleRet is a plug-and-play framework that
can easily applied to various pretrained visual encoders. Here we apply our
FreestyleRet on two ViT-based visual encoders from CLIP and BLIP. We use
FreestyleRet-CLIP and FreestyleRet-BLIP as the generated models. Line.7-8 and
line.14-15 in Tab. 1 show that both FreestyleRet-CLIP and FreestyleRet-BLIP
outperform the cross-modality and multi-modality baselines, demonstrating the
effectiveness of our plug-and-play framework.

(iii). FreestyleRet-BLIP outperforms its CLIP-form by a large mar-
gin. Shown in line.7-8 and 14-15, FreestyleRet-BLIP performs better than its
CLIP form. Proved in [23, 24], BLIP applies the MED structure and cleaner
datasets for pretraining, which leads to a better generalization ability than CLIP
on various modalities. Thus, with the extracted style feature as prompt initial-
ization, BLIP can be generalized to style-diversified image groups more easily,
leading to better performance.

(iv). In our FreestyleRet framework, style-diversified queries can
be simultaneously retrieved and mutually enhance the text-image re-
trieval performance. As shown in Tab. 2, when conducting text-image re-
trieval, the additional query inputs (sketch, art, low-res) can significantly boost
the text-image retrieval capability of our FreestyleRet framework. However, for
baseline models, the additional query signals cannot stably improve the text-
image retrieval performance. In line.1-2 in Tab. 2 the additional sketch and art
queries hurt the CLIP and BLIP.

5.3 Ablation Studies

In the ablation section, we first make an adequate ablation analysis for the
prompt tuning structure to validate the rationality of our model design. We
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also compare our FreestyleRet with baselines from the aspect of computational
complexity to demonstrate the lightweight nature of our model. Moreover, we
also verified the state-of-the-art performance of our model in the standalone task
of sketch retrieval.

Ablation for Prompt Tuning Structure. We ablate the prompt tuning
structure in our FreestyleRet framework from two aspects: the prompt token
initialization feature and the prompt token number. Table. 3 shows the ablation
results. Furthermore, Fig. 4 proposes the detailed structure of the prompt tuning
module in FreestyleRet.

The prompt token position. Previous prompt tuning models [14,28,29,
31] analyzed that inserting the learnable prompt tokens in all layers in the trans-
former (Deep Prompt) has better performance than in the first layer in the trans-
former (Shallow Prompt). In the prompt module of our FreestyleRet, we adopt
the deep prompt idea and insert all the learnable prompt tokens into all layers.
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Fig. 4: Prompt tuning struc-
ture in FreestyleRet.

The prompt token initialization. We an-
alyze the impact of the prompt token initializa-
tion by applying different initialization strate-
gies in different positions of the visual encoder.
Line.1-5 in Table. 3 show the ablation results,
where “Random” represents random initializa-
tion, “Gram” represents initializing with textual
information from the gram matrix, and “Style
Space” represents initializing with style informa-
tion from the style space feature. The random ini-
tialization in line.1 performs worst, demonstrat-
ing that applying textural and style representa-
tion as initialization is necessary. We make var-
ious initialization attempts in line.2-4 and find
that initializing the shallow-layer prompt tokens
with style features, while initializing the deep-layer prompt tokens with gram
matrices, achieves the best performance.

The prompt token number. We make ablation studies for the number of
prompt tokens that are inserted into the visual encoder during the prompt tuning
stage. As shown in line.5-8 in Table. 3, our FreestyleRet framework, adopting
4 prompt tokens, outperforms other number settings including 1, 2, 8 prompt
tokens under three evaluation metrics.

Computation Comparison. To validate the lightweight nature of FreestyleRet
and its ease of integration into existing retrieval models, we analyze the compu-
tational complexity of our framework compared with other baselines. Table. 4
shows the statistical analysis of trainable parameters and inference time per
batch for our FreestyleRet framework and other baselines. Compared with the
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Table 3: The analysis for the prompt token design. We conduct the ablations
for the prompt tokens’ insert position, the initialization feature, and the prompt token
number in our FreestyleRet framework to demonstrate the performance impact of each
component on style-diversified retrieval.

# Shallow Bottom Token-Num Sketch→Image Art→Image Low-Res→Image
1 Random Random 4 68.1 63.5 78.8
2 Style Space Random 4 76.7 69.1 82.4
3 Random Gram 4 76.8 69.2 81.8
4 Gram Style Space 4 78.1 69.5 84.4
5 Style Space Gram 4 81.6 72.3 86.7

6 Style Space Gram 1 68.2 64.7 79.1
7 Style Space Gram 2 72.3 65.9 82.8
8 Style Space Gram 8 77.9 67.1 80.7

Table 4: Comparison of the computation complexity.
Our framework is computationally efficient from the
trainable parameter and inference speed aspects.

Method Parameters(M) Speed(ms)
CLIP 427M 68ms
BLIP 891M 62ms
VPT 428M 73ms
FreestyleRet-CLIP 476M(+29) 96ms(+28)

FreestyleRet-BLIP 940M(+29) 101ms(+39)

Table 5: Evaluate on
FSCOCO dataset for the
sketch retrieval task.

Method R@1 R@10
QST 23.6 52.9
SCM 23.4 52.6
CrossAttn 23.7 53.5
SceneTrilogy 24.1 53.9
FreestyleRet 29.6 56.1

multi-modality models, our FreestyleRet is lightweight both in the trainable pa-
rameter and the inference speed. Compared with the cross-modality models,
including CLIP and BLIP, our framework slightly increases the inference time
and the trainable parameter while maintaining rapid deployment and application
without significant impact.

Performance on Sketch-Retrieval Task. We additionally evaluate our
FreestyleRet on the Sketch Retrieval task, which aims to retrieve images using
sketch queries. We apply FSCOCO [6] as the evaluation dataset and select recent
models as the baselines, including QST [34], SCM [1], CrossAttn, and SceneTril-
ogy [5]. The baselines and our model utilize CLIP as the visual encoder. As
shown in Tab. 5, our FreestyleRet, incorporating style feature extraction and
style-init prompt tuning, significantly outperforms other baselines in the sketch
retrieval task.

5.4 Qualitative Analysis

In this section, we do the qualitative analysis of our framework’s performance
by visualizing the high-dimensional feature distribution and the prediction cases
from our FreestyleRet-CLIP framework compared with the baseline, the finetun-
ing form of the CLIP model.
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FreestyleRet-CLIP 

𝑳𝟏𝟐
CLIP 𝑳𝟏𝟐
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Fig. 5: The Feature Distribution Analysis for our FreestyleRet.

(a). Retrieval with Pose errors. (b). Retrieval with Category errors.
Baseline✗FreestyleRet ✓

(c). Retrieval with Color errors.

Art

0

Low-Res Baseline✗FreestyleRet ✓

Baseline✗FreestyleRet ✓Sketch

Baseline✗FreestyleRet ✓Sketch

Baseline✗FreestyleRet ✓Sketch

Baseline✗FreestyleRet ✓Art

Baseline✗FreestyleRet ✓Low-Res

Low-Res Baseline✗FreestyleRet ✓ Low-Res Baseline✗FreestyleRet ✓

Low-Res Baseline✗FreestyleRet ✓ Low-Res Baseline✗FreestyleRet ✓ Low-Res Baseline✗FreestyleRet ✓

Fig. 6: The Case Study for our FreestyleRet and the CLIP baseline. We
visualize style-diversified queries and their corresponding retrieval answers from our
FreestyleRet model and the CLIP baseline model.
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Feature Distribution Analysis In Fig. 5, we make T-SNE [37] visualization
for the middle layer L12 and the output layer L24 from the FreestyleRet and the
CLIP baseline. The colorful dots donate query features, different colors represent
different semantics. Compared to the subfigure A-C and B-D, our FreestyleRet
achieves better semantic clustering than the CLIP baseline at both middle and
deep layers of the transformer.

Case Study and Error Analysis In Fig. 6, we visualize the style-diversified
query inputs and their corresponding retrieval answers from our FreestyleRet
model and the CLIP baseline model. We summarize three common retrieval er-
rors in the case analysis, where pose errors, category errors, and color errors
represent the false retrieval result with false poses, categories, and colors. We
propose the pose error cases in Fig. 6(a). The pose information is contained
widely in different style queries. Thus, pose error cases occur in sketch, art, and
low-resolution queries. The art queries tend to reshape the category into the
art form. Thus, in Fig. 6(b), most of the category errors occur in the art-style
retrieval task. For the low-resolution query retrieval task, color is vital retrieval
information. In Fig. 6(c), we show the color errors from the low-resolution re-
trieval task. Compared with the CLIP baseline model, our FreestyleRet frame-
work can achieve fine-grained retrieval based on the pose, category, and color
information from style-diversified query inputs, demonstrating the superiority of
our FreestyleRet framework.

6 Conclusion

In this paper, we are the first to propose the style-diversified query-based image
retrieval task to address the issue of limited query style adaptability in current re-
trieval models. We construct a corresponding dataset, the Diverse-Style Retrieval
dataset, for the style-diversified QBIR task. We further propose a lightweight
plug-and-play framework, FreestyleRet, to retrieve from style-diversified query
inputs. Our FreestyleRet extracts the query’s textural and style features from the
gram matrix as the style-diversified initialization for the prompt tuning stage.
This facilitates the framework in adapting to the style-diversified query-based
image retrieval task. Experiment results on the DSR dataset and the ImageNet-X
dataset show the effectiveness and computational efficiency of our FreestyleRet
framework. In future work, we will incorporate a broader range of query styles
into our Diversified-Style Dataset and explore more efficient style-based prompt-
tuning strategies for our framework.
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