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Fig. 1: Our method for the first time, without any motion data, explores open-set
human motion synthesis using natural language instructions as user control signals
based on MLLMs across any motion task and environment.

Abstract. Human motion synthesis is a fundamental task in computer
animation. Despite recent progress in this field utilizing deep learning and
motion capture data, existing methods are always limited to specific mo-
tion categories, environments, and styles. This poor generalizability can
be partially attributed to the difficulty and expense of collecting large-
scale and high-quality motion data. At the same time, foundation models
trained with internet-scale image and text data have demonstrated sur-
prising world knowledge and reasoning ability for various downstream
tasks. Utilizing these foundation models may help with human motion
synthesis, which some recent works have superficially explored. How-
ever, these methods didn’t fully unveil the foundation models’ potential
for this task and only support several simple actions and environments.
In this paper, we for the first time, without any motion data, explore
open-set human motion synthesis using natural language instructions as
user control signals based on MLLMs across any motion task and en-
vironment. Our framework can be split into two stages: 1) sequential
keyframe generation by utilizing MLLMs as a keyframe designer and an-
imator; 2) motion filling between keyframes through interpolation and
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motion tracking. Our method can achieve general human motion synthe-
sis for many downstream tasks. The promising results demonstrate the
worth of mocap-free human motion synthesis aided by MLLMs and pave
the way for future research.

Keywords: Human motion synthesis · Multimodal large language mod-
els · Physics-based character animation

1 Introduction

Synthesizing humanoid movements and interactions is a cornerstone for advanc-
ing embodied AI, enhancing the realism of video games, enriching experiences
in VR/AR, and empowering robots with the ability to interact with humans.
Therefore, researchers have been long seeking automatic ways for humanoid ani-
mation synthesis. Existing works [11,13,14,19,20,36,37,41,45,48,49] have made
significant progress facilitated by reference motion trajectories depicting real hu-
man movements collected through motion capture (mocap) systems. While these
methods have yielded high-fidelity animations, they are intrinsically limited by
the scope of the mocap data. Due to the inherent difficulty and expenses of
motion capturing, the largest publicly accessible mocap datasets [11, 25] only
encompass dozens of hours of motion, which is still far from enough to cover the
vast array of daily human motions. As such, data-driven animation synthesis is
usually confined to pre-recorded motion datasets and lacks open-set generaliz-
ability to novel environments and unseen human behaviors.

In the realm of machine learning, Multimodal Large Language Models (MLLMs)
have recently emerged as a transformative force, showcasing remarkable compe-
tency in inferring and adapting to open-set scenarios. These models have been
successful across a spectrum of tasks that range from perception [1, 8, 44] and
high-level planning [17, 18] to low-level manipulative actions [24, 46]. This suc-
cess prompts us to consider whether we can leverage powerful MLLMs trained
on internet-scale image and text data (e.g., GPT-4V [1]) to break free from the
dependency on mocap data and instead generate open-set humanoid animations
that can dynamically adapt to new and ever-changing environments and tasks.

In this work, we for the first time demonstrate MLLMs’ ability for open-
set humanoid motion synthesis controlled by natural language user input with-
out any motion data. (See Fig. 1.) Directly applying MLLMs trained on image
and text data as motion generators is not proper, as they may not capture
the subtleties of continuous motion necessary for realistic character animation.
Nonetheless, MLLMs excel in understanding high-level action narratives and
keyframes, akin to a lead animator’s role in traditional studios. We, therefore,
propose to first leverage MLLMs to decompose open-set humanoid motion into
narrative plots and corresponding keyframes and then in the second stage de-
velop automatic motion filling algorithms to close the gap between the discrete
understanding of MLLMs and the continuous nature of humanoid movement.

Specifically, in the first stage, we employ two specialized GPT-4V agents to
generate a sequence of keyframes. One agent acts as the keyframe designer, using
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text descriptions of the desired motion (e.g., walking) and the current state of
the humanoid (e.g., the left leg advancing while the right leg is stationary), along
with a rendered image of the humanoid, to predict the text for the subsequent
keyframe (e.g., the left leg making contact with the ground as the right leg begins
to lift) and the time interval between two adjacent frames. The other agent,
the keyframe animator, is then presented with this predicted text. With a set
of pre-defined commands to manipulate the humanoid’s joints and the current
state information, the animator selects appropriate commands to adjust the
humanoid’s pose to match the designer’s description, using the rendered images
for visual feedback. This pose adjustment may be refined multiple times. The
designer and animator collaborate in this iterative fashion until they complete
the motion sequence.

In the second stage, to transform a sequence of keyframes into a fluid mo-
tion clip, we engage in motion filling. Initially, we perform interpolation on the
keyframe sequence to create a time-continuous motion clip. However, since in-
terpolation may not adhere to physical laws, we utilize a motion tracking policy
that corrects for physically implausible poses and transitions. Drawing inspi-
ration from successful model-based tracking methods [9, 40, 45], we develop a
CVAE-based policy empowered by an MLP-based world model to track the
interpolated motion. Unlike previous approaches confined to flat terrain, we in-
tegrate height maps to inform our policy and world model about varying terrain,
ensuring our synthesis is adaptable to diverse environments.

We evaluate our method on a wide range of downstream tasks, including
motion synthesis, style transfer, human-scene interaction, and stepping stones.
Our method achieves surprising results without any motion data.

2 Related Work
2.1 Foundation Models for Motion Synthesis
Striking advancements of foundation models [1,3,4,7,8,26,30,35] have been made
during the past few years. The success of LLMs stimulated interest in MLLMs
(Multimodal Large Language Models) [1,35], which extends LLMs to accept vi-
sual input. They either learn from visual signal and text simultaneously from
scratch [35] or employ a cross-modal connector to align the features of visual en-
coders to the LLM’s text embedding space. As foundation models demonstrate
impressive capabilities on many downstream applications these years, researchers
try to ground their knowledge into motion synthesis tasks. Generating reward
functions for particular tasks is adopted by several works [23, 24, 46] as an in-
termediate interface connecting motion instructions and physics-based motion
controllers. Methods based on reward design utilize GPT’s ability of logical rea-
soning and code generation. However, only a small set of motions is suitable
to be represented as a reward function. These methods fail to maintain their
performance when applied to open-set motion synthesis. Rather than designing
task-specific reward functions, [33] utilizes CLIP [30] to compute the similarity
between observation and motion text, which serves as the reward value for pol-
icy training. It only supports the simplest human motions (e.g. sitting, raising
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hands). Compared with existing methods, our method takes the first step toward
open-set motion synthesis based on MLLMs.

2.2 Human Motion Synthesis
Human motion synthesis is a fundamental task in computer animation. With
the popularity of neural networks and motion capture data, data-driven meth-
ods have become mainstream [11, 13, 14, 19, 20, 36–39, 41, 43, 45, 48–51]. Recent
researchers use generative models to recover kinematic motions from Gaussian
noise, given various conditional signals. VAE-based methods [10, 11, 15, 29] and
GAN-based [14, 21, 22] methods have been widely explored during the past few
years. [15] employs a Variational Autoencoder (VAE) to acquire a general mo-
tion manifold, enabling the synthesis and editing of character motion based on
high-level control parameters. Also, employing diffusion models in motion syn-
thesis [31,37,39,43,47,48] has emerged as a new trend due to their state-of-the-art
performance. Several recent studies have explored novel approaches in motion
control and synthesis. [27] distills a large set of expert policies into a latent space
for a high-level controller. [40] employs a conditional VAE for expert demon-
stration mimicry, while [45] uses a CVAE for flexible skill representation and
policy learning. Inspired by GAIL, [28] develops a discriminator to ensure style
consistency and task-specific reward but still compliance in motion data.

3 Method

One straightforward way to generate human motion clips from MLLMs is to
utilize MLLMs as motion state predictors. However, this method often yields
unsatisfactory results due to the underrepresentation of such motion data in the
MLLMs’ training corpora and the subtleties of continuous motion. MLLMs excel
in their world knowledge and logical reasoning ability drawn from internet-scale
text and image data. However, these abilities only come into play in high-level se-
mantic space rather than low-level motion space. A significant challenge is bridg-
ing this gap and effectively applying the MLLMs’ capabilities to motion space. To
solve this problem, we propose our framework, FreeMotion, and split the problem
into two stages: 1) sequential keyframe generation by utilizing MLLMs as a de-
signer and animator; 2) motion filling between keyframes through interpolation
and motion tracking. The underlying insight of our method is the utilization of
MLLMs solely within the high-level semantic space. Since keyframes in a motion
usually contain richer and more salient semantic information, we utilize MLLMs
to decompose a given motion temporally and spatially by generating sequential
keyframes. The blank between keyframes is left for motion-filling techniques, in-
cluding interpolation and environment-aware motion tracking. The overview of
our method is shown in Fig. 2.

3.1 Sequential Keyframe Generation from MLLMs
Given a user instruction requiring a specific motion, we hope MLLMs can trans-
late it into a sequence of humanoid poses, each representing a keyframe in the
motion. Such a task involves motion understanding, keyframe reasoning, and
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Fig. 2: Overview of FreeMotion. FreeMotion adopts two specialized GPT-4V agents
for sequential keyframe generation. Then we utilize interpolation and environment-
aware motion tracking to fill the blank between keyframes.

humanoid posture adjustment. As it is challenging for the MLLM to output
a correct sequence simultaneously, we employ two specialized GPT-4V agents,
each playing a distinct role. One serves as a keyframe designer, aiming to trans-
late the input motion instruction into relatively low-level body part descriptions
of sequential keyframes. The other one acts as a keyframe animator, who takes
the description of one keyframe generated by the designer and fits a humanoid’s
pose to the description through visual feedback using a set of pre-defined pose
adjustment commands. We will discuss the details of each GPT-4V agent in the
following sections.

Keyframe Designer. The keyframe designer’s role is to translate high-level
motion instruction I into a sequence of more detailed, low-level keyframe repre-
sentation R = {r1, . . . , rm}, where m is the number of keyframes to represent
the motion. Each ri is composed of a general full-body description Di (e.g.,
"The humanoid is stepping forward with its left leg, the right leg is stationary
and the arms are swinging opposite to the legs.") and a series of body-part (e.g.,
left arm, right leg, torso) descriptions {di1 , . . . ,din} (e.g., "The left arm is mov-
ing backwards in a smooth arc, with the shoulder back, the elbow slightly bent,
and the hand relaxed."), where n is the number of body parts. Each time, the
keyframe designer depicts the next keyframe given the full-body description Di,
a rendered picture pi of the current humanoid, the humanoid’s current joint
coordinates {xi}, and the motion instruction I as input, outputting: 1) the low-
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level keyframe representation of the next keyframe ri+1; 2) the time interval
ti (e.g., "0.5s") between the current state and the predicted next keyframe.
Starting with D0 ("The humanoid is standing on the ground."), the keyframe
designer can produce the whole sequence of keyframe representation R. This
process spatially and temporally decomposes the high-level motion instruction
I, integrating the MLLM’s knowledge into a more tangible motion representa-
tion for the subsequent keyframe animator. The MLLM can make a reasonable
motion-to-keyframe decomposition without the rendered picture pi of the hu-
manoid. But the presentation of pi offers the keyframe designer a chance to
better understand the humanoid’s current state and make an improved repre-
sentation ri+1 of the next keyframe.

At this stage, the MLLM plays a crucial role in determining the spacing be-
tween adjacent keyframes. Excessively distant keyframes can lead to unstable
results and result in motion artifacts even with physics correction. Conversely,
overly close keyframes can make the generation process excessively tedious, di-
minishing the keyframes’ ability to provide constructive guidance. However, in
most of our experiments, GPT-4V successfully generates feasible keyframes. This
success could be attributed to the MLLM’s inherent understanding of motion
dynamics; it comprehends that a motion sequence is comprised of several dis-
tinct stages. For instance, in walking, the sequence involves lifting the left foot,
stepping forward, setting down the left foot, and lifting the right foot. Given
this understanding, the MLLM is able to generate an appropriate number of
keyframes, effectively segmenting the entire motion sequence.

We let the keyframe designer to automatically determine the termination
point of motion design. It is instructed to signal the completion of the entire
motion sequence by outputting "Done" once it perceives the completion of the
specified non-periodic motion, or believes that a periodic motion has concluded
after a full cycle. Besides leveraging the MLLM’s capability to recognize motion
termination, we also manually set an upper limit to ensure the motion design
won’t be endless.

Keyframe Animator. Provided with a detailed next-keyframe representation
ri+1, joint coordinates {xi}, and the rendered picture pi, the keyframe anima-
tor is responsible for adjusting a humanoid’s pose ski to fit the representation
ri+1. Adjustments are made in order of body parts listed by the keyframe de-
signer. Rather than directly tuning the joint’s position or rotation, we regularize
the adjustment as a set of commands, each corresponding to a specific joint
movement. These commands are implemented using kinematic methods, such as
forward and inverse kinematics. This regularization not only frees MLLM from
the tedium of tuning spatial features joint by joint but also gives semantic in-
formation to pose adjustments so that the reasoning ability can be utilized. All
commands used by GPT-4V are listed in Tab. 1. We also allow the GPT-4V
animator to rotate the camera around the humanoid to observe body parts of
interest better.

Despite the simplifications that have been made, it remains a complex task
for the MLLM to accurately adjust the pose in a single attempt. Luckily, vi-
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sual signals can serve as feedback and make multi-iteration adjustment possible.
Concretely, given a certain body part and the representation ri+1, the MLLM
chooses one of the commands and outputs corresponding parameters to adjust
the body part. When the command is executed on the humanoid, the updated
joint coordinates and the rendered picture are passed to the keyframe animator
as feedback. This loop continues until the animator believes the body part’s pose
aligns with the descriptions or the times of this body part’s adjustment meet
the upper limit, which is 5 in our method. When the adjustment is finished for
one body part, the animator switches to the next body part according to a pre-
defined order. The animator finally passes the updated coordinates {xi+1} and
an updated rendered picture pi+1 for the next keyframe back to the designer
when the adjustment for every body part is completed.

It is worthing to note that although our method incorporates a visual feed-
back mechanism, it typically converge within the upper limit for a single body
part. This is primarily because most body parts either remain static or experi-
ence only minor alterations during transitions. Consequently, the total number
of adjustments required by the animator to transition the humanoid from ski to
ski+1 consistently remains under 10.

Table 1: Command Set. We regularize the pose adjustment as a set of commands.

Command Function

Single joint movement move a selected joint around its parent joint to a target place

End effector movement move a selected end effector quickly to a target place through
pre-defined IK chains

Pelvis rotation/movement with
support points on the ground

rotate/move the pelvis with one or more support points on the
ground through IK

Pelvis rotation/movement without
support points on the ground

rotate/move the pelvis without support points on the ground
through direct rotation/movement

Single joint roll roll a selected joint

Camera rotation rotate the camera around the humanoid

3.2 Motion Filling through Interpolation and Motion Tracking

Fig. 3: Policy training and inference. We incorporate height maps as visual signals,
enabling our policy and world model to be aware of diverse environmental conditions.
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After obtaining a series of keyframes with each keyframe specified by hu-
manoid poses {sk1 , . . . , skm} and time intervals {t1, . . . , tm−1} based on our
instructions, we perform linear position and rotation interpolation on these
keyframes to achieve continuous motion frames, resulting in an interpolated
frame rate of 20 frames per second. However, straightforward interpolation may
fall short of ensuring the motion’s physical validity. To address this, we turn to
model-based motion tracking methods, as proven in [32], which successfully nav-
igate the challenges of infeasible state transitions. We implement a refined motion
tracking system using a CVAE-based policy combined with an MLP-based world
model, drawing inspiration from the methodology of ControlVAE [45]. A notable
innovation in our study is the integration of environmental signals, enhancing
the model’s responsiveness to dynamic contexts. The methodology is depicted
in Fig. 3.

Environment Visual Signals Extraction. Our incorporation of height maps
as visual signals enables our policy and world model to be cognizant of the
environment and thus to be environment-aware. We derive a height map around
the humanoid pelvis from the current environment observation and flatten it
into a vector ot at simulation time step t.

CVAE-based Motion Control Policy. Our CVAE-based motion control pol-
icy is formulated as a conditional encoder and decoder. The state s at each sim-
ulation time step can be fully characterized by {xj , qj ,vj ,ωj}, j ∈ B, where B
is the set of rigid bodies and xj, qj, vj, ωj stand for the position, orientation,
linear velocity, and angular velocity of each rigid body, respectively. Given the
current state st and the interpolated trajectory τ̃ = {s̃1, . . . , s̃T }, we first en-
code the state transition (st, s̃t+1) and visual signals ot into a latent variable z.
The network for encoding is referred to qϕ, parameterized by ϕ, which models
the embedding to a Gaussian distribution:

qϕ(zt|st, s̃t+1,ot) = N (zt;µϕ(st, s̃t+1, ot), Σϕ(st, s̃t+1,ot)). (1)

Using the latent variable derived from the previous network, we can generate
an action by the decoder. Our decoder can be formulated as a conditional dis-
tribution p(a|s, z) that outputs an action a according to the character’s current
state s and a latent variable z. We model the policy pθ parameterized by θ as a
Gaussian distribution as well:

pθ(at|st, zt) = N (at;µθ(st, zt), Σθ(st, zt)). (2)

MLP-based World Model We approximate true transition probability distri-
bution p(st+1|st,at) in the simulator using an environment-aware world model
ω(st+1|st,at,ot), which is another Gaussian distribution

ω(st+1|st,at,ot) ∼ N (st+1;µω(st,at,ot), Σω(st,at,ot)). (3)
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Inference At each time step t, with st, s̃t+1,ot as input, our policy outputs at

to the simulator for the computation of st+1. Starting with s0 = s̃0 and contin-
uously repeating this process, we obtain a trajectory τ = {s0, s1, . . . , sT−1, sT }
where the character keeps moving under the guidance of the given interpolated
motion frames.

Training Process. Detailed training process and loss terms are complicated
and not the focus of our work. We adopt almost the same training process and
loss terms as ControlVAE [45]. We recommend readers refer to the original paper
for more details. It is worth noting that we do not train a motion tracker for
every single generated motion since it’s very time-consuming. For each down-
stream task, which will be presented in the next section, we concatenate all
interpolated motions together to train a policy and world model. The collection
of each trajectory is conducted within each interpolated motion so that it doesn’t
span different motions. The length of each interpolated motion must meets the
minimum rollout length for successful training. Therefore motions that don’t
meet the requirement will be padded with its last frame.

4 Tasks

We evaluated our methods on various downstream tasks across different motion
categories and environments, including motion synthesis, style transfer, human-
scene interaction, and stepping stones. We use ODE [34] for physical simulation.

4.1 Motion Synthesis

In this task, we evaluate our method’s performance on motion synthesis. We
conducted two experiments. In the first, we compared our method with two
recent data-driven methods, MDM [37] and MLD [6] on HumanAct12. In the
second, we compared our method to zero-shot motion synthesis methods [16,36],
using motions that were unseen by both the baselines and our model for testing.

Baseline MDM [37] and MLD [6] are recent data-driven methods trained on
HumanAct12 [12], which is an action-to-motion dataset, containing 12 action
categories and 1191 motion clips. It is worth noting that some actions in Hu-
manAct12 involve interactions with objects, e.g., Drink, Lift dumbbell, Turn
steering wheel. GPT-4V can imagine the existence of these virtual objects and
generate corresponding keyframes. The test motions listed in Tab. 2 are seen for
baseline methods and unseen for MLLMs during development.

Zero-shot motion synthesis has been explored by some CLIP-based meth-
ods [16, 36]. To evaluate the ability of our method to tackle this task utilizing
the world knowledge of MLLMs, we compared the performance on Olympic
sports following the setting in MotionCLIP [36] to [16, 36], excluding motions
not suitable for physical tracking on the ground, for example, Cycling and Div-
ing. In this experiment, corresponding motion data is unseen for both baseline
methods and ours.
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Table 2: Motion Synthesis on Hu-
manAct12. FreeMotion achieves good re-
sults without motion data.

User Study
MDM [37] MLD [6] Ours

Warm up 26.00% 38.00%38.00%38.00% 36.00%
Walk 10.00% 22.00% 68.00%68.00%68.00%
Run 30.00% 32.00% 38.00%38.00%38.00%
Jump 16.00% 28.00% 56.00%56.00%56.00%
Drink 14.00% 46.00%46.00%46.00% 40.00%
Lift_dumbbell 26.00% 32.00% 42.00%42.00%42.00%
Sit 30.00% 44.00%44.00%44.00% 26.00%
Eat 22.00% 30.00% 48.00%48.00%48.00%
Turn_steering_wheel 32.00% 28.00% 40.00%40.00%40.00%
Phone 30.00% 32.00% 38.00%38.00%38.00%
Boxing 16.00% 24.00% 60.00%60.00%60.00%
Throw 20.00% 14.00% 66.00%66.00%66.00%

Average 22.67% 30.83% 46.50%46.50%46.50%

Metric Given those commonly-used
inception models for evaluation, as
in [6,37], are overfitting on their train-
ing datasets and fail to evaluate our
method, we choose to utilize user pref-
erence as many prior works [2, 16, 36]
where inception models are unavail-
able. We asked 50 volunteers to per-
form a user study in terms of two fo-
cuses: 1) the consistency with input
texts, and 2) motion quality (physical
feasibility, naturalness, etc.). We show
the volunteers with randomly sampled
motions generated by the same prompt
(an action category in this experiment)
from our method and baseline methods side by side. The volunteers are asked
to select the one with the best performance according to the above two focuses.

Analysis The results of motion synthesis on HumanAct12 are shown in Tab. 2.
It is evident that FreeMotion outperforms traditional data-driven methods in
most cases. The key factor contributing to this success is FreeMotion’s ability
to maintain physical plausibility, a challenge for methods like MDM and MLD.
Fig. 4 highlights FreeMotion’s capability to generate realistic, previously unseen
motions on HumanAct12.

For the second experiment, the user preference score is shown in Tab. 3. Our
method outperforms two existing zero-shot motion synthesis methods signifi-
cantly. Fig. 5 also vividly illustrates that FreeMotion is capable of synthesizing
realistic Olympic sports motions, whereas MotionCLIP and AvatarCLIP tend
to produce unnatural motions. Despite MotionCLIP and AvatarCLIP benefiting
from CLIP’s zero-shot generalizability, they fall short in adhering to physical
constraints and accurately interpreting the composition and sequence of mo-
tions. A case in point is a jump shot in basketball: ideally, the player first lifts
the ball to the chest before jumping. However, these methods often struggle to
replicate this sequential accuracy.

“Eat” “Jump”

“Throw”

“Wave hand”

“Walk” “Boxing”

Fig. 4: Motion synthesis visualization results of FreeMotion on Human-
Act12. FreeMotion can synthesize realistic motions across different categories.

4.2 Style Transfer
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“Tae kwon do” “Tennis”“Jump shot”

MotionCLIP

AvatarCLIP

Ours

Fig. 5: Motion synthesis visualization results on Olympic sports. FreeMotion
can synthesize satisfactory motions even on challenging Olympic sports.

Table 3: Olympic Sports. FreeMotion surpasses existing methods significantly.

Metrics Methods

User Study
MotionCLIP [36] 8.00% 12.00% 6.00% 2.00% 10.00% 6.00% 8.00% 4.00% 4.00% 6.00% 16.00%
AvatarCLIP [16] 10.00% 6.00% 10.00% 8.00% 6.00% 10.00% 12.00% 8.00% 2.00% 12.00% 18.00%
Ours 82.00%82.00%82.00% 82.00%82.00%82.00% 84.00%84.00%84.00% 90.00%90.00%90.00% 84.00%84.00%84.00% 84.00%84.00%84.00% 80.00%80.00%80.00% 88.00%88.00%88.00% 94.00%94.00%94.00% 82.00%82.00%82.00% 66.00%66.00%66.00%

Metrics Methods

User Study
MotionCLIP [36] 6.00% 4.00% 4.00% 12.00% 8.00% 2.00% 14.00% 2.00% 26.00% 20.00% 14.00%
AvatarCLIP [16] 4.00% 2.00% 8.00% 20.00% 6.00% 12.00% 6.00% 4.00% 34.00% 32.00% 18.00%
Ours 90.00%90.00%90.00% 94.00%94.00%94.00% 88.00%88.00%88.00% 68.00%68.00%68.00% 86.00%86.00%86.00% 86.00%86.00%86.00% 80.00%80.00%80.00% 94.00%94.00%94.00% 40.00%40.00%40.00% 48.00%48.00%48.00% 68.00%68.00%68.00%

Table 4: Style Transfer. FreeMotion
surpasses existing methods significantly.

User Study
MotionCLIP [36] AvatarCLIP [16] Ours

Happy 22.67% 25.33% 52.00%52.00%52.00%
Proud 24.00% 18.00% 58.00%58.00%58.00%
Angry 14.00% 34.67% 51.33%51.33%51.33%
Childlike 28.67% 29.33% 42.00%42.00%42.00%
Depressed 14.67% 17.33% 68.00%68.00%68.00%
Drunk 11.33% 9.33% 79.33%79.33%79.33%
Old 17.33% 28.00% 54.67%54.67%54.67%
Heavy 20.00% 16.00% 64.00%64.00%64.00%

Average 19.08% 22.25% 58.67%58.67%58.67%

We evaluate our method’s ability to
represent motion styles without any
training data. For this evaluation, we
closely adhere to the settings estab-
lished in MotionCLIP [36], generat-
ing actions with specific styles directly
from textual descriptions. This evalu-
ation encompasses three action cate-
gories: Jump, Walk, and Stand, each
expressed in eight distinct styles. We
adopt the user study as before.

Analysis The average user preference score of each style is shown in Tab. 4.
FreeMotion won more than half of the votes. One impressive capability of MLLM
is imagining what one will do in a specific style. For example, one will walk
with a stoop when he is old. MotionCLIP and AvatarCLIP can hardly make it
since they don’t have explicit world knowledge and reasoning ability using nat-
ural language. The visualization results are shown in Fig. 6. Though sometimes
CLIP-based baseline method can generate visually realistic frames such as the
"Jump+happy" of AvatarCLIP in Fig. 6, the whole motion clip is not physically
plausible and has low quality.
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“Stand+angry” “Walk+old” “Jump+happy”

MotionCLIP

AvatarCLIP

Ours

Fig. 6: Visualization results of style transfer. FreeMotion can add style to human
motion using its world knowledge.

4.3 Human-Scene Interaction

Human-Scene Interaction presents a significant challenge in computer animation,
necessitating not only the recognition of objects for interaction but also the
generation of contextually appropriate motions. Specifically, for sitting and lying
down, we utilize approximately 50 diverse items, including chairs, sofas, and
beds, sourced from ShapeNet [5], and direct the humanoid to appropriately sit
or lie on them. Similarly, for reaching tasks, we select around 50 different objects
from ShapeNet and instruct the humanoid to reach them with a hand. The
humanoid’s initial position is set at a random distance from the object with a
random orientation. We ran 40 times for each task.

Baseline Data-driven methods [14,41] solve Human-Scene Interaction synthesis
by combining style reward from unlabeled motion data and task reward from
human-designed reward function as in AMP [28]. UniHSI [41] formulates the
task reward in human-scene interaction tasks as Chain of Contacts. It obtains
knowledge from LLMs to reason the contact pairs. For the different settings
and the unavailability of code, we report the results from [14, 41] for a rough
comparison. We also implement an AMP-based baseline trained on SAMP [13]
for a fairer comparison.

Table 5: Human-Scene Interaction. FreeMotion
achieves good results on three interaction tasks.

Methods Success Rate (%) ↑ Contact Error ↓
Sit Lie Down Reach Sit Lie Down Reach

InterPhys - Sit [14] 93.7 - - 0.09 - -
InterPhys - Lie Down [14] - 80.0 - - 0.30 -
UniHSI [41] 94.3 81.581.581.5 97.597.597.5 0.0320.0320.032 0.0610.0610.061 0.016

AMP-Sit [28] 83.6 - - 0.074 - -
AMP-Lie Down [28] - 28.3 - - 0.334 -
AMP-Reach [28] - - 96.6 - - 0.041

Ours 959595 60 95 0.066 0.224 0.0120.0120.012

Metric In this task, we fol-
low previous works [14, 41]
that use Success Rate and
Contact Error as the main
metrics. However, these met-
rics should be computed
with ground truth contact
pairs, which are not available
in our method. We manually
set the contact pairs in the
form of joints and target positions and inform GPT-4V in the prompt.
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Analysis The results, as shown in Tab. 5, indicate that our method attains
results comparable to previous methods, even in the absence of any motion data,
which further implies that the MLLMs possess an innate understanding of scene
interaction and object contact. However, the success rate decreases when lying
down on a bed. This phenomenon can be mainly attributed to the rich contact
in this process. Fig. 7 illustrates the visualization results, where FreeMotion
effectively guides the humanoid in navigating towards and interacting with the
target object.“Stand+angry” “Walk+old”

“Sit down”

“Lie down”

Fig. 7: Visualization of Human-scene
interaction. FreeMotion can navigate to
and interact with the target object.

“Boxing” “Hand ball”“Tae kwon do”

“Throw” “Wave hand”“Walk”

“Stand+angry” “Walk+old” “Jump+happy”

“Stepping stones”

Fig. 8: Visualization results of step-
ping stones. FreeMotion can navigate
over irregular terrain.

4.4 Stepping Stones
Navigating challenging, irregular terrain is crucial for locomotion, with each foot-
step subject to strict constraints in this task. In this experiment, we adopt ALL-
STEPS [42] and select the best-performing policy (Adaptive) in the work for com-
parison.

Table 6: Stepping Stones.
Please see the text for a detailed
explanation of the numbers.
Task Parameter ALLSTEPS [42] Ours

Flat (Θ = 0)
Φ = 0 1.45, 1.501.45, 1.501.45, 1.50 1.40, 1.45
Φ = 20 1.35, 1.40 1.40, 1.401.40, 1.401.40, 1.40

Single-step (Φ = 0)
Θ = 50 0.80, 0.800.80, 0.800.80, 0.80 0.60, 0.75
Θ = −50 0.90, 0.95 1.00, 1.101.00, 1.101.00, 1.10

Continuous-step (Φ = 0)
Θ = 50 —, 0.65 0.50, 0.650.50, 0.650.50, 0.65
Θ = −50 0.65, 0.70 0.75, 0.850.75, 0.850.75, 0.85

Spiral (Φ = 20)
Θ = 30 0.80, 0.850.80, 0.850.80, 0.85 0.40, 0.80
Θ = −30 1.00, 1.10 1.10, 1.301.10, 1.301.10, 1.30

Baseline ALLSTEPS [42] learns stepping-
stone skills by utilizing deep reinforcement
learning and curriculum learning. Though re-
quiring no motion data, it needs carefully
designed task-specific reward functions and
training strategies to achieve good results.

Metric We denote pitch Θ, yaw Φ, and dis-
tance d as the parameters of each step rela-
tive to the previous step. We repeat each sce-
nario five times and record two numbers fol-
lowing [42]. The first number represents the
maximum value of d for which the policy suc-
ceeds for all five runs. The second number represents the maximum value of d for
which the policy succeeds in at least one of the runs. A larger number generally
means a better capability to walk on difficult terrain.

Analysis The results are shown in Tab. 6. FreeMotion not only achieves com-
parable or superior results without motion data or complex reward design ex-
pertise but also excels in generating actions that are both naturally harmonious
and physically feasible. As showcased in Fig. 8, it adeptly navigates irregular ter-
rain, producing movements that are in line with the physical constraints of the
stepping stones, further emphasizing its realistic motion synthesis capabilities.
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5 Ablation Study
In this section, we conduct ablation experiments on the 12 action categories from
HumanAct12 [12] to evaluate the effectiveness of our main designs. The dataset
and the metric were introduced in the Motion Synthesis Task.

5.1 Keyframe Designer

The generation of keyframe descriptions is the core of our keyframe designer. In
FreeMotion, we ask the MLLM to output a general full-body description with
detailed body-part descriptions to decompose the keyframe spatially. In this
experiment, we remove the detailed body-part descriptions, only outputting a
general sentence of the full body, to evaluate the effectiveness of explicit spatial
decomposition. The result is shown in Tab. 7. Detailed body-part descriptions
help the keyframe generation process in motion synthesis.

5.2 Keyframe Animator

In this part, we remove the visual feedback mechanism in our keyframe animator,
without which the MLLM can only call the command once for each body part.
The result is shown in Tab. 8. Visual feedback allows the MLLM to further
adjust the humanoid’s pose and improve the motion quality.

Table 7: Ablation on body-part desc.

User Study

w/o body-part desc. 26.00%
Ours 74.00%

Table 8: Ablation on visual feedback.

User Study

w/o visual feedback 32.00%
Ours 68.00%

6 Conclusion
In this work, we for the first time, without any motion data, explore open-
set human motion synthesis using natural language instructions as user control
signals based on MLLMs across any motion task and environment. Our method
can potentially serve as an alternative to motion capture for collecting human
motion data, especially when the cost of motion capture is huge (e.g., collecting
human interaction with different scenes).

Though we have evaluated the effectiveness of our method on many down-
stream tasks, its application can be expanded to more scenarios (e.g., human-
human interactions, contact-rich human-object interaction).

There is much progress to be made in investigating technologies to improve
the performance of our framework. Currently, our method can not handle com-
plex human motions (e.g., dancing) or long text instructions. Its performance
will also downgrade when the contact is rich. Future researchers may consider
finetuning an MLLM with expert human motion knowledge. More powerful pose
adjustment technologies, sometimes even a neural network, can be utilized for
the mapping between natural language description and human pose. We hope
our work can pave the way for future work in this area.
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