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Abstract. Self-supervised pre-training of image encoders is omnipresent
in the literature, particularly following the introduction of Masked au-
toencoders (MAE). Current efforts attempt to learn object-centric rep-
resentations from motion in videos. In particular, SiamMAE recently
introduced a Siamese network, training a shared-weight encoder from
two frames of a video with a high asymmetric masking ratio (95%). In
this work, we propose CropMAE, an alternative approach to the Siamese
pre-training introduced by SiamMAE. Our method specifically differs by
exclusively considering pairs of cropped images sourced from the same
image but cropped differently, deviating from the conventional pairs of
frames extracted from a video. CropMAE therefore alleviates the need
for video datasets, while maintaining competitive performances and dras-
tically reducing pre-training and learning time. Furthermore, we demon-
strate that CropMAE learns similar object-centric representations with-
out explicit motion, showing that current self-supervised learning meth-
ods do not learn such representations from explicit object motion, but
rather thanks to the implicit image transformations that occur between
the two views. Finally, CropMAE achieves the highest masking ratio to
date (98.5%), enabling the reconstruction of images using only two vis-
ible patches. Our code is available at https://github.com/alexandre-
eymael/CropMAE.

Keywords: Self-supervised learning, Masked autoencoders, Siamese net-
works, Video segmentation, Label propagation.

1 Introduction

Self-supervised learning (SSL) has become increasingly popular in the last few
years thanks to its capacity to learn meaningful and robust representation with-
out the need for labels, sometimes even leading to performances on downstream
tasks surpassing its supervised counterpart. This is especially interesting in do-
mains in which data labelling is costly, such as image segmentation or object de-
tection, or when the exact task to solve is not known beforehand [1]. Among pop-
ular self-supervised paradigms, visual contrastive learning [7,20,24] and masked
image modeling (MIM) [23,30,48] have received significant interest due to their
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Fig. 1: CropMAE self-supervised pre-training. Given an input image (V1), a
second image is generated by performing a random crop and, optionally, a horizontal
flip on the original image (V2). We then patchify [13] both views and mask [23, 30] an
extremely high portion of the second image (above 98.5%). Both views are encoded by
a Siamese [5] ViT encoder, with added positional embedding [13]. A transformer [19]
decoder reconstructs the masked image R using self-attention layers on the tokens of
the masked image and cross-attention layers between the tokens of the masked and
unmasked images.

impressive performance. While highly effective, MIM methods often require a
large amount of data and/or extensive training time to achieve satisfactory per-
formance [16,21,41]. This necessity largely stems from their objective to develop
a conceptual understanding of the data distribution they are trained on, enabling
them to reconstruct images at the pixel level. This challenge is particularly pro-
nounced with Vision Transformers (ViTs) [13] as encoders, as they perform sub-
optimally with limited data due to the lack of visual inductive biases that they
exhibit [13]. A major weakness of contrastive learning techniques is that they
rely on carefully chosen transformations to achieve good performances [7,20,47].

Recently, Siamese Masked autoencoders (SiamMAE) [21] achieved state-of-
the-art performance in numerous propagation tasks [27,35,52] by learning object-
centric representations from videos. This method leverages a Siamese encoder [5]
to process pairs of frames that are asymmetrically masked. Despite its impres-
sive performance, SiamMAE faces two main limitations. Firstly, it is designed
to only process video frames, not standalone images. Yet, image datasets are
typically orders of magnitude larger than video datasets, and less computation-
ally expensive to decode, making image-based pre-training more effective and
scalable than video-based pre-training. Secondly, while SiamMAE reduces the
need for the intense data augmentation found in contrastive learning methods, it
still requires learning a conceptual understanding of the visual world, similar to
most MIM techniques, thus requiring extensive training (2,000 epochs) on large
datasets such as K400 [29] to reach state-of-the-art performances.
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In this work, we propose a novel self-supervised learning method, called Crop-
MAE, that reframes the siamese-based paradigm introduced in SiamMAE in
order to alleviate the need for video dataset, while keeping competitive perfor-
mances on downstream tasks. Specifically, we use random views of the same
image to simulate viewpoint changes, object transformations, motion, and oc-
clusions. Our method can therefore leverage both image and video datasets, and
train at a significantly faster pace than SiamMAE. Moreover, we demonstrate
that CropMAE learns meaningful object-centric representations for downstream
video tasks without explicit motion. Finally, unlike most MIM techniques, the
pretext task of CropMAE is directly tractable based on the visible frame with-
out the need to learn conceptual information about the world, which we believe
is the reason for its faster training. An overview of our method is presented
in Figure 1.

Contributions. We summarize our contributions as follows. (i) We introduce a
novel pre-training method, CropMAE, based on sole images, which alleviates the
need for video decoding and significantly accelerates training. The novel pretext
task we introduce learns faster while quickly reaching good performances. (ii) We
empirically demonstrate the feasibility of learning meaningful representations for
downstream video tasks from still images or data distributions traditionally not
associated with videos. Notably, this approach yields better results than training
directly on video frames. (iii) We show, for the first time, that employing an
extremely high masking ratio (98.5%, i.e., using only two visible patches for
a ViT/16), surpassing those explored in existing studies, can be optimal and
generate a meaningful and challenging self-supervised task.

2 Related Work

Visual representation learning. Visual self-supervised learning focuses on
learning rich and generalizable representations of images or videos. This is typ-
ically achieved through pretext tasks [7, 32, 33, 39], enabling the learned repre-
sentations to be applicable to a broad set of downstream tasks [11,14,52], either
by fine-tuning the learned models for specific tasks, or by freezing the weights
and training a linear classifier or an MLP on top of it. Key downstream tasks
in the visual domain include image classification [3, 6, 7, 9, 18, 20, 23, 34, 48, 51],
video classification [15,16,18,34,41,44], object detection [9,20,23], and video seg-
mentation [4,6,9,21,28]. Our method, CropMAE, is a new visual self-supervised
representation learning method for propagation tasks [27,35,52].

Contrastive Self-Supervised Learning. Contrastive self-supervised learn-
ing [22] has been recognized as an effective method for feature extraction, ap-
plicable both to images [9,20] and videos [10,38]. This approach encourages the
encoder to learn robust representations of the input data by minimizing the dis-
tance between representations of different augmented versions of the same image.
Initially, it was common to enforce distinct images to have different representa-
tions in order to avoid representation collapse [7, 12, 46]. However, subsequent
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discoveries [20, 24] have shown that robust learning can be achieved even with-
out imposing this constraint. Contrastive self-supervised learning has also been
widely used for correspondence learning [26, 45], as it inherently learns to build
representations that are invariant and robust to perturbations. Contrary to con-
trastive learning, CropMAE does not rely as extensively on data augmentations
and is not subject to representation collapse issues.

Masked Image Modeling. Drawing inspiration from the field of natural lan-
guage processing [30], masked image modeling (MIM) techniques have emerged
as highly effective learners in the vision domain [3, 23, 49]. This approach in-
volves dividing images into small patches [13], with a high proportion of them
being masked, and subsequently reconstructing them using a denoising autoen-
coder [43]. Notably, after the training phase, the decoder is discarded, leaving
the encoder to serve as a feature extractor. MIM has been applied with success
across a broad range of fields, and has had numerous extensions and improve-
ments [2, 8, 15–18,21,28,34,36,41,44].

Siamese Masked Autoencoders. Building upon the work of masked autoen-
coders [23], Siamese Masked Autoencoders (SiamMAE) [21] have emerged as a
new state-of-the-art in video propagation tasks such as video object segmenta-
tion [35], pose keypoint propagation [27], and semantic part propagation [52].
SiameseMAE uses a Siamese encoder [5] to process either pairs [21] or groups [28]
of frames, randomly selected from a video. A key feature of SiameseMAE is its
asymmetric masking technique: the initial frame undergoes no masking, thereby
serving as a complete reference, while a substantial portion (up to 95%) of the
second frame is masked. This setup encourages the network to accurately re-
construct the masked subsequent frames using the fully visible initial frame as
a reference. The efficacy of SiameseMAE is believed to stem from its ability to
effectively model object motion from videos and visual correspondence, learning
the “propagation” and boundaries of objects from their observed positions in
the past to their future locations, based on the few visible patches [21]. In this
work, we show that explicit motion derived from videos is not mandatory for
Siamese masked autoencoders to learn object-centric representations. Particu-
larly, we demonstrate that the ability to recognize object boundaries and acquire
propagation skills can be effectively learned from still images.

3 Method

We propose a novel self-supervised method, namely CropMAE, capable of learn-
ing valuable representations both from images and video frames. First, we create
two augmented views (V1 and V2) of an input image (I) by randomly crop-
ping, resizing and horizontally flipping the original image (Sec. 3.1). Second, we
patchify [13] both views V1 and V2 (Sec. 3.2) and mask [23, 30] an extremely
high portion of the second view (V2) (Sec. 3.3). Both views are encoded in a
Siamese [5] ViT encoder, with an additional positional embedding [13]. Third, a
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Fig. 2: Illustration of our four cropping strategies. For a given input image I,
we generate an unmasked view V1 and a masked view V2 following one of four different
cropping strategies: (a) Same Views, where V1 = V2; (b) Random Views, where V1 and
V2 are two independent random crops; (c) Local-to-Global, where V1 is a random crop
within V2, and (d) Global-to-Local, where V2 is a random crop within V1.

transformer [19] decoder reconstructs a target image R (Sec. 3.4). The Siamese
network and the decoder are trained by minimizing the L2 norm between the
target V2 and the reconstructed image R. After such pre-training, the decoder is
discarded, and we use the encoder as a feature extractor on downstream tasks.
With this setup, we demonstrate that meaningful data augmentations, particu-
larly random crops, can generate rich and useful object-centric representations
for propagation tasks without explicit motion. Figure 1 illustrates the main
components of our method.

3.1 Cropping

Random crops have been widely used in visual self-supervised learning, especially
in contrastive learning, where they are essential to reach excellent performances
and develop robust representations [7,9,20]. Specifically, we examine four strate-
gies inspired by the contrastive learning literature [7].

– Same Views. This setup corresponds to a direct adaptation of SiamMAE
to images, in which the input image I is cropped once and serves both as V1

and V2. An illustration is given in Figure 2a.
– Random Views. For a given input image I, two independent random

cropped views are generated for V1 and V2. This setup poses a challenge,
particularly when the views are adjacent, i.e., that there is minimal to no
overlap between the two crops as illustrated in Figure 2b.

– Local-to-Global Views. In this setup, the masked view V2 is a random
crop of the original image I, and the unmasked view V1 is another random
crop of the masked view V2. An illustration is provided in Figure 2c.

– Global-to-Local Views. Inversely, the unmasked view V1 is a random crop
of the original image I, and the masked view V2 is another random crop of
the unmasked view V1. An illustration is provided in Figure 2d.

Note that our experiments indicate that the Global-to-Local view strategy leads
to the best performance.
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3.2 Patching

The two views V1 and V2 are patched following the original ViT [13]. Specifically,
each view is converted into N ×N patches that are fed into the encoder. Similar
to SiamMAE, we augment the linear projections of these patches with positional
embeddings [42], and append a [CLS] token.

3.3 Masking

Since both views are highly spatially redundant, a high masking ratio (above
75%) is usually necessary to create a challenging pretext task and to achieve
optimized performances with masked autoencoders [23]. This is even more im-
portant in videos where both the spatial and temporal dimensions are highly re-
dundant, requiring even higher masking ratios (90%) [16,41,44]. SiamMAE [21]
employs a highly asymmetrical masking strategy, where the first frame is left
completely visible while the second one is masked at 95%, which corresponds to
9 visible patches out of the 196 available when using a ViT/16 [13]. Using such a
high masking ratio encourages the model to propagate the visible patches from
the first frame to the second one and to learn temporal correspondences through
motion [21]. However, employing a high masking ratio can make some examples
ambiguous or may require additional knowledge beyond merely “propagating”
patches from the unmasked view. For instance, if an object is only partially vis-
ible in the first view, while it is completely present (but masked) in the second
one, the task becomes intractable if the model relies solely on the first view to
reconstruct it. This prompts the model to learn a conceptual representation of
the objects it encounters [23], enabling it to “hallucinate” what it partially sees
when propagating past patches is either impossible or insufficiently informative.

Unlike previously introduced MAE methods, CropMAE does not need to
learn any conceptual information about objects. Indeed, since our pretext task
reconstructs a local view from a global one, there is no ambiguity as the local
view is always present within the global view. Provided that the model (i) suc-
cessfully identifies the location of the local view within the global view based
on the visible patches and (ii) accurately determines the transformations re-
quired to reconstruct the local view from the global view, the task is directly
tractable based on the inputs that the model receives without any prior concep-
tual knowledge. This naturally makes the pretext task significantly easier than
in other MAE approaches such as MAE [23], VideoMAE [41], or SiamMAE [21],
where rich conceptual representations should be used to solve the task. For that
reason, we employ an even higher masking ratio. More specifically, our method
performs best with only a few visible patches, typically 1 or 2 out of 196, which
corresponds to a masking ratio between 98% and 99%. Note that increasing the
masking ratio from 95% to 98.5% decreases the number of visible patches by a
factor of 4.5, reducing them from 9 to just two visible patches.
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3.4 Encoder and Decoder Architectures

Following [21], we use a Siamese ViT [13] encoder to process our two views
and a vanilla Transformer [42] composed of cross-attention and self-attention
layers as our decoder. Specifically, our decoder alternates between self-attention,
where tokens of the masked image attend to each other, and cross-attention
layers, where the tokens of the masked image attend to tokens of the visible
image. We train the Siamese architecture by minimizing the L2 loss between the
normalized [23] pixel values of the view V2 and the reconstruction R.

4 Experiments

4.1 Experimental setup

Implementation details. Following previous methods [6, 21, 41], we use the
ViT-S/16 as encoder architecture [13] for most of our experiments and fair com-
parisons with respect to other methods in the field. For the decoder, we employ
a 4-layer Transformer [42] with a dimension dmodel = 256, where each block
comprises a cross-attention layer, a feed-forward layer (of dimension dff = 2048),
and a self-attention layer. GELU activation functions [25] are utilized alongside
a dropout rate of 10% [40]. We use the AdamW [31] optimizer and a base learn-
ing rate of 1.5e−4. The exhaustive list of hyper-parameters that we use can be
found in the Appendix.

Baselines. We compare our method with several state-of-the-art methods in-
cluding MAE-ST [16], MAE [23], VideoMAE [41], and SiamMAE [21]. To the
best of our knowledge, no official open-source code is available for SiamMAE, so
we reimplemented it to compare the evolution of our performance during train-
ing, using the exact same hyperparameters described in the SiamMAE paper
(refer to the supplementary material). Our results are consistent with the ones
reported in their paper [21]. However, we train for 400 epochs instead of 2000
to save computational resources. Results for longer training can be found in the
Appendix.

Datasets. We pre-train our models on Kinetics-400 [29] (K400), on ImageNet [37]
(IN), or on a subset of ImageNet (IN Subset). IN Subset contains 239, 787 ran-
domly selected images, which corresponds to the number of videos in K400, for
fair comparison between methods trained on K400 and ImageNet. During pre-
training, we randomly sample an image (or a frame on K400), which is then
processed following our methodology described in Section 3.

Downstream tasks. We evaluate our method on three propagation down-
stream tasks: video object segmentation (DAVIS-2017 [35]), human pose prop-
agation (JHMDB [27]) and semantic part propagation (VIP [52]). These propa-
gation tasks are framed as a semi-supervised problem, where the first annotated
frame is provided, and the model is expected to propagate the segmentation
mask to subsequent frames.
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Table 1: Comparison with prior work. We evaluate our method on three down-
stream tasks: video object segmentation (DAVIS-2017 [35]), human pose propagation
(JHMDB [27]) and semantic part propagation (VIP [52]). Specifically, we compare
our method with other methods trained on 400 epochs, on K400 [29] or on our Ima-
geNet [11] Subset (IN Sub) for fair comparison. † refers to results reported in [21]. ‡
refers to our implementation.

DAVIS VIP JHMDB
Method Backbone Dataset Epochs J&Fm Jm Fm mIoU PCK@0.1 PCK@0.2

MAE-ST [16] † ViT-L/16 K400 800 54.6 55.5 53.6 33.2 44.4 72.5
MAE [23] † VIT-B/16 IN 1600 53.5 52.1 55.0 28.1 44.6 73.4
VideoMAE [41] † ViT-S/16 K400 800 39.3 39.7 38.9 23.3 41.0 67.9
SiamMAE [21] † ViT-S/16 K400 2000 62.0 60.3 63.7 37.3 47.0 76.1

SiamMAE [21] ‡ ViT-S/16 K400 400 57.9 56.0 60.0 33.2 46.1 74.0
CropMAE (ours) ViT-S/16 K400 400 58.6 55.8 61.4 33.7 42.9 71.1
CropMAE (ours) ViT-S/16 IN Sub 400 60.4 57.6 63.3 33.3 43.6 72.0

CropMAE (ours) ViT-B/16 IN Sub 400 60.9 57.9 63.8 32.8 44.3 72.3

4.2 Results

We compare our method to previous works and present quantitative results in
Table 1. We then provide some qualitative results of the reconstructed image and
the downstream tasks respectively in Figures 3 and 4. The first part of Table 1
displays results as reported in their original papers, under optimal training con-
ditions in terms of both training duration and data volume. In the second part,
we report the results achieved by our reproduced implementation of SiamMAE
and CropMAE under our constrained training: either on K400 or on our Ima-
geNet Subset, for a fixed duration of 400 epochs, and for both ViT-S/16 and
ViT-B/16.

When trained for 2,000 epochs on K400, SiamMAE achieves state-of-the-art
performances on the three downstream tasks, and outperforms previous MAE
methods such as MAE-ST [16], MAE [23] and VideoMAE [41]. However, con-
sidering a fixed budget of 400 epochs, CropMAE achieves significantly better
results than SiamMAE on DAVIS-2017 [35], both when trained on K400 and
on our ImageNet Subset (+0.7% and +2.5% respectively). We believe that by
explicitly transforming images through cropping, our pre-training method more
quickly understands features useful for segmentation, such as object boundaries.
On VIP [52], CropMAE still performs better than SiamMAE, although by a
smaller margin (+0.1 when trained on ImageNet, and +0.5 when trained on
K400). On JHMDB [27], CropMAE only outperforms VideoMAE. We explain
these inferior performances by noting that SiamMAE uses two different frames,
resulting in complex human pose modifications, which likely helps the network
understand human motion and perform better on JHMDB. Conversely, our ran-
dom crops do not mimic these transformations. Yet, they help the network learn
object boundaries more explicitly, making it more suited for segmentation tasks
such as DAVIS.
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Fig. 3: Reconstructions of CropMAE. We train CropMAE with a ViT-S/16 with-
out normalizing pixel values and a masking ratio of 98.5%. We visualize the reconstruc-
tions of some images from ImageNet. The images are displayed in the following order
from top to bottom: Input Image (V1), Random Resized Crop (V2), Masked Image
(M), and Reconstruction (R).

4.3 Attention Maps

In SiamMAE, Gupta et al . [21] argue that their model learns the concept of
object boundaries through object motion in videos. To support this claim, they
present attention maps extracted at some layers of their model, demonstrating
that attention predominantly focuses on object boundaries. In a similar way,
we train a ViT-S/8 with CropMAE on our ImageNet Subset and visualize the
self-attention maps of the [CLS] token from a specific head of the last encoder
layer. We show the results in Figure 5. Our findings indicate that our model
learns to identify object boundaries as well as SiamMAE without explicit mo-
tion (i.e., without relying on video frames). This implies that learning object
boundaries is not solely attributable to the motion observed in videos; instead,
it can also stem from the transformations and deformations operated on a single
image. Hence, this phenomenon is present in both SiamMAE, where it happens
naturally between two frames, and in CropMAE, where motion is artificially
induced through random cropping. The main difference remains that CropMAE
is trained on images instead of videos.
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Human Pose Propagation

Semantic Part Propagation

Fig. 4: Qualitative results. We train CropMAE with a ViT-S/16 and qualitatively
validate our results on three propagation downstream tasks: video object segmenta-
tion (DAVIS-2017 [35]), semantic part propagation [52], and human pose propagation
(JHMDB [27]).

4.4 Learning Speed

We evaluate the evolution of the performances of CropMAE and SiamMAE. In
particular, we compare SiamMAE trained on K400, CropMAE trained on K400,
and CropMAE trained on ImageNet Subset, all for 400 epochs. The performance
on the DAVIS-2017 object propagation task [35] is reported every 50 epochs in
Figure 6. Remarkably, our approach demonstrates superior performance when
trained on the ImageNet Subset compared to training using K400 video frames.
This improvement can be attributed to two main factors: (i) the greater diversity
of the ImageNet dataset, containing a broader spectrum of objects, and (ii) its
focus on currated object-centric images, which likely results in more relevant
crops and reconstruction tasks. In contrast, random cropping in K400 frequently
yields images without any objects, diminishing the effectiveness of the learning
process.
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Fig. 5: Self-attention maps from CropMAE with a ViT-S/8 trained on our
ImageNet subset. We visualize the self-attention of the [CLS] token from a selected
head in the last encoder layer of a ViT-S/8, which was trained on our ImageNet subset
without using any supervision to learn this specific token. These self-attention maps
reveal that our model can learn object boundaries without the need for prior motion
information during pre-training.

Our approach demonstrates significantly faster learning than SiamMAE. In
particular, our method achieves a J&Fm value of 58.0 after only 150 epochs on
our ImageNet Subset and 250 epochs on K400. In contrast, SiamMAE reaches
the same performance level after 350 epochs. We attribute this trend to our
pretext task, which does not require any conceptual knowledge to be completely
tractable and uses object transformations much more explicitly than SiamMAE,
leading to faster propagation comprehension. In contrast, SiamMAE must learn
the concept of motion and understand object transformations more implicitly
between two frames through more complex perturbations such as occlusions and
viewpoint changes.

4.5 Training time

We compare the training times of CropMAE and SiamMAE. On the one hand,
CropMAE uses an extremely high masking ratio, and only needs a single frame of
a video clip to train, or even a standalone image. On the other hand, SiamMAE
uses a lower masking ratio and needs two different frames to work. Both these
factors significantly impact the training time, as seeking distant frames may
require decoding a larger portion of the video, and the number of operations
performed by the attention layers increases quadratically with the number of
visible patches [23]. We measure the total time taken by both approaches to
train and report our results in Table 2. As it can be seen, CropMAE trains
almost 30% faster than SiamMAE on K400 for a fixed computational budget,
thanks to its use of fewer patches and frames. When pre-training on images (i.e.,
on the IN Subset), which are significantly faster to decode, CropMAE achieves
a tremendous speed-up of 2380% on our hardware while also reaching better
performances.
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Fig. 6: Performances of CropMAE and SiamMAE on DAVIS during pre-
training. For a fixed number of 400 epochs, CropMAE trains faster and consistently
yields better results than SiamMAE [21], when trained on K400 frames or ImageNet
Subset images.

Table 2: Speedup of CropMAE compared to SiamMAE. We train both methods
for 400 epochs on K400, and on ImageNet Sub for CropMAE, and report the speedups
observed on the whole training process.

Method Dataset Number of images Mask Ratio GFLOPS Speedup

SiamMAE K400 2 95% 5.8 ×1.0
CropMAE K400 1 98.5% 5.6 ×1.29
CropMAE IN Subset 1 98.5% 5.6 ×23.8

4.6 Ablation Studies

We perform several ablation studies on the different components of CropMAE
and report the results in Table 3. Unless stated otherwise, we use the default
parameters presented in the Appendix. Specifically, we train CropMAE on our
ImageNet subset for 400 epochs and report the results obtained on the DAVIS-
2017 [35] object propagation task.
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Table 3: Ablation Study. We analyze the different components of our method to
understand their impact on the downstream performance. We use a ViT-S/16 [13] with
the default configuration, as presented in Section 4.1, and report the results obtained
on the DAVIS-2017 [35] validation set.

Crop Strategy J&Fm Jm Fm

Same Views 36.6 35.8 37.5
Random Views 60.0 57.2 62.8
Local-to-Global 55.9 53.8 58.0

Global-to-Local 60.4 57.6 63.3

(a) Crop Strategy. A simple extension of
SiamMAE to images does not work. Reconstruct-
ing the local view from the global view works best
for CropMAE.

Mask Ratio J&Fm Jm Fm

0.75 (49) 45.3 44.3 46.3
0.90 (19) 47.1 46.1 48.0
0.95 (9) 51.2 49.9 52.4

0.985 (2) 60.4 57.6 63.3
0.99 (1) 58.6 55.9 61.5

(b) Mask Ratio and number of visible
patches. Our method works best when an
extremely large portion of the patches is
masked.

Decoder Depth J&Fm Jm Fm

2 59.1 56.7 61.6
4 60.4 57.6 63.3
8 57.0 54.5 59.4

(c) Decoder Depth. Our method works best
with a small depth.

Decoder Embed Dim J&Fm Jm Fm

128 58.5 56.0 61.0
256 60.4 57.6 63.3
384 59.0 56.3 61.7

(d) Decoder Embedding Dimension. Our
method works best with a small decoder em-
bedding dimension.

Augmentation J&Fm Jm Fm

Color Jitter 56.2 53.1 59.2
Gaussian Blur 59.6 56.7 62.4

None 60.3 57.4 63.2
Horizontal flip 60.4 57.6 63.3

(e) Data Augmentations. Our method
works best with horizontal flips randomly ap-
plied on both random crops.

Cropping Strategy. We study the effect on performance of different cropping
strategies in Table 4a. We can see that reconstructing the same views (Fig-
ure 2a) yields very poor performances (36.6), suggesting that the model failed
to learn any propagation capabilities. Reconstructing the Local-to-Global view
(Figure 2c) results in significantly improved performance (55.9). The Random
Views (Figure 2b) and Global-to-Local (Figure 2d) approaches achieve the high-
est scores (60.0 and 60.4, respectively). Interestingly, these setups are the only
ones enabling a completely tractable task without any prior knowledge, meaning
the reconstruction can solely rely on the unmasked image. In fact, tractability
is sometimes guaranteed in the random setting, while it is always true for the
Global-to-Local approach, which likely explains its superior performance.
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Masking Ratio. We examine the importance of the masking ratio in Table 4b.
Our method exhibits suboptimal performance at a 75% masking ratio, despite
this being the preferred choice for the traditional image MAE framework [23].
Similarly, it underperforms at the 90% ratio used in video frameworks [16, 41,
44]. We can see an improvement with a masking ratio of 95%, as adopted in
SiamMAE [21], but the optimal results are reached with a visibility reduced
to merely a few patches, i.e., two (60.4) or one (58.6), equivalent of masking
ratios of 98.5% and 99%, respectively. We attribute this trend to the fact that
our pretext task is simpler than those used in other frameworks as it does not
require any conceptual knowledge and can be fully achieved with the help of the
visible image, thus requiring an extremely high masking ratio to be challenging.

Decoder Architecture. Next, we study different decoder architectures, specif-
ically their depth and embedding dimension. We report our results in Tables 4c
and 4d. Similarly to other MAE works [23,50], we found that the optimal decoder
(256-d, 4 blocks) is smaller than the encoder (384-d, 12 blocks).

Data Augmentations. We evaluate our method with additional data augmen-
tations commonly used in contrastive learning [7, 20] and present our results in
Table 4e. Similar to SiamMAE [21], we observe that using color jitter signifi-
cantly reduces performance. The use of Gaussian blur also leads to a decline in
performance but to a lesser extent. When we do not apply the random horizontal
flip, we observe a minimal drop in performance.

5 Conclusion

In this work, we introduce CropMAE, a self-supervised method for quickly learn-
ing rich features for video propagation tasks by reconstructing a crop of an im-
age that has been masked at an extremely high proportion (over 98.5%). We
empirically demonstrate that our method can learn useful features for video
downstream tasks without requiring explicit video motion. These features can
be learned from still images, resulting in even richer information. Thanks to our
tractable pretext task, our method trains faster than existing methods and is
applicable to both video frames and still images. Finally, we show on-par perfor-
mances with state-of-the-art methods for three video propagation downstream
tasks.

Limitations and future work. Despite being designed to work with small
quantities of data and facilitate fast training, we believe the scalability of our
method warrants further investigation. This includes both model scalability (i.e.,
patch size and ViT size) and data scalability (i.e., the amount of data available
and the differences between images and video frames). More effort should be
directed towards understanding the unique contributions of video frames instead
of still images, especially concerning scalability, and determining their necessity
to develop rich and robust representations.
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