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Chameleon: A Data-Efficient Generalist for Dense
Visual Prediction in the Wild

Supplementary Material

This document provides our implementation details and additional results
that could not be accommodated in the main paper due to space limitations.

A Meta-Training Details and More Results

This section describes details of meta-training. We first describe the dataset
details and then describe the implementation details.

A.1 Datasets

We use six existing datasets to construct our unified meta-training dataset. We
summarize the statistics of each dataset in Table A.4.

1. Taskonomy: The Taskonomy dataset [68] comprises an indoor scene dataset
annotated with various vision task labels. We utilize a small subset consisting
of ⇠380K images collected from 35 buildings with various camera proper-
ties, such as camera pitch, roll, or FoV. Following Kim et al. [24], we select
10 dense prediction tasks, including semantic segmentation, surface normal,
Euclidean distance, Z-buffer depth, texture edge, occlusion edge, 2d key-
points, 3d keypoints, reshading, and principal curvature. Note that the 2d
and 3d keypoint labels in the Taskonomy dataset are obtained by descriptor-
based algorithms [6, 53] and differ from the joint keypoints we describe in
the following datasets. Additionally, three single-channel tasks (texture edge,
occlusion edge, and Euclidean distance) are pre-processed to multi-channel
labels. Since labels of the texture edge task can be generated by a deter-
ministic edge detection algorithm [23], we include the unsupervised task in
all the following sub-datasets along with two additional tasks (autoencoding
and denoising).

2. COCO: The COCO dataset [30] consists of ⇠120K images of everyday ob-
jects, which contains semantic/instance segmentation annotations of various
object categories and human keypoint annotations of 17 keypoint classes.
With three unsupervised tasks included in the Taskonomy dataset, we in-
clude five types of tasks: semantic segmentation, panoptic segmentation,
interactive segmentation, joint-specific human keypoint detection, and joint-
agnostic human keypoint detection. For semantic segmentation and panoptic
segmentation, we use 80 object categories from COCO 2017 split and five
selected categories (tree, wall-concrete, sky-other, building-other, and grass)
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from COCO-Stuff [8] split, respectively. For the joint-specific keypoint detec-
tion task, we use the human keypoint labels from COCO 2017 split. We also
add a joint-agnostic keypoint detection task, whose objective is to predict all
human joint locations within an image without distinguishing specific ones.
We categorize this task as continuous signal prediction in Table A.4. Finally,
we include an interactive segmentation task using the instance segmentation
labels from COCO 2017 split, which consists of the same 80 object cate-
gories used for the semantic segmentation task. First, we randomly choose
k 2 [1, bK/2c] object instances of a specific class from each image, where
K denotes the total number of instances within the image. Then the model
should segment the chosen instances by using the interactive guide given
as a second image, where the guide is generated by a Mixture of Gaussian
density whose centers are randomly sampled at p 2 [1, 5] pixels from each
chosen instance.

3. MidAir: The MidAir dataset [16] consists of ⇠420K aerial video frames
recorded in a synthetic environment. It includes two splits (KITE and PLE),
each containing videos from multiple trajectories under four distinct weather
conditions (sunny, sunset, cloudy, and foggy) and three distinct seasons
(spring, fall, winter), respectively. For each weather/season condition, we
employ the first three trajectories of the KITE split and the first two trajec-
tories of the PLE split as our training data. The remaining final trajectory
from each split serves as our validation data. We select three monocular dense
prediction tasks (semantic segmentation, depth estimation, and surface nor-
mal) and two binocular dense prediction tasks (stereo depth estimation and
stereo surface normal). We use images of a left camera for monocular tasks
and images of left and right cameras for binocular tasks. For semantic seg-
mentation, we use eight categories (trees, dirt ground, ground vegetation,
rocky ground, boulders, water plane, road, train track) out of twelve, as
the remaining four categories occupy a tiny portion of pixels in the entire
dataset. We also include three unsupervised tasks as in Taskonomy.

4. KP-3: We include three additional datasets consisting of joint keypoint
labels. MPII [2] dataset consists of ⇠25K human images annotated with
16 human joints, whose joint definition differs from the COCO dataset.
DeepFashion [32] dataset consists of ⇠120K fashion images annotated
with 8 fashion landmarks as joints. Finally, FreiHand [70] dataset con-
sists of ⇠130K hand images captured from 32 subjects, annotated with 21
hand joints. Similar to the COCO dataset, we both include joint-specific and
joint-agnostic keypoint detection tasks in all of the three keypoint-specific
datasets, as well as the unsupervised tasks. In Table 3, we refer to this dataset
together with the COCO keypoint dataset as KP-4.
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Table A.4: Statistics of six datasets contained in the meta-training dataset. When
counting the number of tasks, we consider different channels of a multi-channel task
as different tasks. For example, the number of segmentation tasks corresponds to the
number of classes, and the number of joint-specific keypoint tasks corresponds to the
number of joints. Numbers in parentheses denote the number of task groups obtained
by considering different channels of a multi-channel task and tasks from different source
datasets as a single group.

Dataset # Images
# Tasks

Segmentation Continuous Signals
semantic panoptic interatctive monocular binocular

Taskonomy 381,916 12 (1) 0 0 19 (8) 0
COCO 118,287 80 (1) 5 (1) 80 (1) 1 (1) 0
MidAir 423,676 8 (1) 0 0 4 (2) 4 (2)
MPII 24,984 0 0 0 1 (1) 0

DeepFashion 123,016 0 0 0 1 (1) 0
FreiHand 130,240 0 0 0 1 (1) 0

Total 1,202,119 100 (1) 5 (1) 80 (1) 27 (8) 4 (2)

Dataset
# Tasks

Keypoints Low-Level
Total

joint-specific autoencoding denoising texture edge
Taskonomy 0 3 (1) 3 (1) 3 (1) 40 (12)

COCO 17 (1) 3 (1) 3 (1) 3 (1) 192 (8)
MidAir 0 3 (1) 3 (1) 3 (1) 25 (8)
MPII 16 (1) 3 (1) 3 (1) 3 (1) 26 (5)

DeepFashion 8 (1) 3 (1) 3 (1) 3 (1) 18 (5)
FreiHand 21 (1) 3 (1) 3 (1) 3 (1) 31 (5)

Total 62 (1) 18 (1) 18 (1) 18 (1) 332 (17)

A.2 Implementation Details

Task Sampling. We train Chameleon with 400,000 episodic training iterations.
At each iteration of meta-training, we construct 16 episodic batches, where 8
of them consist of a uni-modal task and the remaining consist of a bi-modal
task sampled from the unified dataset. Then we use either batch for computing
the loss at each iteration, where the batch is randomly chosen with probability
proportional to the number of uni-modal and bi-modal tasks (246 : 84). Both
episodic batches are sampled as the following procedure.
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1. First, we sample the type of tasks, which is one of categorical (both seg-
mentation and joint-specific keypoints), continuous, and low-level, with a
sampling rate 3 : 3 : 1.

2. Second, we sample the source dataset, where the sampling rate is propor-
tional to either the number of tasks (for categorical and continuous tasks)
or the number of images (for low-level tasks) included in each dataset.

3. Third, we uniformly sample four tasks from the task pool filtered by the cho-
sen task type and source dataset, where multi-channel tasks are disassembled
to separate single-channel tasks.

4. Finally, we sample four support pairs and four query pairs from the source
dataset with the selected task, thus simulating a 4-shot learning episode with
four queries for each task.

Loss Function. We use three different loss functions for meta-training: L1 loss,
binary cross-entropy (bce) loss, and spatial softmax loss. We use L1 loss as de-
fault while using bce loss for segmentation tasks and spatial softmax loss for
joint-specific keypoint detection tasks. Spatial softmax loss is computed by first
applying the softmax function on the prediction along the spatial axis (both hor-
izontal and vertical), then applying the binary cross-entropy loss. We normalize
the spatial softmax loss by the sum of the target label and do not use any other
hyper-parameters for weighting three loss functions.

Task-Specific Parameters. Following VTM [24], we use task-specific bias pa-
rameters of the image encoder for each task, which results in a total of 332 bias
sets for meta-training. In Section 3.1 and Section 3.2, we have introduced the
position bias and the feature re-weighting matrix, which are also task-specific.
During meta-training, we share the position bias for all tasks and fine-tune it
task-specifically for downstream tasks with multi-modal inputs. We share the fea-
ture weighting matrix among tasks that originate from the same multi-channel
task (e.g., three channels of surface normal) since they would require similar cor-
respondence between image and label features. We also use the shared matrix
for semantic segmentation and panoptic segmentation in COCO. This results in
42 matrices of size 4⇥ 4, where we use L = 4 feature levels. In Figure A.11, we
plot the learned feature weights averaged on all tasks and tasks within each task
category in the meta-training dataset. It clearly shows that different task groups
require different feature correspondences, where low-level tasks mainly require
low-level features while the other tasks require both low-level and high-level
features.
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Feature Level 1 Feature Level 2 Feature Level 3 Feature Level 4

All Tasks Avg. Segmentation Avg.

Keypoints Avg. Low-Level Avg.

Continuous Avg.
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Fig.A.11: Learned feature weights in training tasks.
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B Downstream Details and More Results

In this section, we describe the detailed settings of six downstream tasks and
provide additional qualitative results for each task.

B.1 AP-10K

Detailed Settings. We fine-tune and evaluate our model on the AP-10K train
and test split, respectively. Since the ground-truth bounding box labels are pro-
vided in the dataset, we center-crop the images and labels, then resize them
to 256 ⇥ 256 resolution. During fine-tuning, we apply a random crop of crop
size 224⇥ 224 on the resized data. For evaluation, we further resize the data to
224⇥224 to obtain the prediction, then translate the keypoint locations back to
the original resolution. We use the spatial softmax loss described in Section A.
Additional Results. In Figure A.12, we provide additional qualitative results
on AP-10K. We can observe that Chameleon successfully adapts to different
animal species with distinctive appearances and joint configurations.

B.2 LineMOD

Detailed Settings. We fine-tune and evaluate our model on the conventional
train and test split of the LineMOD dataset following literature [28, 67]. As
discussed in Section 5, we formulate a 6D pose estimation task as dense predic-
tion by predicting correspondence between each image pixel and the vertex of
the CAD model, from which 6D pose is obtained by Perspective-n-point algo-
rithm [26]. To predict the 2D-3D correspondence, we render a 3-channel texture
map on all images using the 6D extrinsic camera matrices, where the channels
correspond to the X, Y, and Z axes of the relative 3D position of CAD vertices
which are normalized to [�1, 1]. Then we use the rendered texture maps as dense
labels to be predicted by Chameleon. Since the 2D-3D correspondence is defined
on the object area, we augment the dense label with a foreground segmenta-
tion channel, which represents a non-zero region of the texture maps, and let
Chameleon also predict it. We use bce loss to train the segmentation channel
and L1 loss to train the texture channels. During fine-tuning, we apply random
rotation, random jittering, and random Gaussian blur as data augmentation as
well as random cropping with crop size 224⇥ 224.
Image Cropping with Object Segmentation. Since the objects occupy a
small region of the full image, Chameleon first predicts the object location to
crop the images and then predicts the 6D pose in the cropped region as described
above. To obtain the object location, we perform an additional fine-tuning stage
for foreground segmentation on the full-sized images before predicting texture
maps. Then we get the bounding box of the object from the predicted segmen-
tation mask. To fine-tune the object segmentation, we resize the full images and
labels to 256⇥256 and apply random cropping with crop size 224⇥224, with data
augmentation applied in the texture fine-tuning stage. Note that we generate the
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Fig.A.12: Additional qualitative results on AP-10K.
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Fig.A.13: Additional qualitative results on LineMOD on ten object classes: Ape,
Benchviseblue, Cam, Can, Cat, Driller, Duck, Eggbox, Glue, and Holepuncher.
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Fig.A.14: Additional qualitative results on LineMOD on Iron, Lamp, and Phone.

Support ImagesQuery Y-Pred Attention for Y-channel

X-Pred Attention for X-channel Z-Pred Attention for Z-channel

Fig.A.15: Visualization of attention maps between a query (red box in the first image)
and support patches in 6D pose estimation. Chameleon captures 3D relationship by
attending back, left, and bottom parts in X, Y, and Z channels, respectively.

segmentation labels from the texture map labels contained in the support set
(i.e., non-zero region of the texture maps), Chameleon does not use additional
supervision for the object detection procedure. After obtaining the bounding
box, we center-crop the images and labels and resize them to 256⇥ 256.
Additional Results. In Figure A.13 and Figure A.14, we provide additional
qualitative results on LineMOD. We visualize the original query image, texture
maps, and 6D pose on the cropped region (both ground truth and prediction),
and predicted 6D pose on the original image. We observe that Chameleon ac-
curately predicts various 6D poses of all objects. Figure A.15 visualizes the at-
tention maps on this task, which shows that our model successfully captures the
3D relationship required to solve the task.

B.3 ISIC 2018

Detailed Settings. We follow the standard protocol of the literature [19,56] for
fine-tuning and evaluation: (1) we perform 5-fold cross-validation on ISIC 2018
train split and report the mean F1 score, and (2) resize the data to 512 ⇥ 512
resolution for evaluation. During fine-tuning, we resize the data to 448 ⇥ 448
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Input Image GT VTM ChameleonSegGPT + ICLPainter+ICL Painter+PT SegGPT +PT

Fig.A.16: Out-of-domain medical semantic segmentation results of generalist models.
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Fig.A.17: Additional Qualitative Results on ISIC 2018.

resolution and apply random cropping with crop size 384⇥384. During inference,
we first resize the data to 384⇥ 384 to obtain the prediction, then upsample the
prediction to 512⇥512 resolution for evaluation. We use bce loss for fine-tuning.

Additional Results. In Figure A.16 and Figure A.17, we provide qualitative
results on ISIC 2018. We observe that Chameleon accurately segments the lesion
boundary, even for ambiguous regions like the first and sixth query examples in
the figure. We also note that additional fine-tuning still improves the in-context
learning baselines (Painter+PT and SegGPT+PT).

B.4 DAVIS 2017
Detailed Settings. We fine-tune and evaluate our model on the DAVIS 2017
validation split which consists of 30 videos. Notably, we do not use the videos in
the train split of DAVIS 2017, unlike the video object segmentation literature [12,
59]. During fine-tuning, we resize the video frames and labels to 448 ⇥ 448,
then apply random cropping with crop size 384 ⇥ 384. During inference, we
first resize the data to 384 ⇥ 384 to obtain the prediction, then upsample the
prediction to the original resolution for evaluation. We treat different instances
as different tasks (e.g., we fine-tune five independent task-specific parameters
for videos containing five instances). We use cross-entropy loss over predictions
on all object instances within the video, where the logits for the background are
fixed to zero when computing the loss.
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Fig.A.18: Additional qualitative results on DAVIS 2017: parkour, drift-straight, and
horse-jump.
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Fig.A.19: Additional qualitative results on DAVIS 2017: motocross-jump and shoot-
ing.

Query

1-Shot

2-Shot

First frame 1/4 2/4 3/4 Last frame

Fig.A.20: Video segmentation results with one and two support frames (red boxes).
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Fig.A.21: Additional Qualitative Results on FSC-147.

Additional Results. In Figure A.19 and Figure A.18, we provide additional
qualitative results on DAVIS 2017. We can observe that Chameleon accurately
segments diverse videos within the benchmark. As discussed in Section 5, Chameleon
is robust to the variations in object appearance and the camera view, without
using any temporal prior. In Figure A.20, we show the qualitative results of
"camel" class, where one of the two camel instances occurs after several frames.
With only the first frame (1-shot setting), our model struggles to distinguish two
instances, while this can be resolved by just giving an additional frame (2-shot
setting).

B.5 FSC-147

Detailed Settings. We fine-tune and evaluate our model in the train and test
split of the FSC-147 dataset, respectively. We convert the object counting to
Gaussian density prediction following the literature [9, 13]. After predicting the
density map, we detect the modes and use the number of modes as count pre-
diction. As an exception, for outliers whose sum of the predicted density map
is more than 3,000, we use the sum of the density map as count prediction. To
generate the exemplar guide, we copy and paste the exemplar patches to a black
image using their bounding boxes, as shown in Figure A.21 We randomly scale
the patch size and paste each patch multiple times to maximize the augmen-
tation effect. For fine-tuning, we first resize the data to 592 ⇥ 592 and apply
random cropping of crop size 512 ⇥ 512 during fine-tuning. During inference,
we process the images differently depending on the average size of exemplar
patches following [9]. For images whose average size of exemplar patches is less
than the threshold (13.33 pixels for image size 512 ⇥ 512), we first resize the
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Fig.A.22: Additional Qualitative Results on Cellpose for bi-modal images. We use
red and green color codings for the cytoplasm and nuclei images, respectively.

data to 1536 ⇥ 1536 and crop the image into 9 non-overlapping patches of size
512⇥512, obtain the predictions separately, then merge the predictions. For the
other images, we resize the data to 512⇥ 512. We use MSE loss for fine-tuning.
Additional Results. In Figure A.21, we provide additional qualitative results
on FSC-147. We observe that Chameleon accurately predicts the density map
on the query objects by effectively exploiting the exemplar guide.

B.6 Cellpose

Detailed Settings. We fine-tune and evaluate our model in the train and test
split of the Cellpose dataset, respectively. Following [54], we formulate a cell in-
stance segmentation task by flow estimation with foreground mask segmentation.
We generate a 2-channel flow map where each channel corresponds to vertical
and horizontal gradients of each cell towards its center. Then Chameleon predicts
the flow map and also a binary segmentation mask to segment all foreground
cells, from which we can obtain the instance segmentation mask. We resize the
images and labels to 256⇥ 256 and apply random resized cropping of crop size
224⇥ 224 and scale between 0.75 and 1.25 during fine-tuning. During inference,
we first divide an image into overlapping tiles with the size of 224 ⇥ 224 and
50% overlap, then ensemble each prediction by multiplying it with a Gaussian
kernel to minimize edge effects. For each tile, we additionally use test-time aug-
mentation where each prediction is obtained by the ensemble of 4 flipped inputs
following [54]. We use bce loss for the segmentation channel and L1 loss for the
flow channels. We apply random flipping as data augmentation together with
random resized cropping.
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Fig.A.23: Additional Qualitative Results on Cellpose for uni-modal images. We use
grayscale color codings for the cytoplasm images.

Additional Results. In Figure A.22 and Figure A.23, we provide additional
qualitative results on Cellpose. We observe that Chameleon accurately predicts
the cell boundaries for both bi-modal and uni-modal images.
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Table A.5: Ablation study on the image encoder backbone.

Backbone
AP-10K LineMOD ISIC 2018 DAVIS 2017 FSC-147 Cellpose
AP ↑ ADD ↑ F1 ↑ J&F ↑ MAE ↓ AP50 ↑

ViT [14] 36.3 66.7 85.5 64.9 26.5 59.9
DINOv2 [38] 63.5 85.1 87.5 70.4 20.1 69.0
BEiTv2 [40] 67.2 85.2 88.5 77.5 12.3 70.3

C Additional Experiments

In this section, we conduct ablation studies on the image encoder backbone and
image resolution to analyze their effect on downstream performance. We also
provide an additional comparison between VTM and qualitative results in a
complex semantic segmentation setting.

C.1 Ablation Study on Image Encoder Backbone

Since the image encoder plays a central role in the matching architecture of
Chameleon, it is important to leverage a pre-trained image encoder backbone as
initialization for meta-training. To analyze the effect of the image encoder back-
bone, we compare three different pre-trained transformers: BEiTv2 Large [40]
(default setting), ViT Large [14], and DINOv2 Large [38]. BEiTv2 and DINOv2
are pre-trained with self-supervised learning objectives, while ViT is pre-trained
with image classification. Also, DINOv2 Large is distilled from the DINOv2 Gi-
ant backbone, which is trained on a large-scale dataset containing ImageNet-22k.
In Table A.5, we report the performance of Chameleon with three different back-
bones. We note that BEiTv2 achieves the best performance, while ViT shows
inferior performance compared to the self-supervised learning approaches. This
can be attributed to the generality of self-supervised features compared to im-
age classification features which may not have fine-grained information for dense
prediction.

C.2 Ablation Study on Image Resolution

We also conduct an ablation study on the image resolution. Since we use a
larger resolution for three downstream benchmarks (ISIC 2018, DAVIS 2017, and
FSC-147) compared to the meta-training (224 ⇥ 224), we analyze the effect of
increasing the resolution. We observe that using larger image resolution improves
the performance at DAVIS 2017 and FSC-147 to a great extent while having a
statistically non-significant effect on ISIC 2018.
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Table A.6: Ablation study on the image resolution. Larger resolution corresponds to
input image size 384⇥ 384 for ISIC 2018 and DAVIS 2017, and 512⇥ 512 for FSC-147.

Resolution
ISIC 2018 DAVIS 2017 FSC-147

F1 ↑ J&F ↑ MAE ↓
224⇥ 224 88.6 ± 1.20 65.7 32.2

Larger Resolution 88.5 ± 0.75 77.5 12.0

Table A.7: 10-shot learning performance at Taskonomy dataset.

Model
Tasks

SS (mIoU ↑) SN (mErr ↓)
VTM 0.4097 11.4391

Chameleon 0.4278 9.9348

C.3 Direct Comparison with VTM

To further explore the improvement of Chameleon upon VTM, we directly com-
pare them in the Taskonomy dataset as described in [24]. We use two held-out
tasks (semantic segmentation and surface normal), isolating feature re-weighting
as the only difference since there are no multi-input tasks. Table A.7 shows clear
improvements in both tasks, proving the effectiveness of feature re-weighting.

C.4 Qualitative Results on ADE20K

Finally, we provide qualitative results of more complex semantic segmentation in
ADE20K dataset [69]. As a demonstration, we selected two urban scenes from the
ADE20K dataset, which contain many salient objects and semantic classes. Fig-
ure A.24 shows 20-shot semantic segmentation results using 20 training images
per class. Our model segments various unseen objects (e.g., window, headlight,
license plate, wheel) reasonably well. In the second example, it even produces
complex masks for several intertwined classes (tree, building, window, sky).
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Fig.A.24: 20-shot semantic segmentation results in ADE20K.
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D Limitation

Despite its strengths, Chameleon has several limitations. One significant issue is
the need for many fine-tuning iterations to achieve optimal performance on new
tasks, which can be computationally intensive and time-consuming depending
on the application (e.g., real-time services). The fine-tuning stage can still lead
to overfitting on few-shot data and requires careful parameter tuning for each
new task. Also, the model’s reliance on a diverse and extensive meta-training
dataset means it may struggle with tasks that have significantly different data
distributions not represented in the training data. Finally, overall architecture
relies on attention mechanisms that require quadratic complexity, which can be
costly on extremely high-resolution images, while these can be alleviated by more
efficient implementations.
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