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Abstract. Echocardiogram video plays a crucial role in analysing car-
diac function and diagnosing cardiac diseases. Current deep neural net-
work methods primarily aim to enhance diagnosis accuracy by incorpo-
rating prior knowledge, such as segmenting cardiac structures or lesions
annotated by human experts. However, diagnosing the inconsistent be-
haviours of the heart, which exist across both spatial and temporal di-
mensions, remains extremely challenging. For instance, the analysis of
cardiac motion acquires both spatial and temporal information from the
heartbeat cycle. To address this issue, we propose a novel reconstruction-
based approach named CardiacNet to learn a better representation of
local cardiac structures and motion abnormalities through echocardio-
gram videos. CardiacNet accompanied by the Consistency Deformation
Codebook (CDC) and the Consistency Deformed-Discriminator (CDD)
to learn the commonalities across abnormal and normal samples by in-
corporating cardiac prior knowledge. In addition, we propose benchmark
datasets named CardiacNet-PAH and CardiacNet-ASD for evalu-
ating the effectiveness of cardiac disease assessment. In experiments, our
CardiacNet can achieve state-of-the-art results in three different cardiac
disease assessment tasks on public datasets CAMUS, EchoNet, and our
datasets. The code and dataset are available at: https://github.com/xmed-
lab/CardiacNet

1 Introduction

Echocardiogram video, being the most widely used and easily accessible imaging
modality in the field of cardiac medicine, has been proposed as a valuable tool
for assessing various cardiac diseases, such as congenital heart disease [12, 22]
and atypical cardiac motion [27, 36, 43]. Currently, there are several artificial
intelligence methods [5,18,19,25,28–32,34,41,42,47,49,51] available for the as-
sessment and evaluation of cardiac conditions in echocardiography. For instance,
EchoNet [25], a state-of-the-art cardiac assessment method, employs an R2+1D
network to extract global spatiotemporal features from echocardiogram videos

https://github.com/xmed-lab/CardiacNet
https://github.com/xmed-lab/CardiacNet
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(b). Normal - 1(a). Abnormal (ASD) (d). Normal - 2(c). Abnormal (PAH) (e). Normal - 3

Fig. 1: Five examples from CardiacNet-PAH and CardiacNet-ASD datasets.
The appearance between the Atrial Septal Defect (ASD) (a) and normal (b) is easy to
distinguish. For (c), (d) and (e), the appearance of cardiac structures in the Pulmonary
Arterial Hypertension patient (c) and normal (d) are similar. In contrast, normal cases
(d) and (e) show significant differences. Indicates that using a single image is not able
to diagnose this type of cardiac disease. Clinically, experienced physicians will use
echocardiogram videos with cardiac motion information to make diagnoses.

for predicting ejection fraction (EF). However, while these methods excel at cap-
turing spatiotemporal information, they tend to neglect the local characteristics
of cardiac structure, specifically the cyclical heartbeat motion. Furthermore,
their performance is still limited, which restricts their adaptability to a broader
range of cardiac diseases.

To develop a general approach for cardiac disease assessment, we have iden-
tified two important characteristics that encompass a wide range of common
cardiac conditions, including EF, Pulmonary Arterial Hypertension (PAH), and
Atrial Septal Defect (ASD). Specifically, (1) Local Structure Abnormality
refers to cardiac diseases that exhibit clear and distinctive abnormalities in a
localized region within a single frame of an echocardiogram video. As depicted
in Fig. 1(a-b), a hole (highlighted in Red) can be observed in the atrial septum,
enabling the mixing of blood between the left and right atria. (2) Cardiac Mo-
tion Abnormality refers to cardiac diseases that may not have clear distinctive
abnormalities in a single frame of echocardiogram videos, but can be detected
through motion abnormalities of local cardiac structure observed in videos. For
instance, in Fig. 1(c-d), there are no clear differences in cardiac structures be-
tween PAH patients and normal individuals based on a single frame of echocar-
diogram videos. Therefore, it is highly necessary to develop an approach to learn
a better representation across both temporal and spatial patterns of local cardiac
structures via echocardiography.

Existing classification and regression-based disease assessment approaches [9,
20,25,48] typically focus on global information and show difficulty in capturing
local representations. In contrast, the reconstruction-based approaches [10, 11,
33,34,40] offer a more intuitive solution by accurately reconstructing the abnor-
mal and normal cases, enabling a deeper understanding of abnormality distribu-
tion, capturing fine-grained details, and achieving accurate disease assessment
results. However, existing reconstruction-based approaches were mainly designed
for computed tomography (CT), magnetic resonance imaging (MRI), and X-ray
modalities, focusing on abnormalities with low-level details such as tumors, bone
fractures, and anomalous cardiac structures [34]. When directly applying these
approaches to our datasets, their performance in assessing specific cardiac dis-
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Table 1: Summary statistics of datasets CardiacNet-PAH and CardiacNet-ASD and
two public datasets CAMUS [13] and EchoNet [25].
Dataset CardiacNet-PAH (Ours) CardiacNet-ASD (Ours)

Attri-
butes

Total
Videos

Total
Images

PAH
Cases

Normal
Cases

Other
Cases

Resol-
ution

Total
Videos

Total
Images

ASD
Cases

Normal
Cases

Other
Cases

Resol-
ution

496 44,363 342 154 0 720p 231 13,471 100 131 0 720p

Dataset CAMUS [13] EchoNet-Dynamic [25]

Attri-
butes

Total
Videos

Total
Images

EF≥55%
Cases

EF≤50%
Cases

50%<EF<55%
Cases

Resol-
ution

Total
Videos

Total
Images

EF≥55%
Cases

EF≤50%
Cases

50%<EF<55%
Cases

Resol-
ution

500 10,000 201 178 121 480p 10,300 1,755,250 6961 2246 1093 120p

eases with complex abnormalities is often unsatisfactory; see Tables 2 and 3.
This is mainly due to the fact that reconstructing abnormalities from echocar-
diogram videos is more challenging, as it requires considering the local structural
and motion information presented by the heart.

To this end, we present a novel approach called CardiacNet for the assess-
ment of various cardiac diseases. Our key assumption is that once the model is
equipped with the capability to accurately reconstruct abnormalities from nor-
mal cases, it can gain a better understanding of the diseases in terms of their local
structural details and motion changes, and vice versa. To achieve it, our Cardiac-
Net consists of three key components: (1) Consistency Deformation Codebook
(CDC) is designed to simulate the reconstruction process between normal and
abnormal cases, enabling the model to learn the local structural abnormalities
and motion changes associated with the diseases. (2) Consistency Deformation
Discriminator (CDD) aims to improve the quality of reconstructed videos and
maintaining spatiotemporal consistency with the real videos in a discriminative
manner. It prevents the degradation of reconstruction results by preserving the
cardiac motion characteristics and introduces regional discrimination to main-
tain the local consistency of cardiac structural information. (3) We introduce
a bidirectional reconstruction network to facilitate the learning of feature dis-
tributions for both normal and abnormal cases. This approach enhances the
reconstruction process, enabling us to establish the respective distributions and
explicitly optimize the distributions of these two distinct groups.

We evaluate our method in EF prediction using two publicly available datasets,
CAMUS [13] and EchoNet [25], which are the only publicly available echocardio-
gram video datasets for cardiac disease assessment. To comprehensively evaluate
the performance of CardiacNet across a diverse array of cardiac diseases, we in-
troduce two benchmark datasets, namely CardiacNet-PAH and CardiacNet-
ASD, specifically designed for PAH and ASD assessment. A detailed comparison
between our datasets and the public datasets is provided in Table 1. Experimen-
tal results demonstrate that CardiacNet achieves state-of-the-art performance
in three cardiac disease assessment tasks, including EF, PAH, and ASD.

To summarize, the main contributions of this paper are:

– We have constructed two benchmark datasets, the CardiacNet-PAH and the
CardiacNet-ASD, specifically designed for cardiac disease assessment using
echocardiogram videos.

– CardiacNet is a novel approach that can capture local structural details and
cardiac motion changes, enabling accurate assessment of cardiac diseases.
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– Our CardiacNet surpasses prior work in classifying PAH and ASD with an
improvement of 2.1% and 5.0% in accuracy. The CardiacNet also achieves a
relative reduction of 5.2% compared to prior arts in the EF prediction task.

2 Related Works

2.1 Diseases Analysis on Different Modalities

Currently, deep learning-based medical image representation learning on dif-
ferent modalities, such as CT, MRI and X-ray, typically use the reconstruc-
tion approach [11, 15–17, 33, 40]. They usually learn the distribution from the
control normal group and detect out-of-distribution abnormalities with signif-
icant low-level details, such as tumours and bone fractures. These approaches
struggle to differentiate between the complex abnormalities of a specific dis-
ease, as the model focuses more on reconstructing each sample independently
but lacks consideration across data samples. Gradient-weighted Class Activa-
tion Mapping [23,48,50] can highlight the classification decision of feature maps
from the network. Attention [39,41] aims to highlight the out-of-distribution fea-
ture for abnormalities by introducing the attention mechanism. [23, 48, 50] use
the anatomy-guided attention module to describe the confidence of the location
of anomalies and treat them as explicit features to fine-tune the classification
network. However, these methods rely on the classification backbone that is sus-
ceptible to noise and lacks the precision to accurately locate anomalous regions.
The above methods serve for other medical modalities mainly focusing on medi-
cal images with significant lesions and pathology but lack consideration of both
temporal and spatial information of cardiac data.

2.2 Cardiac Diseases Assessment from Echocardiogram Videos

For echocardiogram video, the anomaly analysis can be grouped into anomalies
classification [14,18] and anomalies visualization [18,34], which offer baselines for
adapting activation maps visualization of classification [18], and reconstruction-
based [34] methods. [14] first adapt the regional myocardial wall motion tracking
to detect abnormalities and quantify cardiac function. However, it only focuses
on a single cardiac structure and ignores other information. [34] make the first
attempt to reconstruct echocardiogram videos of normal groups from abnormal
cases for congenital heart defect (CHD) detection. Yet this method barely con-
siders prior knowledge of cardiac morphology. The lack of feature constraints also
leads to the low quality of the reconstructed image. CAMUS [13] and EchoNet-
Dynamic [13] are pioneer research that first proposes the echocardiogram video
datasets for cardiac function evaluation. They also introduce the segmentation
information for reference to predict the ejection fraction score. However, this
task only reveals one of the cardiac functional parameters that is not able to
classify the other cardiac diseases.

To overcome those problems, we thus propose a novel CardiacNet that builds
a consistent relationship of morphological deformation between normal and ab-
normal cases by introducing prior knowledge of cardiac, which helps enable more
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Fig. 2: The overview of our CardiacNet, sample normal case X and abnormal case Y ,
reconstruct the corresponding abnormal and normal results through networks ϕA(·)
and ϕB(·), respectively. The Consistency Deformation Discriminator (CDD) is intro-
duced to retain high reconstruction quality and allow the reconstruction results to be
consistent with actual cases.

accurate evaluation in different tasks. Our new CardiacNet-PAH and CardiacNet-
ASD datasets provide two different cardiac diseases related to cardiac morphol-
ogy abnormalities and motion dysfunction.

3 Methodology

In this section, we introduce the CardiacNet as shown in Fig. 2. Hierarchically,
CMT consists of the bidirectional reconstruction pipeline that simulates the de-
formation process from “normal” to “abnormal” cases and the reverse process.
The Consistency Deformation Codebook (CDC) is designed to formulate de-
formation processes, allows the network to identify patterns of cardiac struc-
tures and motion from data samples with a specific cardiac disease, expect re-
constructed results to match the corresponding features of real samples. The
introduction of module Consistency Deformation Discriminator (CDD) is to
discriminate whether reconstructed results are consistent with real data samples
both spatially and temporally. It also guarantees high-quality echocardiogram
video reconstruction.

3.1 Bidirectional Reconstruction Network

As shown in Fig. 2, two independent networks ϕA(·) and ϕB(·) with the same
type of feature extractor, deformation codebook and decoder, respond to the
reconstruction process of cases between “normal” and “abnormal”. Using the
echocardiogram video input X ∈ RN×H×W×3 sample from the normal set as an
example, where N is the total frame number of the X. First, divide each frame of
X into regular non-overlapping patches and perform masking with the randomly
sampled subset of patches. Then, compute reconstructed abnormal result ϕA(X).
In the final, network ϕB(·) transforms ϕA(X) as XR to the normal result as the
same as input X. With the L1 loss as our supervised reconstruction loss as
follows:

Lrecon(X,XR) = ||X −XR||1, (1)
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Fig. 3: The description of the one-way process of our CardiacNet. The encoded feature
F of the normal case will be quantized by the deformation codebook Z as quantized
feature F̃ . The decoder then recovers F̃ to the reconstructed abnormal result. Accom-
panied by the abnormal case sampled from the dataset, the Consistency Deformation
Discriminator (CDD) is introduced to improve the consistency between reconstructed
results and actual samples with regional discrimination.

where || · ||1 indicate L1 norm. The reconstructed abnormal ϕA(X) and real case
sampled from the abnormal set will be discriminated by the CDD and compute
the adversarial loss Ladv. The process for reconstructing normal results from
abnormal cases shares the same processing pipeline as the above description.

3.2 Consistency Deformation Codebook

Section 1 and research [3, 4, 24, 26, 37] illustrated that human cardiac remains
structurally and morphologically similar, the lesions of cardiac diseases and its
motion are generally dominated by specific locations of main structures and
their substructures (refer to Fig. 1). With a large number of medical cases con-
firmed by experts, the pattern of cardiac structures and motion between normal
and abnormal are able to be learned across samples. Hence, the main goal of the
Consistency Deformation Codebook (CDC) is designed to formulate the pattern
from medical cases. We hypothesise that the network understands the represen-
tation of a specific disease that can also reconstruct normal from abnormal or
its reverse process. Hence, to simulate such behaviours, 1). The proposed CDC
constructs the regional representation for different cardiac structures in order
to maintain the temporal and spatial properties consistent between original and
reconstructed echocardiogram videos. 2). To differentiate the deformation from
“normal” to “abnormal” and its reversed process, we use the transport distance to
distribute the discrepancy of two different distributions from large data samples
and optimize the CDC module of network ϕA(·) and ϕB(·).

Consistent Deformation Encoding. As the pipeline described in Section 3.1
and Fig. 3, the CDC receives the feature map F encoded by the feature extractor
ξ(·) of the network from the input. As discussed above, formulating the deforma-
tion process regionally is a more natural fit in echocardiogram videos. In order to
perform this approach, we discretise the continuous feature F and reconstruct
its latent representation regionally in a vector quantization manner. We first
rewrite the F as F = {Fn,i,j}N×h×w

n,i,j ⊂ Rd for querying the codebook entries
Z = {Zk}Kk=1 ⊂ Rd, where K is the total length of entries. In this step, directly
applying the codebook [2] for quantizing videos disrupts temporal consistency.
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Thus, we add learnable position encoding P = {Pn}Nn=1 ⊂ Rd to feature maps
F along the temporal dimension, which guarantees temporal consistency locally
and globally. Given a subsequent element-wise quantization σ(·), we generate
reconstructed abnormal feature σ(F ) as following:

F̃ = σ(F,Z,P) :=

(
argmin
Zk∈Z

∥∥∥(Fn,i,j + Pn)− Zk

∥∥∥2
2

)
n,i,j

∈ Rt×h×w×d. (2)

For the loss of CDC, following the previous research [2, 44], we end-to-end
train the CDC via Equation 3.

Lq(ξ(I), F̃ ) =
∥∥∥sg[ξ(I)]− F̃

∥∥∥2
2
+ λ ·

∥∥∥sg[F̃ ]
− ξ(I)

∥∥∥2
2
, (3)

where I, sg[·], and λ denote the input of network ϕ(·), the stop-gradient oper-
ation, and the factor of the second loss item that is set as 0.25. Equation 3
guarantees the network commits to the Z since its dimensionless embedding
space may grow arbitrarily during training. For the optimization of the CDC,
we use the exponential moving average (EMA) method to update the codebook
Z as the following equation:

Z ′
new = (1− ω) · Z + ω · Znew, (4)

where ω is the weight for updating the current codebook that is set as 0.01.

Optimal Transport Distance Optimization. The codebook of module CDC
in Section 3.2 is proposed to formulate the pattern of the deformation process
through all data samples from the dataset. To distinguish the distribution of nor-
mal and abnormal sets that are learned by codebooks of network ϕA(·) and ϕB(·),
a more intuitive way is to use relative entropy to represent how one probability
distribution differs from another. In this paper, we adopt the optimal transport
measurement and expect to maximize the distance of deformations between the
normal and abnormal sets. As shown in Fig. 4, networks ϕA(·) and ϕB(·) re-
sponse for feature encoder, compute FX , FY from normal case X and abnormal
case Y . Implicitly, we can directly optimize the distance between codebooks of
ϕA(·) and ϕB(·), which optimizes empirical distributions from entries instead
of all data samples corresponding to each category from the dataset. However,
due to the entries of each codebook being irrelevant and redundant, an entry
in the same position of different codebooks is non-matching and non-equivalent,
which can always be easily optimized to maximize their distance within a few
iterations. Such orderless matching thus will invalidate the optimization, which
indicates implicit optimization is not suitable for our approach.

To tackle this problem, we build two updated memory banks to store features
encoded by CDC for normal and abnormal cases iteratively, which approximates
the distribution of space of data samples. Similar to using EMA to update the
codebook ZA and ZB , in memory banks MA, MB , we replace the ancestral
features with current descendant features from Equation 2 and update the cen-
troid with the EMA approach. Then, explicitly compute the transport distance
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Fig. 4: The optimal transport distance optimization between two networks ϕA(·) and
ϕB(·). Memory banks MA and MB store the features of normal and abnormal data
samples, respectively. The loss LOT(MA,MB) makes these two distributions keep
away from each other. Losses Ldis(F̃X ,MA

), and Ldis(F̃Y ,MB
) make representations

of clusters more consistent.

between codebooks by using Wasserstein distance [8] with Sinkhorn iteration [1],
which formulate as the following equation:

LOT
(
MA,MB

)
=

∑d

i=1

∑J

j=1

∥∥∥ MA
j,i −MB

πi(j),i

∥∥∥2
2
, (5)

where J denotes the number of samples stored in the memory bank M, Mj,i

denote the i-th dimension of j-th sample in M. The πi(·) is a mapping function
to minimize the transport distance of samples between two memory banks as
the following:

πi = argmin
π

∑J

j=1

∥∥∥MA
j,i −MB

π(j),i

∥∥∥2
2
. (6)

Additionally, we minimize the distance between the current quantized fea-
ture and the centroid of the corresponding memory bank. Hence, we use the
representative centroid that averages the features of all samples in M as M.
The centroids M then is used for measuring the discrepancy with the quantized
feature F̃ (defined in Equation 2), the loss is formulated in the following form:

Ldis

(
F̃ ,M

)
=

∥∥∥ F̃ −M
∥∥∥2
2
. (7)

Similarly, the same operation will be conducted for the abnormal input Y . The
overall loss LCDC for optimizing the CDC is:

LCDC = Lq(F
A
X , F̃A

X ) + Lq(F
B
Y , F̃B

Y )

+ Ldis(F̃
A
X ,MA

) + Ldis(F̃
B
Y ,MB

) + LOT(MA,MB),
(8)

where F θ
I = ξθ(I) and F̃ θ

I = σ(F θ
I ,Zθ,Pθ) for θ ∈ {A,B}, and I ∈ {X,Y } for

paired (X,Y ) input.
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3.3 Consistency Deformation Discriminator

The introduction of CDD ensures the reconstructed echocardiogram videos re-
main consistent in their spatially and temporally visual properties, such as tex-
tures and colors. Also, the discriminator acts as an adversary that forces the
reconstructed results to conform with the real data in semantic properties, such
as structural abnormalities and motion dysfunction of a specific cardiac disease.
Hence, the CDD consists of two discriminators, denoted as ηS(·) and ηT (·), which
discriminate reconstructed results and real samples. The ηT (·) for spatial consis-
tency discriminates every single frame of a video while the ηS(·) responds to the
temporal consistency that takes the whole video as input. Using the reconstruc-
tion process from normal to abnormal as an example, we let {X̂n}Nn=1 = ϕA(X)
and {Ŷn}Nn=1 = Ŷ to represent the reconstructed video and real abnormal video,
respectively. As shown in Fig. 3, globally, we use the ηT (·) to discriminate the
whole reconstructed video ϕA(X) and sampled real video Ŷ , as the first term in
Equation 9. The ηT (·) takes each frame of ϕA(X) and Ŷ in order as an image
pair for the spatial discrimination as the second term in Equation 9.

Locally, we need to guarantee that each region of cardiac can also conduct
high-quality reconstruction as well as remain consistent with real cases. For
example, for the process of reconstructing normal X to abnormal ϕA(X), the
discrepancy of motion between reconstructed results ϕA(X) and real abnormal
sample Y should remain consistent for a person. Hence, we first convert Ŷ and
ϕA(X) to non-overlap patches as {Ŷi,j}h,wi=1,j=1, {X̂i,j}h,wi=1,j=1 ∈ RN×H

h ×W
w ×3,

where H
h ,

W
w ∈ Z+, W and H is the width and height of input images, w and h

is the size of width and height of the feature map. The overall adversarial loss
for global and local discrimination can be formulated as the following Equation:

Ladv(ϕ
A(X), Y ) =

(
log(ηT (ϕA(X))) + log(1− ηT (Y ))

)
+
∑t

n=1

[
log(1− ηS(X̂n)) + log(ηS(Ŷn))

]
+
∑h,w

i=1,j=1

[
log(1− ηT (X̂i,j)) + log(ηT (Ŷi,j))

]
.

(9)

To address the necessity of both global and local discrimination, we conduct
the ablation study as shown in Section 4.4 and Table 4. For the overall ad-
versarial loss, according to Equation 9, we have LCDD = Ladv(ϕ

A(X), Y ) +
Ladv(ϕ

B(Y ), X). In the final, applying the End-to-End training for the CMT
and combining the loss from CDC and CDD, the overall loss of our CardiacNet
is Lall = LCDC + LCDD + Lrecon(X,XR) + Lrecon(Y, Y

R).

4 Experiments

4.1 Dataset

We evaluate our method on three datasets, including two public datasets CA-
MUS [13] and Echonet-Dynamic [25], as well as our collected dataset CardiacNet-
PAH and CardiacNet-ASD.
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CardiacNet-PAH and CardiacNet-ASD. We collect datasets from four col-
laborating hospitals. To guarantee all echocardiogram videos are standards-
compliant, each case underwent a video from the apical four-chamber heart
(A4C) view are collected, annotated and approved by 5-6 experienced physi-
cians. Ethically, we strictly adhere to the ethical standards of medical research
and ensure that the local ethics committee approves all image data collection
and experiments. As shown in Table 1, the CardiacNet-PAH consists of 496
cases for classifying Pulmonary Arterial Hypertension (PAH), and the diagnosis
of patients is accessed and approved through Right Heart Catheterization mea-
surement. In CardiacNet-ASD, 231 cases for classifying the Atrial Septal Defect
(ASD) are diagnosed and annotated by experienced physicians. The resolution
of each video is either 800×600 or 1024×768, depending on the type of scanner
(Philips or HITACHI). A total of 727 videos are collected, and each video con-
sists of over 100 frames, covering at least two heartbeat cycles. We also collect
Pixel-level annotations of cardiac structure for reconstruction evaluation, includ-
ing masks for the left ventricle (LV), right ventricle (RV), left atrium (LA), and
right atrium (RA) in the A4C view. Five frames are provided with pixel-level
annotation masks for each video.

CAMUS [13] and EchoNet-Dynamic [25]. CAMUS consists of 500 echocar-
diogram videos with pixel-level annotations for the left ventricle, myocardium,
and left atrium. EchoNet-Dynamic [25] (EchoNet) is the largest echocardiogram
video dataset, including 10,030 videos. Both datasets annotated 2 frames (end
diastole and end systole) of left ventricle segmentation. The Ejection Fraction
(EF) score is provided for each video for the regression task. In this paper, we
follow the [21] that use cases in CMAUS and EchoNet with EF ≤ 50% as the
abnormal group while EF ≥ 55% as the normal group for classification class.

4.2 Implementation Details

Training. The backbone of our methods is built on the generative network [2].
We trained the model using the Adam optimizer with a weight decay of 1e−3

and a momentum of 0.9. The model was trained for a total of 1, 000 epochs
with an initial learning rate of 2.25e−4, and the learning rate was decreased by a
factor of 0.1 for every 400 epochs. The batch size was set to 2 in our experiment.
For spatial data augmentation, each frame was resized to 144 × 144 and then
randomly cropped to 112 × 112. The frames were also randomly flipped verti-
cally and horizontally. For temporal data augmentation, we randomly selected
48 continuous frames from an echocardiogram video and sampled 16 frames as
input equidistantly. The CardiacNet was split in a ratio of 8:1:1 for training,
validation and testing. For the CAMUS and EchoNet datasets, we follow the
same data argumentation recipe as our CardiacNet. We also follow the default
dataset split provided by the official setting [13] and [25].

Inference and Testing. During this stage, we took the feature extractor ξA(·)
of network ϕA(·) saved from the final iteration as our testing model. For car-
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diac disease assessment tasks, classification and regression, we first freeze the
parameter of the feature extractor in the trained model. Then, for each input,
we flattened the feature and fine-tuned different tasks with a single Linear layer.
We report the final results and perform visualization on the testing set. Dur-
ing this stage, we do not conduct any argumentation for input echocardiogram
video except resize frames to 144× 144 and apply center cropping to 112× 112.
For the length of input videos in inference, The number of input frames is 16,
and the sample rate is 4. For evaluating the reconstruction result, we trained
a segmentation network according to the segmentation annotation presented by
the dataset. During inference, the reconstruction result from pre-trained network
ϕA(·) will be input to the segmentation network and perform the evaluation.

Evaluation Metrics. For PAH, ASD and EF classification, we use the Area
Under the ROC Curve (AUC) and classification accuracy (ACC) to evaluate
the performance of trained networks in classifying anomalies. We predict the EF
values and report the Mean Absolute Error (MAE) for CAMUS and Echonet
datasets that evaluate the Ejection Fraction (EF) score. In order to evaluate
the reconstruction quality, we use Fréchet Inception Distance (FID) to evaluate
the quality of recovery images. For ASD, we also introduce the DICE score to
evaluate whether recovered images are consistent with the original image in the
ventricles and atrium of cardiac structures. This is due to the recovery from ASD
to normal does not affect the volume of cardiac structures. For each method, we
also compare their efficiency by reporting the inference time, the number of
parameters (MParams) and Tera-Flops (TFlops).

4.3 Results

Result on CardiacNet-PAH and CardiacNet-ASD. Table 2 illustrates
the comparison result of PAH classification results in CardiacNet-PAH. We cur-
rently categorise open-source methods into classification/regression models and
reconstruction-based models. The AUC-ROC and ACC illustrate the perfor-
mance of models in distinguishing normal and abnormal cases. Our CardiacNet
achieves 89.32% and 85.71% in AUC-ROC and ACC, respectively, while the
HiFuse [9] reaches the second-best results with 84.11% and 83.67%, where Car-
diacNet surpass by +5.21% and +2.04%. Indicating our method can outperform
other methods by a considerable margin. For reconstructed image quality evalu-
ation, compared to the Wolleb et al. [45] reaches 16.12 in FID score, our method
can achieve 14.73, which shows that our method can perform better reconstruc-
tion quality in echocardiogram videos.

Compared to PAH classification, classifying ASD is an easier task due to ASD
presenting more significant morphological anomalies. For the classification per-
formance in CardiacNet-ASD, the AUC-ROC and ACC presented by our method
are 91.24% and 89.63%, outperforming the best baseline DeepGuide [20] by a
margin of +6.22% and +4.84%. As illustrated in Table 2, CardiacNet achieves
15.22 in FID score with 0.56 improvement than the second best method Wolleb

†One step TFlops of denoising. A total of 1000 steps are used in inference.
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Table 2: The result of classification in our CardiacNet-PAH and CardiacNet-ASD,
reporting results in metrics FID, AUC-ROC (%) and ACC (%). For ASD, with DICE
(%) score to evaluate the segmentation accuracy of reconstructed images compared
with ground truth. The classification networks do not reconstruct the image, and the
FID is not provided for these approaches. Underline denotes the second-best result.

Methods
Datasets EfficiencyCardiacNet-PAH CardiacNet-ASD

FID↓ AUC-ROC↑ ACC↑ FID↓ DICE↑ AUC-ROC↑ ACC↑ Time↓ MParams↓ TFlops↓
Classification Network

ResNet3D [7] - 77.32 71.43 - - 72.25 75.86 2.479 47.02 0.202
AGXNet [48] - 76.09 72.41 - - 76.52 72.41 2.873 12.31 0.210
EchoNet [25] - 81.63 80.95 - - 83.62 82.75 2.653 33.19 0.848

DeepGuide [20] - 82.45 81.63 - - 85.02 84.79 3.780 15.60 0.748
DiffMIC [40] - 81.73 79.59 - - 82.81 81.48 1182 88.56 38.58†

HiFuse [9] - 84.11 83.67 - - 81.08 79.31 3.183 135.7 5.106
Reconstruction-Based Methods

Vanilla GAN [2] 18.90 52.37 46.15 19.07 63.55 60.54 58.62 2.221 12.95 0.842
DAE [11] 16.39 58.91 57.69 15.38 65.80 54.09 53.77 1534 159.4 78.08†

VTGAN [10] 17.66 58.32 51.72 18.10 65.13 70.92 68.97 38.50 243.3 1.423
Att. UNet [39] 18.42 57.29 55.17 18.95 64.30 69.81 62.06 2.621 34.88 4.081

Wolleb et al. [45] 16.12 70.42 67.35 15.78 68.61 67.88 65.51 1488 89.87 45.13†

DeScarGAN [46] 16.59 64.21 71.42 17.04 68.52 71.33 68.97 2.756 8.528 2.756
Diff-SCM [35] 15.57 64.23 61.22 16.37 63.26 69.23 70.83 1295 53.41 40.37†

CyTran [33] 16.40 72.69 69.38 16.93 70.21 74.35 72.41 2.769 1.191 0.125
CardiacNet (Ours) 14.73 89.32 85.71 15.22 73.52 91.24 89.63 4.523 28.34 7.949

Table 3: The result of ejection fraction regression and abnormal classification in pub-
licly CAMUS [13] and EchoNet [25] dataset. Reporting results in metrics FID, AUC-
ROC (%) and ACC (%), with Mean Absolute Error (MAE) of ejection fraction score
regression for CAMUS and EchoNet. The classification/regression networks do not
reconstruct the image, and the FID is not provided for these approaches. Underline
denotes the second-best result.

Methods
Datasets

CAMUS EchoNet
FID↓ MAE↓ AUC↑ ACC↑ FID↓ MAE↓ AUC↑ ACC↑

Classification / Regression Network
ResNet3D [7] - 7.59 70.34 68.00 - 5.44 78.80 75.44
AGXNet [48] - 6.91 76.58 72.00 - 5.17 78.46 80.02

DeepGuide [20] - 6.72 79.66 74.00 - 4.70 84.33 79.59
EchoNet [25] - 6.30 80.75 76.00 - 4.22 83.19 81.52
HiFuse [9] - 6.34 80.26 76.00 - 4.08 85.73 82.41

Reconstruction-Based Methods
Vanilla GAN [2] 17.24 12.59 65.11 66.00 17.36 20.23 50.18 50.60

VTGAN [10] 16.95 13.72 61.62 56.00 15.83 12.87 61.56 61.05
Att. UNet [39] 17.72 9.48 65.60 62.00 16.44 8.25 65.09 61.92
CyTran [33] 15.82 8.52 66.42 66.00 15.07 7.59 68.45 66.53

DeScarGAN [46] 15.56 6.80 73.24 68.00 14.19 7.23 73.24 71.08
Wolleb et al. [45] 15.17 8.06 75.96 74.00 13.18 8.50 72.38 69.57

CardiacNet (Ours) 14.64 5.97 83.09 80.00 13.25 3.83 86.52 84.70

et al. [45]. Also, to evaluate that the reconstructed image is consistent in volume
sizes of different cardiac structures, our method achieves the best Dice score of
73.52%, while other methods are significantly below 70%.

Result on CAMUS and EchoNet. As shown in Table 3 in columns CAMUS
and EchoNet, for the regression task of EF score prediction in both datasets, re-
sults achieved by our method are considerably better than others, with 5.97 and
3.83 MAE in the regression task. In contrast, the second best method, HiFuse [9],
reaches only 6.34 and 4.08 in MAE, respectively. Illustrates our method Cardiac-
Net is able to learn the better representation for the regression task. For disease
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Table 4: Effectiveness of
CDC and CDD. Results re-
port in CardiacNet-PAH.

CDC CDD Results
FID AUC ACC
18.90 52.37 46.15
16.82 80.27 79.59
17.09 52.46 53.84
14.73 89.23 85.71

Table 5: Ablation study
of Positional Encoding and
Optimal Transport in only
CDC module.

Pos.
Encode

Opt.
Trans

Results
FID AUC ACC
18.90 52.37 46.15
17.41 62.44 65.38
18.06 78.39 75.51
16.82 80.27 79.59

Table 6: Ablation study of
Global and Local discrimi-
nator in CDD module (En-
abling CDC).

Global.
CDD

Local.
CDD

Results
FID AUC ACC
16.82 80.27 79.59
15.62 82.41 83.67
15.41 84.57 81.63
14.73 89.23 85.71

classification, the AUC-ROC and ACC of our method in CMUAS are 83.09% and
79.11%, respectively, while reaching 86.52% and 84.70% in EchoNet. The second
best method is HiFuse with the AUC-ROC and ACC of 80.26% and 76.13%
in CAMUS as well as 85.73% and 82.41% in EchoNet, respectively. Results il-
lustrate our method is more accurate in classifying patients with abnormal left
ventricular endocardium in both end-diastole (ED) and end-systole (ES). Com-
pared with other methods in reconstructing high-quality videos, our method can
achieve the FID score of 14.64 and 13.25 while Wolleb et al. [45] achieve 15.17 and
13.18 in CMUAS and EchoNet datasets, with the higher reconstruction quality
in EchoNet dataset.

4.4 Ablation Study

Consistency Deformation Codebook. As shown in Table 5, the ablation
study of the CDC module consists of positional encoding and optimal transport.
Compared to the results of disabling these two modules, the position encoding
for temporal consistency can enhance reconstruction quality by around 1.34 in
FID and classification accuracy by around 20%. The improvement of the above
two numbers contributed by optimal transport is around 0.84 and 30%. These
results show both the positional embedding and optimal transport are efficient
and can help CardiacNet to learn the better representation of cardiac diseases.
Furthermore, we visualize the embedding features of PAH patients and normal
cases in Fig 5. Our reconstruction network produces embedding features without
using additional layers, which shows that our CDC can help distinguish cardiac
structural and motion abnormalities.

Consistency Deformation Discriminator. As shown in Table 6, both global
and local discriminators can contribute to the CDD module. Due to their con-
straint of the spatial and temporal consistency within patches (see section 3.3),
the CDD brings improvement in reconstructed image quality. Using only the
global or local discriminator leads to significant degradation in the FID score
and classification accuracy. The ablation study in Table 4 shows the combi-
nation of CDD, CDC, and CardiacNet achieves the best performance in both
reconstruction and classification.

The Visualization of Reconstruction Cases. As shown in Fig. 6, our method
is able to reconstruct the possible “normal” images from abnormal cases com-
pared with other reconstruction methods. Our reconstructed images remain high
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Epoch : 10 Epoch : 100 Epoch : 300

Abnormal
Normal

Abnormal
Normal

Abnormal
Normal

Abnormal
Normal

Epoch : 500

Fig. 5: The visualization of t-SNE results between learned embedding of normal and
abnormal cases by our CardiacNet in epochs 10, 100, 300 and 500.

Atrial Septal 

Defect

Ours Vanilla GAN     VTGAN DeScarGAN     CeVAE MemAE       DAE CyTran       Wolleb et al.

Fig. 6: The visualization case of recovery results across ours and eight different
reconstruction-based methods [6,10,11,33,38,39,45,46,52]. We use cases from patients
with Atrial Septal Defect (ASD). We let experienced physicians annotate possible ab-
normal areas and visualize the difference by using the heatmap. (Best view in colour)

quality and can provide more reasonable visualization results that are approved
by experienced physicians. As shown in two different cases, the disappearance
of the atrial septum and the abnormal right atrial volume can be distinguished
and recovered while maintaining the reconstruction quality.

5 Conclusion

In this paper, we first proposed a novel CardiacNet for learning the morphologi-
cal abnormalities and motion dysfunction of cardiac disease through echocardio-
gram videos. We introduce a new benchmark dataset that includes two different
types of cardiac diseases as well as cardiac structure segmentation. All cases
are annotated and confirmed by experienced physicians, which can significantly
contribute to the medical image analysing community and further the devel-
opment in detecting morphological abnormalities and motion dysfunction for
cardiac diseases. In our future study, we will further our exploration in more
fine-grained echocardiogram video reconstruction that enables symptom grad-
ing for diseases with the visualization of morphological lesions. Moreover, we
will make attempts to involve other state-of-the-art techniques, such as Large
language models (LLMs) and multi-modality fusion, to generate more precise
and robust results.
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