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Fig. 1: Instance-Level Augmentations. We augment images by redrawing individ-
ual objects in the scene retaining their original shape. This allows training with the
unchanged class label (e.g. class, segmentation, detection, etc.). The generations are
highly diverse and match the scene composition. Guess the original in each row!

Abstract. We present a method for expanding a dataset by incorporat-
ing knowledge from the wide distribution of pre-trained latent diffusion
models. Data augmentations typically incorporate inductive biases about
the image formation process into the training (e.g. translation, scaling,
colour changes, etc.). Here, we go beyond simple pixel transformations
and introduce the concept of instance-level data augmentation by re-
painting parts of the image at the level of object instances. The method
combines a conditional diffusion model with depth and edge maps control
conditioning to seamlessly repaint individual objects inside the scene,
being applicable to any segmentation or detection dataset. Used as a
data augmentation method, it improves the performance and general-
ization of the state-of-the-art salient object detection, semantic segmen-
tation and object detection models. By redrawing all privacy-sensitive
instances (people, license plates, etc.), the method is also applicable
for data anonymization. We also release fully synthetic and anonymized
expansions for popular datasets: COCO, Pascal VOC and DUTS. The
project page is available here.

1 Introduction

Deep learning has transformed computer vision research and applications. In-
terestingly, methodological progress now advances hand in hand with the avail-
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ability of large annotated datasets [5]. This now shifts some of the focus from
methods to their training data. Datasets have grown exponentially in size and
complexity and are often just as important as the methods themselves. From the
one million images of ImageNet [9] to LAION-5B [42], the number of samples
has increased by three orders of magnitude. Large-scale datasets proved to be
easily applicable to a wide range of computer vision transfer tasks [18, 19, 36].
Yet, growing and curating such datasets at this scale is a cumbersome and costly
challenge. Additionally, scraping large image collections from the internet does
not adhere to ethical and data privacy standards. Moreover, in many fields, col-
lecting large-scale datasets is impracticable due to the lack of available data and
the complexity of the collection and annotation process (medical data, 3D, etc.).

In the wake of larger and larger datasets [23,42], many older and/or smaller
datasets have lost relevance purely due to their size even though they pose unique
challenges, applications and benchmarks. One of the main limiting factors of
small datasets is their ability to train models that do not overfit. Over the last
decade, many ideas have been explored to overcome overfitting problems on small
datasets. Data augmentations such as colour shifts, flipping, crops, and rotations
are being used to incorporate priors about geometric and lighting variations that
we expect in the real world [44]. Their effectiveness is proven by their widespread
use to date. Image-level augmentations are geometric transformations or pixel
manipulations, such as adding Gaussian blur or changing image contrast. On the
level of objects, augmentations are also often simple: for example, copy-pasting
objects between images [14].

Simple pixel manipulations only slightly expand a dataset’s information and
visual diversity. Thus, several advanced techniques to mix images have been
proposed [27,59,60] with moderate success. Combining two or more images often
creates visual artefacts that models can exploit to recognize artificial samples.
As a further improvement, generative models (trained on the to-be-augmented
dataset) have been used to generate additional training samples [51,55]. However,
as the generative model is trained on the same data, it cannot provide additional
information beyond the dataset itself. Additionally, generating whole images also
requires generating the accompanying annotations, which can be very challenging
to do and verify.

To overcome the problem of annotation generation, we introduce a method
that only regenerates a part of an image at the level of object instances. This
allows us to retain the original data annotations (e.g. class labels, segmentation,
captions, etc.). To significantly enhance the visual variability of the original
data, we incorporate out-of-domain knowledge via a large diffusion-based gen-
erative model. As these models have been trained on much larger volumes of
data, their generations will naturally go beyond the variety originally contained
in the dataset. Another advantage of this approach is that it allows us to nat-
urally combine real and generated data in the same image. This exponentially
increases the variations of samples that can be constructed from a single image.
For example, an image with five objects has 32 variations of real /generated sam-
ples if we consider only one generation per object. Finally, for privacy-sensitive
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Fig. 2: Overview. Given an image and ground truth (or predicted) segmentation
mask, we estimate depth and edge maps at the image level. The annotation is decom-
posed into the per-object binary masks and class, which together form the conditioning
of the inpaining model. We redraw every instance and recombine them into a final im-
age using alpha-blending sorted by depth.

instances such as people, license plates, etc. one can completely replace all real
data in the dataset, strongly mitigating privacy concerns.

In this paper, we experiment with three tasks (object detection, semantic
segmentation and saliency segmentation) and six datasets (MS-COCO [28], Pas-
calVOC [12], DUTS [48], ECSSD [56], DUT-OMRON [57] and HKU-IS [25]). We
show consistent improvements using our method to generate data for state-of-
the-art methods for each task. Further, we can show that fully replacing people
in the training data with synthetic samples does not affect the final performance,
which enables retrospectively improving privacy shortcomings of scraped inter-
net datasets. Together with the paper, we are releasing the code and generative
variations of DUTS [48], Pascal VOC [12] and COCO |[28].

2 Related Work

This section provides an overview of related work on diffusion models, followed
by a survey of the methods targeting synthetic data generation.

Image Generative Models. Generative Adversarial Networks first intro-
duced efficient sampling of high-resolution images with good perceptual qual-
ity [4,15,21]. GAN models can generate visually plausible images but are chal-
lenging to optimize and struggle to capture the full data distribution [31]. Re-
cently, diffusion probabilistic models [16,45] have been introduced to match the
underlying data distribution by learning to reverse a sample noising process.
The high quality and stability of the training process quickly set diffusion mod-
els apart as a frontier in the field of image synthesis [17,34,38,40]. Text-to-image
diffusion models condition the generation process by encoding text prompts into
the latent vectors utilizing large pre-trained text encoders [37]. Latent diffusion
models [39] introduce a more general conditioning method fusing text embed-
dings, bounding boxes, or inpainting masks through cross-attention layers in a
convolutional manner, achieving state-of-the-art results in image inpainting and
class-conditional image synthesis performing diffusion steps in the latent image
space [11]. ControlNet [61] and T2I-Adapter [33] add spatial conditional control
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to diffusion models by encoding a target image representation in the form of
edges, depth, segmentation, human pose, etc.

Generative Models for Synthetic Datasets. Early studies in synthetic
data generation [7,13] rely on 3D rendering engines to address common 2D vi-
sion problems. The process is limited by the domain of 3D models, cannot be
generalized to complex real-world scenes and does require modifying the render-
ing engine for each specific dataset and subtask. For example, Virtual KITTI
consists of exclusively street driving scenes for autonomous driving. In contrast,
synthetic data generated using generation models using generative adversarial
networks [29, 55] are more flexible and generalize better to real-world images.
Recently [53] combines diffusion embedding network with the BigGAN [4] to
generate synthetic images for the saliency detection. However, those methods
primarily focus on learning the real dataset distribution, thus unable to incor-
porate new information into the dataset. Recently, [3,41,43,47] improve the
performance of classification models by generating synthetic data with latent
diffusion models [39]. However, the methods are limited to image classification.
Diffumask [52] and DatasetDM [51] utilize large diffusion models to simultane-
ously generate synthetic images and annotations for semantic segmentation or
depth prediction tasks. Conditioning on text embeddings from large language
models [37] provides a mechanism to encode information outside of the origi-
nal data distribution. Still, the methods do require finetuning on every specific
dataset. In contrast, our method directly employs pre-trained diffusion models
without additional finetuning steps, not overfitting to the task-specific datasets
and providing a way to efficiently mix real and synthetic annotations for training
various vision models. It generalizes existing datasets by incorporating rich pri-
ors from the large-scale datasets used for image synthesis by augmenting image
samples on an object level.

3 Method

The goal of our method is to take an image I € Z = R*>*#*W yith dimensions
H and W, and a set of annotations ), and generate a new image [* € R3*H xW’
with a mapping F'(I,Y) = I* preserving the structure of the scene and ground
truth annotations. This way, the sample (I*, ) remains a valid training sample.
The method should be able to generate high-fidelity image samples from a real-
world distribution that are indistinguishable from the input image. Since older
datasets are often of low resolution, we allow for an increased image size H' >
H, W' > W for the generated image.

3.1 Generation Pipeline

To generate new samples I* we base the pipeline on a conditional latent diffusion
model (LDM) [39]. Large-scale generative diffusion models have been trained on
an extremely large variety of images, providing a strong signal to enhance the
data distribution of any dataset.
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Since a pure text-to-image generative model [40] is not applicable to the
task, we use an LDM trained for image inpainting to operate only on a region of
interest. For this purpose, we assume the following annotations to be available
within Y = {(M;, ¢;) }1<i<n. For each of the N objects in the image: a binary
mask M; € M = {0,1}7XW defining the segmentation of the object in the
image, and a class label ¢ which can be free-form text. If this information is not
already available in the dataset, it can be obtained by an off-the-shelf instance
segmentation method.

In general, the image inpainting process can be formulated as a function
G : IxM x T — T, that takes as input an image, a mask selecting the inpainting
region and a text prompt that specifies what to draw. The output is an image
with the masked region being redrawn.

A new image I* is generated by iteratively redrawing each object in the
image.

I} = G(Ii_y, M;, Ty). (1)

?

This iterative process starts with the original image I§ = I and ends with
every object being redrawn I3, = I*. It requires a text-prompt 7; for each object.
In the simplest case the class name can be used as the text prompt T; = ¢;. We
will explore more sophisticated choices in Sec. 3.3.

In practice, two aspects are important to consider with the inpainting pro-
cess. One is that the order in which the objects are being redrawn is arbitrary
in Eq. (1), and does not take into account occlusions or overlapping objects, im-
pacting the final result. The second is that repeatedly passing an image through
an inpainting model significantly reduces the image quality. We will deal with
both problems next.

Draw order. To ensure a reasonable blending of objects, we sort objects by
their estimated relative distance to the camera. We use an off-the-shelf depth-
estimation method DepthAnything [58] to compute a (relative) depth map D €
RY*W and use the masks to compute a depth estimate d; = >, ., M;[u]D[u] €
Ry, where 2 = {u,v|]l1 < u < H,1 < v < H} is the set of all pixel locations
in the image. We can then order the images back-to-front such that d; > d;41
before inpainting.

Iterative Redrawing. Current diffusion inpainting models struggle to recon-
struct input images faithfully, even in unmasked regions, due to operating in
latent space. This encoding and decoding process introduces noise, degrading im-
age quality, particularly for complex images. In latent diffusion models (LDMs),
this issue is evident, as shown in 7?7, where repeated encoding and decoding
reduce PSNR and SSIM significantly. We address this by modifying the process
to always begin with the original image.

IF=1" 01— M)+GUI,M;,T;) ® M. (2)

This approach has two advantages. First, it does not require repeatedly ap-
plying the inpainter G to the image, which would accumulate noise. On the other
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hand, this means that each object is drawn independently of the other objects,
which allows generating an exponential number of 2V variations of the image,
where each object can be original or redrawn, with only N applications of the
inpainter.
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Fig. 3: Noise Accumulation. Images accumulate noise when repeatedly encoding
and decoding to and from latent space. PSNR and SSIM compared to the original.

3.2 Better Inpainting

Naively employing an off-the-shelf inpainting model for our task can lead to
several shortcomings. Using G as a black box, there is no guarantee that the
new object is of the same class as before, nor that it adheres to the original
mask M;. We also observe that the LDM often tends to completely remove
small objects, replacing them with background.

We thus make the following modifications to the inpainter G. Several exten-
sions to LDM provide more fine-grained control of the generated output. Specifi-
cally, ControlNet [61] injects additional conditions into the decoder blocks of the
LDM generator. We can thus condition the generation not only on the mask M;,
but also on the already computed depth map D and an edge map E that signif-
icantly decreases the potential discrepancy between the generated and original
object contours. We compute the edge map using HED [54].

Interestingly, [61] has been trained on the non-inpainting version of [39], since
the inpainting model was finetuned from the same baseline text to image model,
they can still be used together [50].

3.3 Prompt Engineering

While we can simply condition the inpainting model on the class information
(T; = ¢;), several improvements can be made to both increase the quality as well
as the control for a diversity of the generated objects.

The diffusion model provides an efficient way to add additional conditioning
to the generation by modifying the input text prompt. Trained on the billions of
image-text description pairs from the internet, using CLIP [37] as a text encoder,
the model can encode the pose, shape, visual appearance, colour, and lightning
of the object simultaneously. Our goal is to generate highly diverse samples. We
exploit the useful properties of the text encoder to improve the visual quality
and the diversity of the generated samples.



InstanceAugmentation 7

Object Description. Following [41], we extend the label ¢; with its descrip-
tion. Each class in datasets such as COCO or ImageNet is associated with one
or more synsets, i.e. entities, in the WordNet [32] graph. We use the synset
lemmas corresponding to each class to extend the class name. This additional
description of the object provides a more precise textual representation of the
object in CLIP space. Empirically, we observe that it stabilizes the performance
of the diffusion model and prevents the cases where an incorrect or no object at
all is generated due to weak text embedding.

Color and Lighting. We manually select categories that tend to appear in
many colour variations in the real world, such as cars, backpacks, snowboards,
etc. For every such object, we randomly sample from a list of colours (e.g., blue,
red, green, pink, etc.) and qualifiers (dark, light, natural, etc.) and add it as part
of the prompt Additionally, we randomly select and add a lighting condition
to the prompt (e.g., sunlight, dramatic lighting, soft lighting, none, etc.). We
extensively experiment with these choices in Sec. 5.4 and in the supplement.
Overall, our prompt variations increase the diversity across all classes.

Generating People. “Person” is the most visually complex and diverse class
in common computer vision benchmarks with 15.5% of DUTS and 30.5% of
COCO containing people in different scenes. We observe that for many cases
of complex real-world scenes, the above depth and edge maps conditioning and
simple prompting strategy are insufficient to generate a person that adheres to
the scene’s structure. Thus, to increase the descriptiveness of the prompt, for
people, we use a visual question-answering model (BLIP-VQA [26]) to predict
the action of the person and add it as a part of the prompt.

4 Datasets

The method can generate images for an arbitrary dataset labelled with bound-
ing boxes or segmentation masks, making it applicable for a wide range of tasks,
including Object Detection, Semantic and Instance Segmentation, Panoptic Seg-
mentation, etc. For our experiments, we generate synthetic versions for three
popular datasets: DUTS [48], Pascal VOC [12] and MS-COCO [28]. We run our
generation pipeline up to three times for each object to obtain three synthetic
replacements of the original instance. This drastically increases the set of po-
tential variations depending on the number of objects per image. Naturally, we
only generate novel data for the training set and leave the validation and test
set untouched so as not to affect benchmark results.

For additional safety, we keep regenerating objects that do not pass an NSFW
safety filter [1] with a strict threshold minimising the false negative rate.The filter
also detects NSFW content in the original datasets (which should not have been
included in the dataset in the first place). Our redrawing method rectifies this.
We will release all datasets and the code to generate them.

DUTS. [48] is the largest benchmark dataset for salient object detection. Yet
it still only contains 10,553 training and 5,019 test images of various real-world
scenes and types of objects. The annotations consist of a single saliency map per
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image and do not contain class labels or names. To construct the text prompt
for the pipeline, we crop the image by the bounding rectangle of the binarized
saliency map and use the BLIP-VQA [26] model to predict the object name in
an open vocabulary setting. The dataset is of relatively low resolution, which we
also improve with our method.

Since salient object segmentation highly depends on predicting accurate ob-
ject boundaries, we add an optional mask refinement stage to preserve the sharp-
ness and high quality of the masks. To this end, we crop every generated object
from the images in the train set using its corresponding bounding rectangle of
the saliency map. We use TRACER-7 [24] as an off-the-shelf segmentation model
to obtain high-resolution, tight object crop saliency maps. This removes the po-
tential mismatch between the generated object and its original annotations.

(a) DUTS (b) VOC " (¢) COCO

Fig. 4: Qualitative Evaluation. The examples of method performance on three dif-
ferent datasets. The method generalizes well to complex scenes and datasets with no
ground truth instance labels.

MS-COCO. The MS-COCO dataset [28] is a standard benchmark for evaluat-
ing object detection, instance segmentation, and other tasks. It includes complex
everyday scenes containing common objects in their natural context.

Pascal VOC. The PASCAL Visual Object Classes (VOC) dataset [12] con-
tains images with pixel-level segmentation annotations, bounding box annota-
tions, and object class annotations. This dataset has been widely used as a
benchmark for object detection, semantic segmentation, and classification tasks.

Dataset Anonymization. In addition to the generic version of the datasets
we generate, we use our method to improve the privacy aspect of both datasets.
For DUTS, we manually select all images containing people in the dataset and
repaint them with “virtual” people. We thus generate an anonymized version of
the dataset, which can be used by itself with all original images and annotations
(except people) or in conjunction with the generated version.
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Fig.5: Data Anonymization. The method efficiently repaints each annotation in

the complex scenes, strongly mitigating privacy concerns for sensitive instances such
as people or cars.

For the COCO dataset, we generate two additional versions: anonymizing
people and cars (for personal information such as license plates). For this task,
to ensure every object (and not only the ten largest ones) in the dataset is
anonymized, we process every object, including small instances. For objects with
an area lower than 32 % 32px the image is first cropped and upsampled to 512px
resolution to match the minimum resolution the generator model is trained on.
See Fig. 5 for visual examples of repainting people and vehicles.

5 Experimental Evaluation

We evaluate the efficiency of our method (i) as a data augmentation technique,
(ii) as a pipeline for data anonymization, and (iii) its impact on the model
generalization. To address (i) we train the state-of-the-art saliency segmentation,
semantic segmentation and object detection models on the combined original
and generated by our methods versions of DUTS, VOC and COCO datasets,
respectively, and report the findings in the 5. To test the effectiveness of data
anonymization (ii) we train the object detection models on the generated version
of COCO datasets with all cars and people entirely replaced with the synthetic
objects and compare it with the original model 6. To test generalization (iii)
we analyze the performance of the models trained on combined datasets on the
established benchmarks for salient object detection, detailed in 4.

5.1 Data Augmentation

Object Detection. The effect of the instance augmentations is tested on a
large-scale complex COCO dataset. We evaluate the performance on three differ-
ent object detection architectures, transformer-based: Deformable-DETR (sin-
gle scale) [62], RT-DETR (with ResNet-50) backbone [30] and an anchor-free
YOLOv5m [20]. On each training iteration, every instance in an image is re-
painted with 30% probability. This ensures a high diversity of training samples
and reduces the overfitting. The results (Tab. 1) show that adding augmented
data consistently improves the performance of object detection models.
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Model  Data| AP APs AP75

Def.-DETR orig. |39.3 60.0 42.0 Data 10% 25% 50% 75% 100%
Def-DETR ours [40.5 60.2 43.4 orig. 25.8 34.2 39.1 412 44.1
RT-DETR orig. [51.4 69.6 55.4 ours 27.9 36.1 40.3 42.5 45.7
RT-DETR  ours |52.4 69.7 56.5 Table 2: Data-Sparse Object De-
YOLOv5m orig. [44.1 63.4 47.8 tection. Our data improves the per-
YOLOv5m ours |45.7 64.0 49.7 formance of YOLOvV5 detector consis-

tently, even with limited amount of

Table 1: Object Detection. Our instance Y .
training data available.

augmentations improve all object detectors
on MS-COCO [2g].

Additionally, we evaluate the effectiveness of augmented data in a data-spare
setting, with only a subset of the training data available. We randomly select
subsample 10%, 25%, 50%, 75% and 100% of the COCO training set, covering
all categories. Table 2 shows the consistent boost of +2-3 AP for each setting.

Semantic Segmentation. To demonstrate the impact of augmentations when
no ground truth instance masks are available we evaluate the performance of
semantic segmentation models on Pascal VOC augmented set. We utilize the
pseudo-ground-truth instances from [2]. To generate the augmented images. Fol-
lowing [52] we first train Mask2Former [8] with ResNet-50 backbone on the syn-
thetic dataset and then finetune the model on the subset of original VOC data.
3 show significant improvement of 15.5 mIoU with even larger improvements
on challenging categories (42.4 vs 14.7 mloU for chair). The main limitation
of generating fully synthetic samples is what motivates our approach: diffusion
models do not perform well in generating complex scenes with multiple fore-
ground /background objects, even with additional guidance. Further, the model
finetuned on the original data achieves superior performance on almost all cat-
egories comparing both to the baseline and the Diffumask method. While the
Diffumask targets different application and use only generated data it is, how-
ever, one of the closest works in terms of generating synthetic data with diffusion
models. Thus the comparison still provides insights on the effectivness of data
augmentations in cases with no ground truth instance masks.

Salient Object Detection. The performance of the salient object detection
models is evaluated on four popular datasets, namely ECSSD [56] with 1000
images of relatively complex backgrounds, DUT-OMRON [57] with 5168 im-
ages that include one or more salient objects with rather complex backgrounds,
HKU-IS [25] with 4,447 images, that include two or more objects with various
backgrounds and DUTS [48] with 15,572 images which is the largest available
dataset for training divided into 10,553 training images (DUTS-TR) and 5,019
testing images (DUTS-TE). All datasets are labelled with pixel-wise ground
truth.
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RealSyn."')' 2 & & & ¢ H W of 3 o l!l‘mIoU
VOC X ‘87.5 94.4 70.6 95.5 87.7 92.2 44.0 85.4 89.1 82.1 89.2 80.6 53.6‘ 77.3

X [52]
X Ours

80.7 86.7 56.9 81.2 74.2 79.3 14.7 63.4 65.1 64.6 71.0 64.7 27.8
86.5 89.1 71.7 85.9 80.7 92.5 42.2 66.0 87.2 74.8 86.3 72.0 43.5

57.4
72.9

85.4 92.8 74.1 92.9 83.7 91.7 38.4 86.5 86.2 82.5 87.5 81.2 39.8
89.2 89.4 69.0 92.3 87.893.6 40.5 79.8 89.6 86.7 88.9 85.261.5

77.6
78.2

VOC [52]
VOC Ours

Table 3: Semantic Segmentation Evaluation. We evaluate the performance of
Mask2Former [8] with ResNet-50 backbone on VOC [12] dataset. Training on aug-
mented data improves the results by a wide margin compared to [52], while finetuning
on a part of the original dataset further improves model performance.

ECCSD DUTS-TE DUT-OMRON HKU-IS
Model Data|FrmaTMAE| St |FrnaeTMAE] Syt |FraeTMAEL St [FraeTMAE] Spt

U2Net orig.| 0.944 0.052 0.900| 0.863 0.066 0.836| 0.835 0.075 0.819|0.930 0.043 0.895
U2Net ours | 0.948 0.047 0.908/0.874 0.061 0.844]0.848 0.069 0.827/0.935 0.040 0.900
F3-Net orig.| 0.955 0.035 0.924| 0.899 0.038 0.887| 0.831 0.054 0.835| 0.942 0.029 0.918
F3-Net ours |0.962 0.033 0.929/0.907 0.037 0.890/0.850 0.055 0.843/0.947 0.029 0.922
TRACER-4 orig.| 0.956 0.027 0.929(0.911 0.029 0.896| 0.847 0.048 0.848|0.944 0.024 0.921
TRACER-4 ours |0.960 0.026 0.933/0.918 0.026 0.905/0.848 0.045 0.853|0.948 0.022 0.928

Table 4: Salient Object Detection Evaluation. Comparison of performance with
five existing methods on five benchmark datasets. The best results per method pair
are highlighted. Our method improves the performance in 34/36 metrics.

We use three saliency segmentation models: U2Net [35], F3-Net [49] and
TRACER [24]. Specifically, we choose the U2Net-lite version as a simpler archi-
tecture and the more complex multi-head TRACER model with an EfficientNet-
4 [46] backbone to show the impact of the data augmentation on different model
sizes and architectures.

Table 4 shows saliency segmentation results of the three models on the orig-
inal and our version of each dataset. Using our data pipeline over the original
images improves the performance in almost all metrics across five datasets and
three models with up to 8% in error reduction. We note that all models are
trained on DUTS (either the original data or ours). Thus, this benchmark also
measures generalization, which is one of the strengths of our method.

We also investigate how traditional data augmentations (including flips, rota-
tions, adding noise, blur, brightness, contrast, etc.) as implemented in [6] affect
the results. In Tab. 5, we analyse the influence of using augmentations, real data
and or synthetic data. Additionally, we compare our synthetic data generation
pipeline to the synthetic dataset of [53]. Classical image augmentations are com-
plementary to our method and can be used in conjunction. Further, our synthetic
data performs better than [53], especially for generalization.

5.2 Data Anonymization

The effectiveness of the introduced method for data anonymization is evalu-
ated on COCO using our anonymized datasets, where all cars and people in the
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ECCSD DUTS-TE DUT-OMRON HKU-IS
Model AugRealSyn. FrnaxtMAE| St |FrnaxtMAE| St |Frmaz?MAE] Smt |FraetMAE] St
F3-Net X X [33]]0.938 0.039 0.913|0.856 0.053 0.851]0.793 0.077 0.802] 0.932 0.032 0.909
F3-Net X X ours|0.959 0.036 0.923/0.903 0.040 0.880/0.841 0.058 0.829/0.949 0.029 0.919
TRACER-0 X X [0943 0.035 0.912]0.884 0.035 0.874|0.816 0.050 0.825]0.929 0.031 0.904
TRACER-0 v v X |0.949 0.032 0.919|0.889 0.035 0.880|0.833 0.051 0.836|0.933 0.028 0.912
TRACER-0 X v ours|0.949 0.033 0.919]0.891 0.034 0.879|0.826 0.048 0.834|0.932 0.029 0.909
TRACER-0 v v ours|0.949 0.031 0.923/0.892 0.033 0.885| 0.829 0.049 0.839/0.937 0.027 0.916

Table 5: Data Augmentation. Comparison of the influence of standard augmenta-
tions (Aug) and the influence of including real samples (Real) as well as a comparison
with the augmentation strategy in [53].

all classes people only cars only
Model Dataset AP AP50 AP75‘ AP AP50 AP75‘ AP AP50 AP75

Deformable-DETR Real 39.3 60.0 42.0 |49.7 78.5 52.7139.5 68.5 39.0
Deformable-DETR Anonymized People|38.3 58.7 40.6 |45.6 75.2 47.1| - - -
Deformable-DETR Anonymized Cars |38.7 59.5 41.5| - - - [37.2 65.6 36.7
Table 6: Data Anonymization. Replacing all real data of people or cars only has
a marginal impact on the overall performance. This is important as one might not
even be interested in a detector for people, yet people are contained in the images.
The replaced category slightly decreases in performance which is acceptable given the
strong increase in privacy.

dataset were substituted with the synthetic versions. We train a Deformable-
DETR [62] model for 50 epochs on the original MS-COCO [28] and the two
anonymized variants and compute mean average precision and thresholded aver-
age precision metrics for all objects and people and cars separately. The model
trained on purely synthetic subcategories without real people/car objects achieves
comparable performance to the model trained on the original dataset within the
category and on a complete validation set, proving the method can efficiently
be employed to anonymize potentially sensitive data. While the performance
of the synthetic categories decreases slightly, the overall performance is almost
unaffected (1 AP drop with 30.5% of all instances repainted). As many applica-
tions are object-centric and do not depend on detecting humans accurately, the
boost in privacy comes at no cost in performance. Additionally, we measure the
anonymization strength comparingly to the state-of-the-art face anonymization
method [22] by calculating how often a replaced face can be matched with its
original appearance using a face identification model. To this end, we use Arc-
Face [10] on the pairs of original and generated images from the COCO dataset,
validating whether people can be re-identified after applying our method. From
64115 images with people and 262465 faces, only 373 (0.14%) of faces were re-
identified vs. 2.8% faces anonymized by LDFA [22]. This shows the importance
of extending the method beyond face anonymization because it can replace all
pixels covering a given individual. It is important as making only faces unidentifi-
able can be considered to be only pseudonymization, i.e., not a complete removal
of personal information from an image.
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Model Dataset FrazT MAE] St Fouvg T

TRACER-0 Real 0.889 0.035 0.880 0.847

TRACER-0 Anonymized 0.886 0.036 0.876 0.846
Table 7: Anonymizing People in DUTS. Training with only synthetic humans
achieves comparable performance to the model trained on real images of humans.

. . — ]
a) Original b) Inpainting c) Depth Map d) Depth + Edge

Fig. 6: Inpainting Conditioning. Inpainting without conditioning (b) does not pre-
serve the structure of the object. Depth conditioning alone (c) fails to generate finer
details and sharp edges. The full model (d) accurately preserves original annotations
while producing high-quality samples.

Additionally, we test the effect on the DUTS dataset by anonymizing all
people in Tab. 7. Similarly, the drop in performance is negligible, demonstrating
high potential for tasks where preserving data privacy is crucial.

5.3 Ablation Study

In this section, we verify the pipeline components’ importance. We start with
the full pipeline and analyze its performance on DUTS by subtracting individual
components. We use TRACER [24] with EfficientNet-0 [46] for all experiments
and report the results in Tab. 8.

Our method conditions the inpainting network on the predicted depth and
edge map. Removing it from the pipeline results in a performance drop across all
metrics. We also train a model without the additional edge map input. This also
results in reduced performance, indicating that both depth and edge map help
preserve both high and low-level information. Figure 6 compares the original
image to naive inpainting and control with depth, mask, and both. Additionally,
we train a model on the version of the dataset with full image generated from
only the depth and edges condition on the input. The main limitation of this
method is still failing to generate scenes with a complex structure.
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Component FrazT MAE| Sit Favg T

Jull method 0.892 0.033 0.885 0.853
w/o instances (full image) 0.889 0.035 0.881 0.848
w/o edge and depth control 0.886 0.036 0.881 0.846

w/o edge control 0.890 0.034 0.880 0.850
w /o prompt engineering 0.889 0.034 0.880 0.849
w /o0 mask refinement 0.888 0.035 0.879 0.844

Table 8: Ablation study on DUTS. Removing any component from the generation
pipeline decreases the downstream task performance. The most important components
are additional conditioning of the inpaiting model (ControlNet) and mask refinement.

cup, blue, dark

Fig.7: Prompt Engineering. Samples generated without (left) and with (right)
color /lighting prompts. Extra prompts result in more diversity and variations.

5.4 Prompt Engineering

We introduce several improvements over simply using the class name as a prompt.
We verify this choice in Tab. 8 where we show that the down-stream task perfor-
mance decreases without “prompt engineering”. Further, we show visual exam-
ples in Fig. 7. The class label prompt limits the diversity of the generated cups,
whereas including color and light information shows much more diverse results.
Finally, we observe that without including more detailed descriptions for peo-
ple, the inpainter tends to sometimes fully remove (inpainting the background)
complicated objects instead of redrawing them.

Mask Refinement. The pipeline performance is bounded by the perfor-
mance of the underlying methods. In complex scenes, the error level of the depth
or edge map model might cause the divergence between the generated image and
the original annotations. The mask refinement module fixes disconnection, yet
again improving the metrics and ensuring the stability of the generation pipeline.

6 Conclusions

In this paper, we introduce a method for object-level data augmentation. We
combine a large pre-trained diffusion model with the low-level object represen-
tation to sample high-quality, diverse samples outside of the original dataset dis-
tribution. We demonstrate the method’s efficiency as a data augmentation and
anonymization technique. Additionally, we release the synthetic and anonymized
versions of the standard detection benchmarks, COCO, VOC and DUTS.
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