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Fig.1: Comparison across Stable Diffusion (SD) , GLIGEN , and our RE-
GROUND. SD (2nd column) can generate an image aligned with the input prompt
(shown below each row), while it does not allow taking spatial constraints such as
bounding boxes and labels. GLIGEN (3rd column) enables spatial grounding using
gated self-attention, although it often disregards some descriptions in the input prompt
due to a bias towards bounding box conditions. Such trends also occur when only ac-
tivating gated self-attention for 0.2 fraction of the initial denoising steps (4th column).
Our REGROUND (last column) resolves the issue of description omission while accu-
rately reflecting the bounding box information.
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Abstract. When an image generation process is guided by both a text
prompt and spatial cues, such as a set of bounding boxes, do these el-
ements work in harmony, or does one dominate the other? Our anal-
ysis of a pretrained image diffusion model that integrates gated self-
attention into the U-Net reveals that spatial grounding often outweighs
textual grounding due to the sequential flow from gated self-attention to
cross-attention. We demonstrate that such bias can be significantly miti-
gated without sacrificing accuracy in either grounding by simply rewiring
the network architecture, changing from sequential to parallel for gated
self-attention and cross-attention. This surprisingly simple yet effective
solution does not require any fine-tuning of the network but substan-
tially reduces the trade-off between the two groundings. Our experiments
demonstrate significant improvements from the original GLIGEN to the
rewired version in the trade-off between textual grounding and spatial
grounding. The project webpage is at https://re-ground.github.io.
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1 Introduction

The emergence of diffusion models [17,/44[|45] has markedly propelled the field of
text-to-image (T2I) generation forward, allowing users to generate high-quality
images from text prompts. In a bid to further augment the creativity and con-
trollability, recent efforts |2-5,[8L|11}/25}28,[32L(36L/54],55,57] have focused on en-
abling these models to understand and interpret spatial instructions, such as lay-
outs [4,/8,/28}32L[361541/55], segmentation masks [2-5,/11,/25] and sketches [51,/57].

Among them, bounding boxes are extensively employed in downstream im-
age generation tasks [418,28,|32,|36}55]. GLIGEN [28] is a pioneering work in
terms of enhancing existing T2I models with the capability to incorporate ad-
ditional spatial cues in the form of bounding boxes. Its core component, gated
self-attention, is a simple attention module [50] that is plugged into each U-
Net [42] layer of a pretrained T2I model such as Stable Diffusion [41], and is
trained to accurately position various entities in their designated areas. A no-
table advantage of GLIGEN is that the original parameters of the underlying
model remain unchanged, inheriting the generative capability of the T2I model
while introducing the novel functionality of spatial grounding using bounding
boxes. This capability has been leveraged by numerous studies to facilitate high-
quality, layout-guided image generation [9,/12}[31}/54].

However, our analysis reveals that GLIGEN’s integration of the gated self-
attention into an existing T2I model is not optimal for blending new spatial
guidance from bounding boxes with the original textual guidance. It often leads
to the omission of specific details from the text prompts. For instance, in the first
row and third column of Fig. [I, GLIGEN fails to reflect the description “Jlow poly
tllustration” from the input text prompt. Also in the second row, a crucial detail
in the text prompt, “draped with a colorful blanket”, is neglected in the output
image. We refer to this issue as description omission. Such outcomes imply
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that the current architectural design of GLIGEN does not effectively harmonize
the new spatial guidance and the text conditioning in the given T2I model.
Considering the widespread applications of GLIGEN in various layout-based
generation tasks [9,/12,/31,/3653,/54,/59], these limitations represent a significant
bottleneck.

To address the observed neglect of textual grounding in GLIGEN, we first
analyze the root causes. Our investigation reveals that the issue arises from the
sequential arrangement of the spatial grounding and textual grounding modules.
Specifically, the output of the gated self-attention is directed to a cross-attention
module in each layer of the U-Net architecture (Fig. [2}(b)).

Building on this insight, we propose a straightforward yet impactful solu-
tion: network rewiring. This approach alters the relationship between the two
grounding modules from sequential to parallel (Fig.[2}(c)). Remarkably, this net-
work modification significantly reduces the grounding trade-off between textual
and spatial groundings without necessitating any adjustments to the network
parameters. Importantly, this rewiring does not require additional net-
work training, extra parameters, or changes in computational load and
time. Simply reconfiguring the attention modules of the pretrained GLIGEN,
originally trained with the sequential architecture, during inference dramatically
enhances performance.

In our experiments on MS-COCO [30] and our newly introduced NSR-1K-
GPT datasets, we demonstrate that rewiring the pretrained GLIGEN substan-
tially reduces the trade-off between textual and spatial groundings. This is
evidenced by the evaluation of text prompt alignment (measured using CLIP
score 38|, PickScore [26] and user study) and bounding box alignment (assessed
by YOLO score [52]). Furthermore, we show that our rewiring also leads to
better outcomes in other frameworks using GLIGEN as a backbone, including
BoxDiff [54].

2 Related Work

2.1 Zero-Shot Guidance in Diffusion Models

The progress in diffusion models [17}/44}/45] has significantly elevated the capa-
bilities of text-to-image (T2I) generation, resulting in foundation models [6}37]
39H41| that exhibit remarkable generative performance. Leveraging the robust
performance of these models, recent studies |315,[8}/11},|25L (28 32,[36/54,|55]57]
have introduced efficient guidance techniques designed to further improve the
image generation process. Notably, numerous works [8,/28}32,(361/43|/54./55] focus
on the internal architecture (Fig. [2}(a)) of the denoising U-Net of Latent Diffu-
sion Models (LDMs) [41], where self-attention and cross-attention modules are
intertwined to facilitate inter-pixel communication and text conditioning. The
self-attention of U-Net can be utilized to improve image quality [19] or facilitate
image translation [49] and image editing tasks [7]. Since text conditions are inte-
grated via cross-attention, the intermediate attention maps have been leveraged
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to improve text faithfulness [13] or enable spatial manipulation of the generation
process [35]. Recently, FreeU [43] analyzed the contributions of the backbone and
residuals of the U-Net and proposed a free-lunch strategy to enhance image qual-
ity: reweighting the backbone and residual features maps. In contrast to previous
works that only deal with self- and cross-attention in standard LDMs, we intro-
duce a method to enhance GLIGEN [28] by reconnecting its gated self-attention
with the other attention modules, thereby achieving performance improvement
in zero-shot without any tuning of the network parameters.

2.2 Layout-Guided Image Generation

The use of layouts, particularly in the form of bounding boxes, has become a
popular intermediary to bridge the gap between textual inputs and the images
generated [14}18}[211|27}29}/46,|47, 56}, 58]. Layout2Im [58] samples object latent
codes from a normal distribution, eliminating the need to predict instance masks
as done in prior works [18,21]. Lost GAN [46] controls the style of each object by
devising an extension of the feature normalization layer used in StyleGAN [22-
24|, while OC-GAN |47| incorporates the spatial relationships between objects
using a scene-graph representation. LAMA [29] introduces a mask adaptation
module that mitigates the semantic ambiguity arising from overlaps in the input
layout. While these developments have greatly improved user control over image
generation, their applicability is confined to the categories found in the training
data, such as those of the MS-COCO [30] dataset.

In contrast, recent studies [5}[8}/10}28}[36L/54}/55,/60] have extended layout-
guided image generation towards open-vocabulary, building on the advancements
of foundational text-to-image (T2I) models [41]. Training-free approaches [3}/5,(8
36L[54] aim to improve the spatial grounding of T2I models through straightfor-
ward guidance mechanisms. GLIGEN [28], on the other hand, introduces gated
self-attention, which is injected into the U-Net architecture of the Latent Diffu-
sion Model |41], and is trained to equip the underlying model with spatial ground-
ing abilities. Given the simple architecture of GLIGEN and its robust grounding
accuracy with the input bounding boxes, numerous studies [36,53}[54./59] build
upon its framework and propose further refinements to increase performance. In
this work, we identify and address a significant performance bottleneck in GLI-
GEN related to description omission and propose a simple yet effective solution.

3 Background — Latent Diffusion Models [41]

Rombach et al. [41] proposed Latent Diffusion Model (LDM), a text-to-image
(T2I) diffusion model with a U-Net as the noise prediction network. It is trained
to generate an image from an input text prompt by predicting the noise e(xy, ¢, ¢)
conditioned both on the timestep ¢ and the text embedding c. Each layer of
LDM’s U-Net consists of three core components: a convolutional residual block,
followed by a self-attention (SA), and a cross-attention (CA) module (Fig.
(a)). In each I-th layer of the U-Net, its residual block first extracts interme-
diate visual features F' = (fi, ..., fn,)T from the output of the previous layer.
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Fig. 2: Comparison between the U-Net architectures of (a) Latent Diffusion Model
(LDM) [41], (b) GLIGEN [28] and (c) our REGROUND. From LDM, GLIGEN enables
spatial grounding by injecting Gated Self-Attention before cross-attention, forming a
sequential flow of them. Based on GLIGEN, our REGROUND changes the relationship
of the two attention modules to become parallel, resulting in noticeable improvement
in textual grounding while preserving the spatial grounding capability. (The residual
block before self-attention is omitted.)
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The self-attention module then facilitates interaction between the features in F'.
Subsequently, the cross-attention module enables the interaction between each
visual feature f; and the text embedding c. Throughout this process, the output
feature of the previous module is also forwarded through a residual connection,
as illustrated in lines 4-5 and 7 of Alg.[I] and also in Fig. [2}(a).

4 GLIGEN |28] and Description Omission

In this section, we review GLIGEN |[28| and its key idea of employing gated self-
attention for spatial grounding. Then, we present our key observations on the
description omission issue that occurs due to the addition of gated self-attention.

4.1 Gated Self-Attention

Li et al. |28] propose a plug-in spatial grounding module, named gated self-
attention, which adopts the gated attention mechanism [1] to equip a pretrained
T2I diffusion model [41] with spatial grounding capabilities (Fig. (b)) Given
a set of bounding boxes and text labels for each of them, let b; be the zy-
coordinates of the i-th bounding box’s top-left and bottom-right corners, and
p; be the corresponding text label. Then, the i-th grounding token is defined as
gi == G (T (p;), F (b;)), where T (-) is a pretrained text encoder [20,38], F(-) is
the Fourier embedding [33}/48] and G(-, -) is a shallow MLP network that concate-
nates the two given embeddings, respectively. Given a set of grounding tokens
{g:}, gated self-attention learns the self-attention among the unified feature set
(f1s--es [N, 91, -, gar) where {f;} is the set of intermediate visual features in the
[-th layer of U-Net, and M is the number of bounding boxes.

As shown in Fig. (b)7 gated self-attention receives the output of the self-
attention along with the residual features as its input and forwards the output
features to the cross-attention module. By incorporating gated self-attention into
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each layer of the U-Net, the model enables the placement of the entity specified
in the text label p; at the location indicated by the bounding box b;. Note that
the integration of gated self-attention does not require training the network from
scratch or fine-tuning it, but can be accomplished simply by training the gated
self-attention parameters while keeping all other parameters in the backbone
model frozen.

Alg. [I] shows the pseudocode of the U-Net forward-pass including the plug-in
of gated self-attention in line 6. Note that 3; is set to 1 for GLIGEN. If 5, = 0,
the algorithm is identical to that of LDM [41].

Algorithm 1: Noise Prediction U-Net with Gated Self-Attention.

Parameters : §;; // Weight for GSA.
Inputs: xq,c, {gi}izo‘.‘N,u // Noisy data at timestep {, text condition,
and grounding tokens
Outputs: ¢; // Noise at timestep t —1.
Function U-Net (x¢, ¢, {g:}):
F + x4
fori=0,...,L—1do
Frs < Conv(F) + F; // Residual block.
Fsa < SA(Frs) + Frs; // Self-Attention module.
Fasa < Bt - GSA(Fsa,{g:}) + Fsa; // Gated Self-Attention module.
F < CA(Fasa,c) + Fasa; // Cross-Attention module.
€t < F;
return e€;;

4.2 Description Omission

Despite its high accuracy in spatial grounding, GLIGEN |28] frequently struggles
to capture essential attributes specified in the input text prompt. As illustrated
in Fig. [3] the leftmost image shows “a person” and “a skateboard” accurately
placed in their designated regions. However, a critical detail from the input text
prompt, “black and white photography”, is absent in the output image. This dis-
crepancy often emerges when the input comprises distinct but equally important
descriptions regarding the image, presented through text prompts and bounding
boxes. Such omissions not only fail to convey the stylistic intent of the image but
also tend to overlook significant objects mentioned within the text prompt. Ad-
ditional examples of this problem are showcased in Fig. [I] where the second row
demonstrates the absence of a “blanket” in the generated image, a key element
from the text prompt. This limitation significantly hampers GLIGEN’s fidelity
to user-provided text prompts, a challenge we term as description omission.
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y =10

“A black and white photograph of a person wearing DC shoes on a skateboard in the sun”
(a) GLIGEN (b) ReGround

Fig. 3: (a) Images generated by GLIGEN with varying activation duration of gated
self-attention 7 in scheduled sampling (Sec. . The red words in the text prompt
denote the words used as labels of the input bounding boxes. Note that for GLIGEN
to reflect the underlined description in the text prompt in the final image, v must be
decreased to 0.1, which compromises spatial grounding accuracy. (b) In contrast, our
REGROUND reflects the underlined phrase even when v = 1.0, therefore achieving high
accuracy in both textual and spatial grounding.

5 ReGround: Rewiring Attention Modules

Gated self-attention and cross-attention each play a crucial role in enabling spa-
tial and textual groundings, by taking bounding boxes and text prompts as
inputs, respectively. To tackle the issue of description omission, we first examine
the impact of attention modules on the groundings they do not address: the ef-
fect of gated self-attention on textual grounding (Sec. , and the influence of
cross-attention on spatial grounding (Sec. . Building on this analysis, we pro-
pose an approach for network reconfiguration, modifying the connections among
self-attention, gated self-attention, and cross-attention modules (Sec. .

5.1 Impact of Gated Self-Attention on Textual Grounding

As the issue of description omission arises due to the newly added gated self-
attention in GLIGEN , we first attempt to mitigate the impact of gated
self-attention by using scheduled sampling , activating gated self-attention
only in a few initial steps of the denoising process. This approach is inspired by
the observation that the coarse structure of the final image is established within
the first few denoising steps. The scheduling is applied by setting the weight of
gated self-attention 8; (line 6 of Alg.[l)) as

_J1 <y T)
’Bt_{o (t>~-T), @

where v € [0, 1] represents the fraction of the initial denoising steps to activate
gated self-attention.

Fig. (a) shows an example of generated images while incrementally adjust-
ing v from 1.0 to 0.0. As v is reduced from 1.0 to 0.0, the details specified in
the text prompt, “a black and white photograph”, begin to be reflected starting
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at v = 0.1, demonstrating that longer activation of gated self-attention may in-
terfere with the alignment of the output image with the text prompt. However,
as gated self-attention is activated for shorter durations, the spatial grounding
diminishes, as shown in the objects’ reduced alignment with the input bounding
boxes. This phenomenon illustrates the inherent trade-off between spatial and
textual grounding, which cannot be resolved by controlling the duration of gated
self-attention activation.

5.2 Impact of Cross-Attention on Spatial Grounding

We also investigate whether cross-attention has influence on spatial grounding.
For this, we conduct a toy experiment by removing cross-attention modules
in GLIGEN , allowing the output of the gated self-attention to be directly
passed to the next layer of the U-Net. This modification is equivalent to changing
line 7 of Alg. [[]to F < Fgsa.

The results are displayed in Fig. [l Note that, while the appearance of
the background and objects changes, the silhouettes of the cat (left) and the
individuals (right) remain precisely positioned within their respective bound-
ing boxes without cross-attention. This observation indicates that while gated
self-attention that is performed before cross-attention may compromise textual
grounding, cross-attention that processes the output of gated self-attention does
not affect spatial grounding.

Layout

cat

sofa

Fig. 4: Comparison of the output of GLIGEN with and without cross-attention.
While the absence of cross-attention reduces realism and quality of the image, the
silhouette of objects remains grounded within the given bounding boxes, as shown in
the third column of each case.

5.3 Network Rewiring: From Sequential to Parallel

Building on the analyses above, we propose a simple yet effective modification to
the grounding mechanism, changing the relationship between gated self-attention
and cross-attention from sequential to parallel. This change eliminates the place-
ment of gated self-attention before cross-attention, thus preventing the reduc-
tion of text grounding caused by gated self-attention. Moreover, in this parallel
arrangement, the preservation of spatial grounding is assured, as gated self-
attention for spatial grounding does not require subsequent cross-attention.
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Specifically, recall that in GLIGEN [28], the output of gated self-attention
is added to the residual from self-attention, which is then passed to the cross-
attention module as follows:

Fasa < GSA(Fsa,{9:}) +Fsa;
—————

spatial grounding

2
F « CA(Fgsa,c) +Fagsa; @
—_——

textual grounding

We propose to transform this sequence grounding pipeline into two parallel
processes as follows:

F(—GSA(FSA,{gi})—l- CA(FSA,C) + Fga ; (3)
spatial grounding textual grounding  residual

Refer to Fig. [2| for the visualization of network architecture changes ((b) —
(¢)). This network rewiring is feasible because the input to gated self-attention
remains unchanged, while the input to cross-attention shifts to Fg4, for which
it was originally designed in the context of Latent Diffusion Models |41].

It is important to note that the modification is effective even when applied
to the pretrained GLIGEN, which was trained with the sequential structure
of the attention modules. Therefore, our rewiring does not require any
additional training or fine-tuning, introduces no extra parameters,
and does not affect computation time or memory usage during the
generation process. The only requirement is the simple reconfiguration of the
attention modules at inference time.

6 Experiments

In this section, we show the effectiveness of our REGROUND by evaluating the
spatial grounding on existing layout-caption datasets [1230] and the textual
grounding on text-image alignment metrics [26,/38]. We use the official GLI-
GEN [28] checkpoint which is trained based on Stable Diffusion v1.4 [41].

6.1 Datasets

MS-COCO. We use the validations sets of both MS-COCO-2014 and MS-
COCO-2017 datasets [30]. Each dataset provides image-captions pairs and the
zy-coordinates of bounding boxes along with their corresponding object cate-
gories.

NSR-1K-GPT. We also use the NSR-1K benchmark [12] for evaluation. Based
on each subset of NSR-1K—Counting and Spatial—we develop a new bench-
mark, NSR-1K-GPT, augmenting each original caption in NSR-1K using GPT-
4 |34]. The instructions for augmentation are to (i) elaborate on the descriptions
of each mentioned entity and (ii) provide additional details about the back-
ground of the image. More details on the evaluation datasets are provided in the
Supplementary (Sec. S1).
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“A woman in a white shirt standing in front of a fence smiling.”
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“One spotted cow in the photo, [...] under a clear blue sky.
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“A view of a living room with large windows.”

Fig. 5: Qualitative comparisons. Stable Diffusion (SD, 2nd column) generates images
that align with the given text descriptions, including the underlined phrase in each
row, but cannot take bounding boxes as input. GLIGEN (3rd column) creates images
that match the input layouts but suffers from description omission, failing to reflect
the underlined descriptions. Scheduled sampling strategy (4th column) can partially
address this issue (for instance, in the 5th row, where “window” appears in the room),
but it results in a noticeable decline in spatial accuracy (as seen in the 1st row, where
the tie is not generated). In contrast, our method (last column) accurately incorporates
the underlined text descriptions while maintaining precise spatial representation.
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Fig. 6: Comparisons on MS-COCO [30] and NSR-1K-GPT. Each plot shows the rela-
tionship between textual grounding (i.e. CLIP score [15]) and spatial grounding (i.e.
YOLO score [52]) accuracy of GLIGEN [28] and our method. Note that the plot of
our REGROUND is positioned in the top-right quadrant relative to GLIGEN, signifying
that it alleviates the inherent trade-off between textual and spatial grounding.

6.2 Evaluation Metrics

— YOLO score: Spatial grounding accuracy is assessed using YOLO score [52].
We employ YOLOVT [52] to detect objects in each generated image and com-
pute the average precision (AP) based on the ground truth bounding box
annotations from MS-COCO |[30].

— CLIP score: Textual grounding accuracy is assessed using CLIP score [15].

— FID: Image quality and diversity are evaluated using FID [16].

— User Study and PickScore: We conduct a user study to assess human
preferences for the generated images based on each input text prompt. Ad-
ditionally, we use PickScore |26, a human preference predictor, to further
analyze the results.

6.3 Comparison with GLIGEN

Textual-Spatial Grounding Trade-off. We first examine the trade-off be-
tween textual and spatial groundings for both GLIGEN [28| and our REGROUND,
the rewired version of GLIGEN, while varying the scheduled sampling parameter
v from 1.0 to 0.1.

Fig. [6}(a), (b) present the graphs of CLIP score [15] and YOLO score [52]
measured on the MS-COCO datasets |30]. In MS-COCO-2014, when reducing
from 1.0 to 0.1, the CLIP score of GLIGEN varies from 30.44 to 31.65, while the
YOLO score significantly drops from 58.13 to 22.75 (red in Fig. @ In contrast,
our REGROUND, (blue in Fig. @, demonstrates a notably superior trade-off be-
tween textual and spatial grounding. Specifically, with ~ set to 1.0, REGROUND
already achieves a CLIP score of 31.29, accounting for 70.25% of GLIGEN’s to-
tal improvement in CLIP score when + is reduced from 1.0 to 0.1. Despite this
significant increase in CLIP score, the YOLO score remains largely unchanged,
marking 56.96 which represents only a 3.31% decrease in the range of YOLO
score variation for GLIGEN when + is adjusted from 1.0 to 0.1. Moreover, when
varing the ~, the plot for REGROUND (blue) is constantly on the upper right
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w/ box for “cake” wj/o box for “cake”

w/ box for “cake” w/o box for “cake”

“A young child looking at a birthday cupcake”
(a) GLIGEN (b) ReGround

Fig. 7: Generated images from the text prompt and bounding boxes from the MS-
COCO-2017 (left of each column) and our COCO-Drop (right of each column). While
GLIGEN fails to generate “a birthday cupcake” when the corresponding bounding
box is removed, our REGROUND successfully generates a cupcake on the table.

side of GLIGEN (red), signifying a more advantageous trade-off across vary-
ing . The same pattern is observed in MS-COCO-2017, where our REGROUND
achieves 68.33% of the increase in CLIP score of GLIGEN while only compro-
mising YOLO score by 2.62% compared to the decrease for GLIGEN.

Fig. [6}(c) further shows a quantitative comparison on the Counting subset
of the newly generated NSR-1K-GPT benchmark. The plot reveals a consistent
trend with the MS-COCO datasets. By reducing ~ from 1.0 to 0.1, GLIGEN’s
CLIP score is increased from 32.46 to 33.67, while the YOLO score is decreased
from 65.36 to 26.38. In contrast, when v = 1.0, REGROUND achieves a CLIP
score of 33.20, which is equal to 61.16% of GLIGEN’s total improvement in
CLIP score, while the compromise in YOLO score is equal to only 3.69% of
the total decrease in the YOLO score of GLIGEN from v = 1.0 to v = 0.1.
Moreover, a comparison on the Spatial subset of NSR-1K-GPT is provided in
the Supplementary (Sec. S2). These results highlight that the advantage of
our REGROUND holds robustly for the realistic image captions provided in the
MS-COCO , as well as for diverse text prompts generated by GPT-4 .

Random Box Dropping. To further assess the extent of description omission
in each method, we modify the MS-COCO-2017 dataset to make the COCO-
Drop dataset. In this version, the bounding boxes for 50% of the categories are
randomly removed from each image, thereby preventing every entity described
in the text prompt from being included within the bounding boxes.

Fig. [§] shows the quantitative comparison of REGROUND and GLIGEN on
COCO-Drop. In this case, REGROUND shows a larger advantage over GLIGEN
in CLIP score, obtaining a gap in CLIP score which is 1.57 times that of the
original MS-COCO-2017 dataset before box dropping for v = 1.0. Such a larger
gap in CLIP score demonstrates that compared to GLIGEN, our REGROUND
better reflects the text prompts even when some entities in the text prompt
are not provided as a bounding box. Fig. [7] displays a representative example,
where GLIGEN fails to generate a “cupcake” when its corresponding bounding
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Fig. 8: Comparison on the COCO-Drop Fig.9: Comparison of FID [16] on MS-
dataset. COCO-2017 |30] dataset.

box is removed in COCO-Drop, whereas our REGROUND robustly generates the
cupcake even when it it not provided as a bounding box.

Image Quality. Fig. |§| displays the relationship between YOLO score [52] and
FID [16] for each method on MS-COCO-2017. Note that the FID of REGROUND
is constantly lower than that of GLIGEN [28], meaning that our network rewiring
also results in higher image quality and diversity.

User Study. We conducted a user study to compare GLIGEN and our Re-
Ground in terms of faithfulness to input text prompts. We used GPT-4 [34]
to generate 100 prompts each containing two different objects, along with a
bounding box for each object. Participants were given the text prompt along
with two images—one from each method—and asked to choose the image that
‘“better includes all the objects from the prompt.’’ Among the 92 out
of 100 participants who passed the vigilance tests, our REGROUND surpassed
GLIGEN, with a preference rate of 70.05% compared to 29.95%. Further details
on the user study are provided in the Supplementary (Sec. S1).

PickScore. We further compare the PickScore [26] of GLIGEN [28] and our
REGROUND given each input text prompt. On MS-COCO-2017, REGROUND is
preferred over GLIGEN by 55.66% to 44.34%, and on COCO-Drop, REGROUND
is preferred by 57.57% to 42.43%.

6.4 Impact of REGROUND as a Backbone

We demonstrate that applying our rewiring of attention modules can also im-
prove text-image alignment in other layout-guided generation methods that use
GLIGEN as a backbone. For instance, BoxDiff [54] is a notable example that
uses GLIGEN as its foundation and improves spatial grounding with respect
to the bounding boxes by leveraging cross-attention maps as additional spatial
cues in a zero-shot manner. Our network rewiring can also be combined with
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. 1K g . . o - : “One rusty truck in the picture, parked on a deserted
BoxDiff (NSR-1K-GPT-Counting) BoxDiff (NSR-1K-GPT-Spatial) Highway with a hauntingly beautiful sunset in the background.”

GLIGEN + BoxDi ReGround + BoxDiff

YOLO Score (APsq)
YOLO Score (APsp)

—— GLIGEN 307 —— GLIGEN
—— ReGround —— ReGround

318 32.0 322 324 32.6 328 327 328 329 330 331 332 333
CLIP Score CLIP Score

(a) NSR-1K-GPT-Counting (b) NSR-1K-GPT-Spatial (c) BoxDiff Outputs

Fig. 10: Comparison of applying BoxDiff on GLIGEN and our REGROUND,
respectively. (a) and (b) show that our REGROUND further improves the grounding
quality of BoxDiff on NSR-1K-GPT datasets. (¢) While BoxDiff with GLIGEN (left)
also shows description omission—omitting “beautiful sunset” from the text prompt—
BoxDiff with our REGROUND contains the sunset in the final image (right).

the zero-shot guidance of BoxDiff. Fig. [I0] illustrates the results on the NSR-
1K-GPT datasets (a) when BoxDiff uses GLIGEN as the base, and (b) when
it uses our REGROUND, the rewired GLIGEN, as the base. It depicts that for
the same range of spatial grounding accuracies, REGROUND obtains noticeably
higher textual grounding (i.e. CLIP score [15]). Also, as shown in Fig. [L0}(c),
our network rewiring allows for a more detailed description to accurately appear
in the final image, both for the entities in the bounding boxes (“¢ruck”) and the
entities that are given as a text prompt (“sunset”).

7 Conclusion

We have demonstrated that a simple network rewiring of attention modules,
making the gated self-attention and cross-attention parallel, surprisingly im-
proves the trade-off between textual and spatial grounding at no additional cost
— without introducing any new parameters, any fine-tuning of the network, or
any changes in generation time and memory. Using the pretrained GLIGEN ,
which was trained with the original sequential architecture of the two attention
modules, the reconfiguration at inference time has led to achieving higher CLIP
scores, indicating the noticeable improvement in textual grounding accuracy.
Moreover, our REGROUND improves the textual grounding while preserving the
spatial grounding accuracy — achieving 70.25% and 68.33% of GLIGEN’s total
improvement with the scheduled sampling in CLIP score while compromising
YOLO score only 3.31% and 2.62% for the MS-COCO-2014 and MS-COCO-2017
datasets, respectively. We also showcased that this simple yet effective solution
for the textual-spatial grounding trade-off can lead to improvements in diverse
frameworks using GLIGEN as a base.

Supplementary. Due to limited space, we provide the following contents in the
Supplementary: details on the evaluation setup (Sec. S1), additional quantitative
(Sec. S2) and qualitative (Sec. S4) comparisons, and more results of REGROUND
as a backbone for other layout-guided generation methods (Sec. S3).
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