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In this document, we provide technical details for covariate shifts generation
and OOD object inpainting (Appendix A), additional calibration details and
results (Appendix B), analysis on direct real-vs.-synthetic data correlation (Ap-
pendix C) and class-wise PCC scores (Appendix D). Appendix E discusses the
limitations and Appendix F showcases more qualitative examples.

A Technical Details

A.1 Covariate Shifts Training

We train a ControlNet on top of a frozen Stable Diffusion 1.5 for 2100 steps. The
ControlNet used here is a trainable copy of the Stable Diffusion encoder only, as
in the original paper [9]. We use a batch size of 8 with 32 gradient accumulation
steps, which makes an effective batch size of 256, and a learning rate of 10−5. We
use the training set of Cityscapes, and do a random horizontal crop of the images
to get square images, and then resize them to 512 × 512, convenient of Stable
Diffusion 1.5. All other training hyperparameters are the per default settings on
the official ControlNet repository. The objective is to reconstruct the original
images of Cityscapes using its semantic masks as input to the ControlNet, and
the captions extracted with CLIP-interrogator as input to Stable Diffusion.

Similarly for SDXL, we train a ControlNet for 27500 steps and use a batch
size of 8 with 4 gradient accumulation steps, which makes an effective batch size
of 32. The learning rate is 10−5. The images are square cropped to get 1024 ×
1024 images, convenient for SDXL, and there is no need to resize them.

A.2 Covariate Shifts Generation

To generate images with new styles with SD 1.5, we take a semantic mask
from the validation set of Cityscapes, crop and resize it as explained in the
previous part. We use nearest neighbor interpolation to keep good values for
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specific classes. We only use the part of the caption extracted with CLIP-
interrogator that corresponds to a BLIP caption. To this new caption, we add
[, in <domain>] depending on the domain we want to generalize to. Starting
from pure noise, we use 25 DDIM steps with a guidance scale of 8. On a RTX
2080, one new image is generated in about 4 seconds. All other sampling hyper-
parameters are the per default settings on the official ControlNet repository.

For SDXL, we tune the conditioning strength and the prompt strength to
get better images. To get both mask and prompt aligned images, we set the
ControlNet conditioning strength to 0.65 and the prompt guidance to 10. The
prompt tuning is the same as used for SD 1.5; we also use 25 denoising steps.

A.3 OOD Objects Generation
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Fig. 12: OOD object data generation pipeline. We use pretrained Stable Diffusion
for inpainting and refining steps, and pretrained Grounded Segment Anything for mask
extraction.

The OOD object generation pipeline described in Sec. 4.1 is further illus-
trated in Fig. 12. It is composed of three steps. Given a text prompt containing
an object, the inpainting step generates a zoomed-in version of the object with
the appropriate close-range background given as context. The mask extraction
step infers the anomaly mask from the zoomed-in generated image and the name
of the object. Both are in-pasted back in the original complete image or mask.
To reduce some composition artifacts, the composite image is refined with a
noise/denoise step.

In details, we first randomly choose a box size for the new object, uniformly
sampled between a quarter and half the minimum dimension of the original
image. We also uniformly sample a location for the box in the bottom three
quarters of the image. This box will contain the new object we wish to add,
and we refer to it as inpainted region. In addition to the inpainted region, we
create a larger box, 1.5× its height and width, with the inpainted region in its
center. The contour outside of the inpainted region will serve as context for the
inpainting process. We then crop and resize the inpainted region with its context
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to a resolution of 512 × 512. We fully noise the inpainted region, but leave the
clean context. We then denoise the inpainted zone with the prompt “A photo
of an [object]”, with a guidance scale of 15. The full patch is then resized and
pasted on the original image, at its original position. Some artifact might be still
present as shown in Fig. 13. To remedy this, we refine the inpainted zone by
noising and denoising it with 0.65 strength, with the default guidance scale of
7.5. The effect of this refining step is shown in Fig. 13.

We list here all 42 objects used in our experiments, which are not present
in Cityscapes’ classes: arcade machine, armchair, baby, bag, bathtub, bench,
billboard, book, bottle, box, chair, cheetah, chimpanzee, clock, computer, desk,
dolphin, elephant, flamingo, giraffe, gorilla, graffiti, hippopotamus, kangaroo,
koala, lamp, lion, microwave, mirror, panda, penguin, pillow, plate, polar bear,
radiator, refrigerator, sofa, table, tiger, toilet, vase, and zebra.

A.4 OOD Detection Training

For the OOD detection method in Sec. 4.2, we used the codebase of [5]. We
adapt the code to be able to use our generated data with the binary masks
extracted from Grounded-SAM, as explained in Appendix A.3. As in the original
paper [5], we fine-tune the mask prediction MLP and classification layer after
the transformer decoder. To obtain all OOD detection results reported in the
main paper (Tab. 2), we used the recommended hyperparameters, and train the
models for 5000 iterations.

A.5 Segmentation Models

We list here all models used in our experiments: ANN-R101, ANN-R50, APCNet-
R101, APCNet-R50, BiSeNetV1-R50, BiSeNetV2-FCN, CCNet-R101, CCNet-R50, Con-
vNext, ConvNext-B-In1K, ConvNext-B-In21K, DLV3+ResNet101, DLV3+ResNet18,
DLV3+ResNet50, GCNet-R101, GCNet-R50, ICNet-R101, ICNet-R18, ICNet-R50, Mo-
bileNetV3, PSPNet-R101, PSPNet-R18, PSPNet-R50, SETR-MLA, SETR-Naive, SETR-
PUP, SegFormer-B0, SegFormer-B1, SegFormer-B2, SegFormer-B3, SegFormer-B4,
SegFormer-B5, SegFormer-B5-v2, SegFormer-B5-v3, Segmenter, SemFPN-R101,
SemFPN-R50, UpperNet-R101, UpperNet-R18, UpperNet-R50.

B Calibration Details and Additional Results

We elaborate on our strategy for performing per-class calibration to obtain the
synthetic results ( ) presented in Fig. 6. Utilizing our synthetic data, a temper-
ature scaling (TS) scalar is learned for each class. When calibrating models on
shifted domains, we choose the corresponding TS scalar based on model predic-
tions. In the case of calibration results with real-shift data ( ), only one scalar
is learned for each model.

In Fig. 14a, we compare per-class TS vs. standard TS with one scalar per
model, both applied on our synthetic data. Both strategies enhance calibration
results, highlighting the advantage of employing synthetic data for calibration.
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Per-class TS demonstrates superiority for more robust models (right part of the
plots), while its performance is weaker for less robust ones (left part of the plots).

In Fig. 14b, we compare Cityscapes vs. our synthetic data; in this experiment
we adopt the standard TS with one scalar per model. The results obtained from
Cityscapes are clearly inferior to those achieved using our synthetic data, demon-
strating the limitations when relying solely on in-domain data for calibration in
shifted domains.
Generalization. We ask ChatGPT the generic question like “give me differ-
ent cities/weathers that would be representative of the whole world?”. We then
use all ChatGPT’s answers as prompts to generate OOD data, referred to as
“all-domains”. For confidence calibration, using “all-domains” shows comparable
results as using domain-specific data with manual prompts (see Tab. 4), e.g.
100% ECE improvement for rain, 78.6% for india (cf. Fig.6). Interestingly, using
“all-domains-but-rain” (no rain prompts), we also obtain similar improvement
for rain. Detailed results are reported in Tab. 3. That experiment hints at the
generalization potential of our framework. We list here all the domains we used
to form the “all-domains” calibration set: Beijing, Cairo, clouds, Dubai, fall, fog,
hurricane, India, Istanbul, Johannesburg, lightning, London, Moscow, Mumbai,
night, Paris, rain, sandstorm, snow, spring, summer, sun, Sydney, Tokyo, tor-
nado, Toronto, wind, winter. This calibration set is comprised of 64 images per
shift.

Prompt India Fog Rain Snow Night

domain-specific 72.5 92.5 100 95 90
all domains 78.6 100 100 100 100
all domains but-rain - - 100 - -

Table 3: Generalization. We experiment the effects of prompting and showcase the
generalization potentials of our framework. Here ECE improvements are reported (cf.
Fig.6).

C Direct Data Correlation

We provide in Tab. 4 the FID scores(↓) for direct correlation between synthetic
and real data. Our zero-shot approach outperforms all. Layout differences be-
tween Cityscapes and ACDC cause high FIDs – one critical limitation of FID
on structured data. As our work focuses on performance testing, we prioritize
metrics like mIoU and FPR95, aligned with recent works.

Reflected in the FID study, in-domain data (CS) serves as a strong baseline
for measuring OOD performance [3, 4]. Hendrycks’ augmentations are unrealis-
tic and inadequate for assessing real OOD performance, as previously revealed
in [8]. Using untouched CS data could be even better; for example, in terms
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OOD expertise? OOD data? Night Rain Snow Fog

Cityscapes (no aug.) no no 236.5 188.3 194.8 184.8
Hendrycks’ aug. [1] required no - - 210.7 191.1
GAN-based TSIT [2] no required 254.2 223.2 225.6 -
Physics-based Fog Sim. [6] required no - - - 182.8
Ours w/ SD1.5 no no 180.2 177.5 164.5 163.3
Table 4: Direct Data Correlation. Our pipeline achieves better FID scores while
does not require any OOD knowledge.

of PCC score for ‘fog’ (cf. Fig.3 and Tab.1), Hendrycks’s data obtains 0.70 as
compared to 0.78 of CS data and 0.89 of our SDXL data. Our work, consis-
tent with [8], demonstrates that simple augmentations are insufficient for OOD
testing, advocating for more realistic testing data. While showing the zero-shot
advantage over standard domain-specific augmentations, we acknowledge that a
well crafted augmentation approach like physics-based fog augmentation [6] can
obtain very good results, potentially better than ours if improved. Of note, we
do not aim to obtain best results in all cases; we advocate for a generic zero-shot
testing framework as the starting reference in arbitrary domains.

D Class-wise analysis.

We conduct a class-wise analysis and report the PCC scores per class in Tab. 5.
Interestingly, we notice that ‘bicycle’ and ‘bus’ have the least correlation for
india and night, respectively, which actually corresponds to the low occurrences
of those classes in such conditions. High correlation indicates that either the
corresponding classes are easy (‘building’, ‘person’, ‘car’, or ‘truck’) or those
classes are difficult (’sign’ or ’pole’) and make segmenters struggle either on real
or synthetic data. We conjecture that using synthetic data may provide us with
hints about the inherent bias of the pretrained models.

E Limitations

We focus our research on the task of semantic segmentation while keeping open
the extension possibility to other critical tasks, such as object detection. Our
quantitative assessments are confined to existing publicly available datasets.
However, our framework is fully zero-shot and can be applied to any domain
of interest. On the generative side, our study is restricted to Stable Diffusion
and ControlNet due to our resource constraints. Of note, although improve-
ments in this area should enhance the results, similar insights are expected to
be achieved, as primarily shown with SDXL results. Another limitation is our
primary focus on autonomous driving (AD) data. That is because the field of
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Class Fog Night Rain Snow India

road 0.54 0.69 0.57 0.60 0.74
sidewalk 0.62 0.62 0.68 0.64 0.69
building 0.67 0.82 0.76 0.57 0.84
wall 0.03 0.76 0.60 0.71 0.58
fence 0.21 0.66 0.71 0.64 0.38
pole 0.33 0.75 0.60 0.29 0.47
light 0.36 0.53 0.63 0.70 0.30
sign 0.33 0.82 0.47 0.55 0.26
vegetation 0.57 0.71 0.77 0.52 0.00
terrain 0.31 0.55 0.62 0.76 -
sky 0.70 0.44 0.07 0.17 0.30
person 0.56 0.72 0.52 0.69 0.86
rider 0.27 0.55 0.43 0.31 0.16
car 0.73 0.71 0.72 0.78 0.61
truck 0.83 0.67 0.74 0.75 0.72
bus 0.67 0.32 0.57 0.69 0.19
train 0.35 0.65 0.35 0.41 -
motocycle 0.25 0.39 0.37 0.62 0.40
bicycle 0.49 0.64 0.73 0.72 -0.16

Table 5: Class-wise analysis. We provide the PCC scores per class for each shift.
The most and least scores are colored.

AD released diverse datasets to stress-test models across various OOD scenar-
ios. Unlike generalist datasets like MS-COCO, they clearly distinguish between
domains, enabling the covariate shift studies in this work.
Robustness Assessment. In order to accommodate the in-domain GTs, we
make the semantic preservation assumption, similar to the one in domain adap-
tation. We realize that this common assumption might raise questions when an
element like snow is added; nevertheless, the issue is complex and hinges on the
annotation policies. The ACDC dataset [7], for instance, uses clean images to
inform the annotators of what is behind the snow, and our approach mimics
this. But they are also very conservative about ambiguity, with an explicit label.
Moving forward, we could take inspiration and try to handle ambiguity.

F Qualitative Examples

We show more qualitative examples for synthetic covariate shifts in Fig. 15 and
synthetic OOD objects in Fig. 16.
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Before Alignment After Alignment

Fig. 13: Refinement. This example highlights the importance of the refinement step.
The left image shows the state before refinement, whereas the right image displays the
refined version. Upon zooming into the edge of the inpainting box, a clear distinction
between the left and right is evident in the first image. Such difference is eliminated in
the second image. Must be viewed in color.
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(a) Per class Temperature Scaling ( ) vs. One Temperature Scaling ( ). The Figure has
the same structure as of Fig. 6 and the bars show relative ECE improvements. We compare the
two strategies for performing calibration using synthetic data; both enhance calibration in shifted
domains.
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(b) Cityscapes ( ) vs. our synthetic data with one TS ( ). The Figure has the same struc-
ture as of Fig. 6 and the bars show relative ECE improvements. Our synthetic data is superior to
Cityscapes in improving calibration in shifted domains.

Fig. 14: Additional Calibration Results.
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Fig. 15: Qualitative results. Examples of rare conditions generated for testing and
predictions from different models. Results of the strong model like SegFormer-B5 is
visibly better than the Semantic-FPN and MobileNetV3.
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Fig. 16: Qualitative results. Confidence maps are visualized for the four exemplified
models on synthetic inpainted data. Hotter colors correspond to higher OOD likelihood.
Ideally, results should exhibit hot colors in OOD areas and cold colors everywhere else.


	Reliability in Semantic Segmentation: Can We Use Synthetic Data? — Supplementary Material —

