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Abstract. We propose a novel model (VP-SAM) adapted from segment
anything model (SAM) for video polyp segmentation (VPS), which is a
challenging task due to (1) the low contrast between polyps and back-
ground and (2) the large frame-to-frame variations of polyp size, position,
and shape. Our aim is to take advantage of the powerful representation
capability of SAM while enabling SAM to effectively harness temporal
information of colonoscopic videos and disentangle polyps from back-
ground with similar appearances. To achieve this, we propose two new
techniques. First, we propose a new semantic disentanglement adapter
(SDA) by exploiting amplitude information of the Fourier spectrum to fa-
cilitate SAM in more effectively differentiating polyps from background.
Second, we propose an innovative spatio-temporal side network (STSN)
to provide SAM with spatio-temporal information of videos, thus facili-
tating SAM in effectively tracking the motion status of polyps. Extensive
experiments on SUN-SEG, CVC-612, and CVC-300 demonstrate that our
method outperforms state-of-the-art methods. While this work focuses
on colonoscopic videos, the proposed method is general enough to be
used to analyze other medical videos with similar challenges. Code is
available at https://github.com/zhixue-fang/VPSAM.

Keywords: Video polyp segmentation · Segment anything model · Spatio-
temporal modeling · Semantic disentanglement

1 Introduction

Colorectal cancer (CRC) is a gastrointestinal malignancy that causes consider-
able global deaths [5]. Currently, timely screening and removal of polyps (pre-
cursors of CRC) using colonoscopy is an effective way for prevention. However,
manual screening of colonoscopic videos is labor-intensive, time-consuming, and
error-prone [1, 19], usually leading to negligence of some precancerous lesions.
In this regard, automated tools for automatic polyp segmentation from colono-
scopic videos are highly demanded in clinical practice. It is, however, a very
challenging task for the following two reasons. First, polyps usually derive from
surrounding diseased tissue and thus naturally have a similar appearance to the

https://github.com/zhixue-fang/VPSAM
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Fig. 1: Challenges of VPS: (a)-(c) low contrast between polyps and background, (d)
size variation, (e) position variation, and (f) shape variation.

background in colonoscopic videos, which greatly hinders accurate segmentation,
as shown in Figure 1 (a-c). Second, the large frame-to-frame variations of polyp
size, position, and shape make it difficult to harness temporal information for
precise yet real-time segmentation, as shown in Figure 1 (d-f).

In recent years, many deep-learning methods have been developed for polyp
segmentation. Early investigations focus on 2D images/frames instead of videos.
Most these methods either utilize the local modeling ability of CNNs [9, 14, 25,
33, 41] or leverage the global modeling ability of transformers [11, 16, 28, 40, 46]
to segment polyps from images/frames. However, ignoring temporal information
limits segmentation accuracy and efficiency; after all, in clinical practice, doctors
operate with colonoscopic videos rather than images. Therefore, some video-
based methods are proposed to harness hybrid 2D/3D CNN architectures [35] or
normalized attention mechanisms [20, 22] to segment polyps from colonoscopic
videos. However, it is still difficult for them to sufficiently meet above challenges
due to limited domain-specific training samples and the restricted representation
capability caused by inadequate model capacity.

The recently proposed SAM [26], trained on the large-scale dataset SA-1B,
has powerful feature extraction capabilities, and its advanced network architec-
ture can accurately focus on semantics of interest based on user prompts (e.g.,
points and bounding boxes). Hence, some studies propose to employ SAM in
medical image segmentation to improve segmentation accuracy [17, 18, 21, 47].
Unfortunately, the dramatic domain variability between medical and natural
images makes SAM perform poorly in many medical image segmentation tasks.
To the end, effective out-of-domain tuning of SAM is necessary.

To adapt SAM to medical image segmentation tasks, MedSAM [32] and
Polyp-SAM [29] focus on tuning parameters of SAM on medical datasets. How-
ever, tuning a large model like SAM is very resource intensive and expensive, and
hence usually does not applicable in clinical settings. SAMAug [45] uses SAM to
augment medical images without re-training SAM. However, the effect of aug-
mentation is limited by the dramatic domain variability between medical and
natural images, as SAM is mainly trained on natural images. To this end, most
methods [6, 8, 30, 42, 44] propose to introduce additional learnable adapters to
eliminate domain variability. While these methods can improve the performance
of SAM in medical datasets, most of them focus on images and do not suffi-
ciently harness temporal information of videos, which limits their accuracy and
efficacy in video segmentation. Recently, some methods utilize mask trackers [43]
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or point trackers [37] to extend SAM into a video segmentation model. However,
these methods harness the segmentation of the initial frame as a cue to guide the
segmentation of the current frame, and hence still do not sufficiently use tem-
poral information. To address this, MediViSTA-SAM [24] implants cross-frame
attention into the SAM to learn spatio-temporal information in videos. However,
the fixed step size of cross-frame attention limits spatio-temporal representation
capabilities, thus making it challenging to handle the large frame-to-frame vari-
ations in colonoscopic videos.

In this paper, we propose a novel model adapted from SAM for VPS to com-
prehensively meet its challenges. Our model has two innovative components: a
semantic disentanglement adapter (SDA) and a spatio-temporal side network
(STSN); we call it VP-SAM. In the SDA, we exploit amplitude information of
the Fourier spectrum to facilitate the SAM to recognize and erase background
interference, which is one of the main reasons that SAM performs poorly on med-
ical data like colonoscopic videos, where the contrast between targeting objects
and background is very low. In the STSN, we efficiently supplement SAM with
spatio-temporal information to facilitate the SAM to track the motion status
of polyps, and hence further improve the segmentation accuracy. We conduct
extensive experiments on three benchmarking datasets, SUN-SEG [22], CVC-
612 [3], and CVC-300 [4], with comprehensive comparison with task-specific
SOTA methods, as well as recently proposed SAM-based models. Experimental
results show that our VP-SAM significantly outperforms existing methods. Our
major contributions are summarized as follows:

– We propose a novel model adapted from SAM for VPS to comprehensively
meet its challenges; our model takes advantage of SAM in terms of repre-
sentation capability while adapting SAM to medical videos with low object-
background contrast and large frame-to-frame variations.

– We propose a new semantic disentanglement adapter (SDA) and an innova-
tive spatio-temporal side network (STSN), where the former facilities SAM
to disentangle targeting objects from similar surroundings, and the latter
supplements SAM with spatio-temporal information in videos; working to-
gether, they achieve SOTA performance in VPS.

– Our method significantly outperforms SOTA methods on three famous colono-
scopic video datasets: SUN-SEG, CVC-612, and CVC-300, demonstrating
the effectiveness of our proposed method.

2 Related Work

2.1 Polyp Segmentation

With the development of deep learning, some CNN-based methods [9,14,25,33,
41] rely on excellent local information modeling capabilities for image polyp seg-
mentation. However, the lack of global information limits these methods. There-
fore, some researchers [11, 16, 28, 40, 46] combine Transformer [39] and CNN to
simultaneously model global and local information, thus improving performance.
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However, these image-based methods fail to exploit the temporal information in
colonoscopic videos. To this end, some methods use hybrid 2/3D architectur [35]
or normalized self-attention mechanisms [20, 22] to learn spatio-temporal infor-
mation in videos, achieving performance improvement. However, limited domain-
specific training samples and inadequate network capacity hinder fine segmen-
tation. Polyp-sam [29] retrain SAM on polyp datasets, while SAMAug [45] uses
SAM to augment polyp images without training SAM. However, both methods
target images and thus also ignore valuable temporal information.

2.2 Foundation Models

Different from task-specific models, foundation models are essentially large pre-
trained models on large-scale datasets, which usually yield strong feature ex-
traction abilities. Recently, SAM [26] pre-trained on SA-1B, as a foundation
model for computer vision, has achieved impressive performance. SAM can han-
dle multiple prompts, such as points, bounding boxes, and coarse masks, to
produce high-quality segmentation. Such a segmentation paradigm shows the
potential to segment any object. However, some recent attempts have shown
that SAM exhibits significant performance degradation on some special down-
stream tasks [17,18,21,23,47], such as medical segmentation. This discovery has
stimulated some studies [7, 8, 15,29,30, 32,42,44] to explore how to improve the
performance of SAM on these tasks.

2.3 SAM-based Medical Segmentation

Due to the performance degradation of the foundation model in some down-
stream tasks, various tuning strategies are used to improve performance. Most
prior tuning strategies either retrain part or whole parameters of SAM [29, 32],
or introduce and train additional learnable adapters [6,8,15,30,42,44]. However,
achieving fine VPS is extremely challenging for these tuning strategies due to
the inability to extract temporal information in videos. To this end, MediViSTA-
SAM [24] implants cross-frame attention into each transformer block of SAM.
However, fixing the step size of cross-frame attention makes the spatio-temporal
representation sensitive to large frame-to-frame variations in colonoscopic videos.
Different from these tuning strategies, we propose a new semantic disentan-
glement adapter (SDA) to overcome low-contrast interference, and propose an
innovative spatio-temporal side network (STSN) to provide more precise spatio-
temporal information for SAM.

3 Method

3.1 Overall Architecture

The original SAM framework consists of three key components: an image en-
coder for extracting image embedding, a prompt encoder for extracting prompt
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Fig. 2: Overview of our method, which mainly introduces a semantic disentanglement
adapter (SDA) and a spatio-temporal side network (STSN). DRM is the disentangle-
ment reference mechanism, and STI represents the spatio-temporal injector.

embedding, and a mask decoder for combining these embedding to generate
segmentation masks. To effectively adapt SAM for VPS, we must address two
critical challenges. First, it is crucial to identify semantic entanglement states
for better distinguishing polyps from background tissue. Second, it is necessary
to incorporate spatio-temporal information into the network to make SAM com-
patible with video data, as it was initially trained on pure 2D images. Based
on these insights, we introduce two essential modules into the SAM framework,
which are the semantic disentanglement adapter (SDA) and the parallel spatio-
temporal side network (STSN), as shown in Figure 2. The semantic disentangle-
ment adapter aims to eliminate entanglement signals between polyps and back-
ground, and the spatio-temporal side network is responsible for guiding SAM to
focus on spatio-temporal information in videos. Given a colonoscopic video clip,
both the SDA and STSN modules interact with the image encoder to obtain
high-quality image embedding, which is then forwarded to the mask decoder
to generate segmentation results. During tuning process, only our introduced
modules are updated, while all the original modules in SAM remain frozen.

3.2 Semantic Disentanglement Adapter

The quality of features crucial for the task of VPS is notably degraded due
to the low-contrast between polyps and background caused by semantic entan-
glement in colonoscopic videos. Therefore, it is necessary to explicitly model
and eliminate these entanglement states in order to tailor SAM for effective
VPS. To achieve this, as shown in Figure 3 (a), our SDA module consists of an
entanglement states encoder and a semantic disentanglement identification pro-
cess. The entanglement states encoder leverages amplitude information from the
Fourier spectrum to explicitly model entanglement states between polyps and
background. Subsequently, the semantic disentanglement identification process
involves constructing a difference map between the original image embedding
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Fig. 3: (a) SDA mainly consists of a entanglement states encoder (ESE) and a semantic
disentanglement identification (SDI). (b) STSN mainly includes the disentanglement
reference mechanism (DRM) and the spatio-temporal injector (STI).

and entanglement states to obtain disentanglement embedding, thus improving
the quality of features.

Entanglement States Encoder. The low contrast between polyps and
background is caused by entanglement states in colonoscopic videos, which often
consist of color and texture [11, 13, 27, 31]. Fortunately, it is known that the
amplitude in the Fourier spectrum can represent these low-level color and texture
information. Therefore, we can effectively capture entanglement states using
the amplitude information present in the Fourier spectrum. Specifically, given a
colonoscopic sequence clip x ∈ RL×H×W×3, we first perform the following fast
Fourier transform (FFT) to obtain the Fourier spectrum:

F(x)u,v =

H−1∑
i=0

W−1∑
j=0

xi,je
−J2π(ui

H + vj
W ), (1)

where L is the clip length, H ×W is the resolution of the clip, and J represents
the imaginary unit. Then, the amplitude component can be extracted as:

A(x)u,v =
√

R2(x)u,v + I2(x)u,v, (2)

where R(x) represents the real part of F(x), while I(x) is the imaginary part.
Then, in order to focus only on low-level entanglement states, we need to re-
construct the clip using only amplitude information, since low-level information
in images is usually represented by amplitude in frequency domain space, while
phase information usually represents contour information. In this way, we can
fix all phase values to be constant (e.g. average value) while keeping the am-
plitude information unchanged when reconstructing the clip, thus allowing the
reconstructed clip to focus only on low-level entanglement states as follows:

x̃ = F̃ [A(x)u,ve
−Jc], (3)

where F̃(·) is the inverse fast Fourier transform (IFFT), and c is the average of
phase components. In this way, the reconstructed x̃ can represent the entangle-
ment states between polyps and background in RGB domain. Following this, x̃
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passes through a CNN down-sampling module, which consists of max pooling
and convolutional layers, to embed x̃ into entanglement state Fe for subsequent
semantic disentanglement identification.

Semantic Disentanglement Identification. Given the entanglement states
Fe ∈ RL×h×w×C obtained from the entanglement states encoder and the clip
patch embedding F ∈ RL×h×w×C obtained from patch embedding of SAM, we
use the difference map between Fe and F as a weight map to emphasize the fea-
tures related to polyps while weakening the interference of entanglement states,
where h×w is the resolution of embedding. Specifically, we compute the differ-
ence map between Fe and F to obtain the disentanglement embedding. Then, the
difference map is multiplied as a per-pixel weight with the clip patch embedding
to locate more precise semantic regions. The whole process can be formulated
as follows:

Fd = F · (F − Fe)
2, (4)

where Fd represents the final disentanglement patch embedding. Through these
operations, semantic disentanglement identification adapts SAM to the distri-
bution of entanglement states between polyps and background.

3.3 Spatio-temporal Side Network

The spatio-temporal information plays an important role for VPS. First, main-
taining spatial consistency across frames can improve object perception and
boost the robustness of segmentation. Second, temporal consistency allows de-
fine the motion state of polyps, which facilitates the localization of fine-grained
semantic regions. Hence, enabling SAM to perceive spatio-temporal information
in colonoscopic videos is essential for effective VPS. To achieve this, as shown
in Figure 3 (b), we first use the disentanglement reference mechanism to atten-
uate the interference of entanglement states on spatio-temporal information in
colonoscopic videos. Then, we introduce a spatio-temporal injector to supple-
ment spatio-temporal information into the transformer block of SAM.

Disentanglement Reference Mechanism. The low contrast caused by
entanglement states in colonoscopic videos may diminish object perception and
make the motion state of polyps difficult to capture. Therefore, it is necessary to
mitigate the interference caused by entanglement states on spatio-temporal infor-
mation to ensure accurate and reliable processing. Specifically, we first introduce
a CNN-branch [30] to extract features Fs,t ∈ RL×h×w×C with spatio-temporal
information. Then, in order to mitigate the interference caused by entanglement
states on spatio-temporal information, we can establish a consensus Fd,s,t be-
tween Fd and Fs,t, which identifies global-pixel disentanglement level and also
maintains spatio-temporal information in videos. For simplicity, we use the i-
th frame F i

s,t and F i
d in the clip as an illustration, where i ∈ 1, 2, · · · , L. In

particular, we first use F i
d and F i

s,t to build the affinity correlation as:

si,j,k =
d(F i

d, F
i
s,t)√

C
∈ Rh×w, (5)
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where d(·, ·) represents the dot product similarity [39], C is the scaling factor,
j ∈ 1, 2, . . . , h, and k ∈ 1, 2, . . . , w. Then, we use the normalized si,j,k as a weight
map to update F i

s,t using the following equation:

F i
d,s,t =

F i
s,t · exp(si,j,k)∑h

j=1

∑w
k=1 exp(si,j,k)

. (6)

Finally, we concatenate F i
d,s,t into Fd,s,t. In this way, Fd,s,t can represent the con-

sensus between spatio-temporal information and disentanglement token, which
eliminates the interference of entanglement states without losing spatio-temporal
information, thus providing high-quality features for subsequent injection of
spatio-temporal consistency.

Spatio-temporal Injector. Given the disentanglement spatio-temporal fea-
ture Fd,s,t, we employ vanilla self-attention [39] to capture spatio-temporal con-
sistency. To model spatio-temporal consistency more efficiently, we follow [38]
to decouple the modeling of the spatial and temporal consistency. In our frame-
work, we first introduce self-attention modules to independently model the global
spatial dependence within each frame, ensuring precise spatial alignment. Given
the potential for varying semantics in pixels at identical positions across frames
caused by the large frame-to-frame variations in videos, we incorporate de-
formable convolution [10] to learn the motion offset associated with each pixel,
aiming at overcoming large frame-to-frame variations. Then, we model the tem-
poral dependencies within the spatial dimension by using the aligned spatial
features as queries and the extracted offset as keys and values. The entire mod-
eling of spatio-temporal consistency can be described as follows:

F
′

d,s,t = E2(∆,D(∆)), ∆ = E1(Fd,s,t), (7)

where E1(·) and E2(·) represent self-attention modules, and D(·) is deformable
convolution layers. In this way, F

′

d,s,t can model accurate spatio-temporal con-
sistency under disentanglement condition.

Furthermore, in order to enable SAM to capture frame-to-frame spatio-
temporal information, we introduce a simple yet effective cross-attention module
to integrate the spatio-temporal information from F

′

d,s,t into SAM. Specifically,
we use the embedding Fsam derived from SAM as queries, and F

′

d,s,t as keys and
values to supplement the missing spatio-temporal information in the transformer
blocks of SAM. The supplementary process of spatio-temporal information for
the first transformer block is described as:

S(Fsam, F
′

d,s,t) = Softmax(
FsamEq(F

′

d,s,tEk)
T

√
C

+B)(F
′

d,s,tEv), (8)

where Eq, Ek, Ev ∈ RC×C are the learnable weight matrices, and B ∈ Rhw×hw

is position embedding. In order to minimize the computational overhead, we
reuse F

′

d,s,t to supplement the spatio-temporal information of the remaining
transformer blocks. Considering that different transformer blocks have different
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mean attention distance (pixels) [36], the 3× 3 convolutional layer that expands
the receptive field is used to bind the gradually larger mean attention distance
in the transformer blocks, thus efficiently adapting spatio-temporal information
to different transformer blocks.

To sum up, with the aid of our STSN and SDA, the image embedding ex-
tracted by the image encoder have spatio-temporal information and strong dis-
entanglement perception, which is the high quality features for VPS and can be
used to obtain the final mask prediction z as follows:

z = M(I(x),P(y)), (9)

where M(·) is the mask decoder, I(·) is the image encoder, P(·) is the prompt
encoder, and y is the prompt information.

3.4 Loss Function

We apply a binary cross-entropy loss Lbce like [20,22] to supervise our adaptation
process. In order to further weaken the impact of inconsistent distributions of
targets in different clips, a dice loss Ldice is chosen as another part of our loss.
In this way, our tuning objective can be defined as follows:

min
P

Lbce(z,G) + Ldice(z,G), (10)

where G is the ground truth, and P is the learnable parameters.

4 Experiments

4.1 Experiment Setup

Datasets. We evaluate our method on three video-based datasets: SUN-SEG
[22], CVC-612 [3] and CVC-300 [4]. (1) SUN-SEG includes 49, 136 frames from
285 sequences, which consists of three subsets: training set contains 19, 544
frames from 112 sequences; test set SUN-SEG-Easy contains 17, 070 frames
from 119 sequences; test set SUN-SEG-Hard includes 12, 522 frames from 54
sequences. (2) CVC-612 consists of 612 frames from 31 colonoscopic sequences
at 576× 768 resolution. (3) CVC-300 contains 15 cases, each with 20 frames at
500× 574 resolution.
Evaluation Metrics. We apply mean Dice (mDice), mean Interaction over
Union (mIoU), and mean Hausdorff Distance (mHD) to quantify our method.
Implementation Details. The tuning process is performed on a single RTX
3090 GPU with batch size of 2, using AdamW and poly learning rate schedule
with an initial learning rate of 0.0001 and a weight decay of 0.1 for 10 epochs.
For SUN-SEG, we separate 20% from the training set as the validation set. For
CVC-612, we split the training set, validation set, and test set with a ratio of
7 : 1 : 2. CVC-300 is used to test generalization ability. All frames are resized
to a resolution of 256 × 256. Clip length L is set to 3, which can be changed
based on GPU memory. ViT-B [12] is used as the backbone for all experiments.
For fair comparison, all SAM-based methods use the same prompts (1 pt/frame)
generated by a random algorithm [30], except for manual prompts.
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Table 1: Comparison with task-specific and SAM-based methods on three datasets.

Method Year Backbone SUN-SEG-Easy SUN-SEG-Hard CVC-612 CVC-300
mDice mIoU mHD mDice mIoU mHD mDice mIoU mHD mDice mIoU mHD

DCNet 2023 ViT-B 78.36 68.63 29.24 75.04 65.55 28.48 88.21 80.85 25.77 86.24 78.25 18.26
TarVIS 2023 ViT-B 79.16 68.95 28.13 76.44 66.96 28.31 89.73 82.84 22.24 86.97 79.77 17.52
PNS+ 2022 ViT-B 79.26 70.24 26.38 76.51 68.11 28.67 90.06 83.43 21.79 86.59 78.24 15.98
META-UNet 2023 ViT-B 81.17 72.43 25.71 80.16 70.55 26.27 90.64 84.39 20.49 86.64 78.55 16.02
MSAF 2023 ViT-B 81.33 73.18 25.19 80.52 71.33 25.82 90.47 84.58 21.29 86.83 78.72 16.53

Ours (w/o prompts) 2024 ViT-B 85.62 78.16 21.22 85.28 77.16 21.38 92.33 86.79 19.34 88.26 80.17 14.06

SAM 2023 ViT-B 54.67 46.42 312.97 55.53 47.09 296.93 59.68 49.54 286.37 65.01 56.26 205.38
MedSAM 2023 ViT-B 69.04 60.29 220.35 68.23 58.71 207.92 76.08 66.82 182.58 79.02 70.69 113.32
Polyp-SAM 2023 ViT-B 70.80 61.37 151.36 70.42 60.31 151.24 77.76 68.58 135.33 80.96 71.33 91.52
SAMed 2023 ViT-B 78.23 67.99 28.58 76.94 66.78 28.99 89.92 83.33 23.69 86.41 78.98 16.38
SAM-Med2D 2023 ViT-B 81.99 73.37 25.55 80.41 71.37 26.44 90.23 83.68 23.98 86.81 79.23 16.12
MediViSTA-SAM 2023 ViT-B 84.34 77.21 22.36 83.25 73.34 24.86 90.47 85.06 21.15 87.09 79.52 14.98
SAMUS 2023 ViT-B 84.83 77.48 21.72 84.11 75.04 22.52 91.12 85.15 20.24 87.17 79.41 14.33

Ours (1 pt/frame) 2024 ViT-B 87.56 80.04 19.80 87.04 79.20 19.64 93.54 88.83 17.86 89.93 82.38 12.38

Fig. 4: (a) Density estimation on SUN-
SEG-Easy. (b) Violin plot on CVC-612.

Table 2: Comparison results with
SOTA spatio-temporal strategies or
adapters on SUN-SEG dataset.

Method SUN-SEG-Easy SUN-SEG-Hard
mDice mIoU mHD mDice mIoU mHD

SAM + Point-Tracker [37] 58.85 47.96 308.93 57.36 48.59 290.87
SAM + Mask-Tracker [43] 60.31 48.13 310.48 58.74 47.67 294.56
SAM + ST-Adapter [34] 84.17 76.38 22.65 83.44 75.32 23.15

Ours 87.56 80.04 19.80 87.04 79.20 19.64

4.2 Comparison with State-of-the-art Methods

To demonstrate the superiority of our proposed method, we compare our method
with some SOTA methods, including task-specific methods PNS+ [22], DC-
Net [31], TarVIS [2], MSAF [38], and META-UNet [40] and SAM-based meth-
ods SAM [26], MedSAM [32], Polyp-SAM [29], SAMed [44], SAM-Med2D [8],
MediViSTA-SAM [24], and SAMUS [30].

Comparison with SOTA Methods. As shown in Table 1, compared with
SOTA task-specific methods, our method (w/o prompts) shows significant per-
formance improvements in all metrics, which is attributed to our specific SDA,
STSN, and the inherent design advantages of the SAM. Furthermore, SAM
trained on SA-1B, without fine-tuning, shows significant performance degra-
dation on three datasets, which indicates that low polyp-background contrast in
colonoscopic videos and the inability to extract temporal information severely
hinder SAM from performing fine segmentation. Among all tuning methods, our
method (1 pt/frame) achieves better performance, which shows that our method
possesses strong semantic disentanglement abilities while leveraging valuable
temporal information. As shown in Figure 4, the high probability density of
Dice intervals (e.g., [0.8, 1.0]) in the kernel density estimation and violin plot
demonstrates that our method is more robust.

Comparison with Spatio-temporal Adapters/Strategies. As shown
in Table 2, to more comprehensively evaluate the spatio-temporal modeling
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Fig. 5: Visual comparison with SOTA methods on SUN-SEG. Red, green and yellow
represent the GT, prediction and their overlapping regions, respectively. (w/o prompts)

capabilities of our method, we also compare our method with other spatio-
temporal adapters, including spatio-temporal adapters (ST-Adapter) [34], point-
tracker [37], and mask-tracker [43]. Our method still achieves better performance.
For ST-Adapter, the kernel size of 3D convolution limits its spatio-temporal rep-
resentation, making it difficult to cope with large frame-to-frame variations in
colonoscopic videos. For point/mask tracker, the segmentation quality of the
initial frame will seriously affect the segmentation of subsequent frames.

Visual Comparison with SOTA. As shown in Figure 5, our proposed
method is able to identify more accurate target semantics in colonoscopic videos
through the introduced SDA and STSN, thereby achieving fine segmentation.
Compared to previous methods, our method achieves better target boundary
separability, which shows that SDA enables SAM to have strong capabilities
of semantic disentanglement, while STSN enables SAM to utilize the valuable
spatio-temporal information in colonoscopic videos.

4.3 Ablation Studies

Effectiveness of SDA. Our SDA mainly consists of a entanglement states
encoder (ESE) and a semantic disentanglement identification (SDI). As shown
in Table 3, the performance degradation caused by removing both components
suggests that our SDA is necessary for SAM to adapt to polyp segmentation
from colonoscopic videos. The improvement brought by introducing the ESE and
SDI verifies that Fourier spectral amplitude enables SAM to explicitly perceive
entanglement states between polyps and background. We also conduct visual
comparison. As shown in the Figure 6, the complete SDA makes the localization
of prediction closer to GT, indicating the effectiveness of the components. The
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Fig. 6: Visual comparison of image embed-
ding on SDA components.

Table 3: Component ablation experi-
ments of SDA on SUN-SEG.

ESE SDI SUN-SEG-Easy SUN-SEG-Hard
mDice mIoU mHD mDice mIoU mHD

85.76 77.92 21.29 85.68 77.53 21.46

✓ 86.73 78.56 20.44 86.41 78.26 20.11
✓ 86.57 78.45 20.23 86.38 77.93 20.23

✓ ✓ 87.56 80.04 19.80 87.04 79.20 19.64

Fig. 7: (a-b) t-SNE visualization of image embedding, where purple represents polyps
and red represents background. (c) Visualization of modeled entanglement states.

modeled entanglement states in Figure 7 (c) has many similar low-level character-
istics to the background in the original frame, which can be used as entanglement
states. Furthermore, as shown in Figure 7 (a-b), SDA eliminates entanglement
states, allowing for a clearer demarcation between polyps and background, which
once again proves the effectiveness of SDA.

Effectiveness of STSN. Our STSN mainly consists of a disentanglement
reference mechanism (DRM) and a spatio-temporal injector (STI). As shown in
Table 4, the performance degradation caused by removing STSN is very intuitive,
because it ignores valuable spatio-temporal information in videos. Moreover, we
observe that the improvement brought by each component working individually
is not as significant as the improvement achieved by working together, which
verifies that directly modeling spatio-temporal consistency without reference to
disentanglement token suffers from the interference of pixel similarity brought
by low polyp-background contrast. It also shows that consensus between disen-
tanglement and spatio-temporal information can promote purer spatio-temporal
consistency. Furthermore, we also conduct visual comparison on components of
STSN. As shown in Figure 9, each component working individually makes the
separation between target and background more difficult, while working together
allows for a clearer division.

Effect of Different Manual Prompts. Based on SAM and our method, we
qualitatively compare the results obtained with different manual prompts (e.g.
different number of point prompts, different prompt modes), as shown in Figure
8. In most cases, bounding boxes can facilitate the model to obtain more accurate
semantic regions, but the visual results obtained by our bbox-based method are
clearer and closer to GT. In the cases of point prompts, SAM struggles to locate
polyp regions, resulting in some false positives and false negatives. Compared
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Fig. 8: Comparison of results on different manual prompts. Red, green and yellow
represent the GT, prediction and their overlapping regions, respectively. Blue points
represent the positive, and purple points represent the negative. (best viewed on zoom)

Fig. 9: Visual comparison of image embed-
ding on STSN components.

Table 4: Component ablation experi-
ments of STSN on SUN-SEG.

DRM STI SUN-SEG-Easy SUN-SEG-Hard
mDice mIoU mHD mDice mIoU mHD

82.61 74.43 26.04 82.22 73.95 28.69

✓ 83.43 75.31 24.16 82.96 74.88 25.66
✓ 85.87 78.02 20.56 85.73 77.61 20.46

✓ ✓ 87.56 80.04 19.80 87.04 79.20 19.64

with SAM, the results obtained by our point-based method are more stable and
superior, among which the results based on 1 pt prompt are closer to GT.

Effect of Number of Point Prompts. As shown in Figure 10, we also
evaluate the performance with different point prompts created by random algo-
rithm [30]. In general, our approach is robust to the number of point prompts.
However, more points does not necessarily lead to performance gains. We an-
alyze the possible reason is that more point prompts increase the probability
of random points being close to the blurred boundary, which may increase the
confidence of false positives.

Effect of Clip Length L. As shown in Figure 11 (a-b), we also explore
the impact of different clip length L. The performance improves greatly when
L increases from 1 to 3 because more spatio-temporal information is obtained.
However, larger L values (e.g., 5 and 7) cause performance degradation. Longer
clips can theoretically bring more spatio-temporal information, which is effective
for clips composed of frames with high boundary discrimination. However, for
colonoscopic videos with low boundary discrimination, we analyze the possible
reason is that establishing spatio-temporal information between frames with a
long temporal distance may bring redundant information that interferes with
effective spatio-temporal information.

4.4 Discussions and Limitations

While we only conduct experiments on colonoscopic video datasets, we believe
that our VP-SAM is general enough to be used to analyze other medical videos
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Fig. 10: Ablation experiments on the
number of point prompts on SUN-SEG.

Table 5: Performance vs. efficiency on
SUN-SEG-Hard based on a single RTX
3090 GPU and batch size equal to 1.

Method Resolution SUN-SEG-Hard
mDice Params GFLOPs FPS

SAM [26] 1024× 1024 55.53 90.49M 1115.96 12.18

SAMed [44] 256× 256 76.94 90.36M 284.17 53.63
SAM-Med2D [8] 256× 256 80.41 270.99M 196.11 35.68

MediViSTA-SAM [24] 256× 256 83.25 135.02M 102.29 48.56
SAMUS [30] 256× 256 84.11 130.10M 429.77 42.45

Ours 256× 256 87.04 142.27M 470.59 38.23

Fig. 11: (a-b) Ablation studies of clip length L. (c) Failure cases, where red, green and
yellow represent the GT, prediction and their overlapping regions, respectively.

with similar challenges. Furthermore, as shown in Table 5, we also conduct a
performance-efficiency comparison with SOTA methods. Compared with these
methods, while we are somewhat less efficient, our method achieves significant
performance improvements with a real-time inference speed (38.23 FPS), which
can be a trade-off. In fact, the main overhead is caused by considering the spatio-
temporal information (modeling and injection) in colonoscopic videos, which
is inevitable since SAM is not a video segmentation model. It is known that
modeling spatio-temporal information in videos is a computationally intensive
process. In order for SAM to perceive the valuable spatio-temporal information
in videos, we must additionally do this computationally intensive process since
SAM is trained on pure 2D images, thus causing a loss in efficiency. Furthermore,
our method still has some limitations. As shown in Figure 11 (c), the light
interference and dramatic shapes may limit our method.

5 Conclusion

In this paper, we propose a novel model VP-SAM for video polyp segmentation,
which is adapted from SAM via a semantic disentanglement adapter (SDA)
and a spatio-temporal side network (STSN). The SDA allows SAM to explic-
itly sense and eliminate entanglement states between polyps and background in
colonoscopic videos. Besides, the STSN supplements SAM with valuable spatio-
temporal information in colonoscopic videos. With the aid of our SDA and STSN,
our method enhances the semantic disentanglement capabilities of SAM and
solves the defect of SAM being unable to extract valuable spatio-temporal in-
formation in colonoscopic videos. Extensive experimental results on SUN-SEG,
CVC-612 and CVC-300 demonstrate the effectiveness of our proposed method.
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