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Abstract. Assessing the robustness of perception models to covariate
shifts and their ability to detect out-of-distribution (OOD) inputs is cru-
cial for safety-critical applications such as autonomous vehicles. By na-
ture of such applications, however, the relevant data is difficult to collect
and annotate. In this paper, we show for the first time how synthetic
data can be specifically generated to assess comprehensively the real-
world reliability of semantic segmentation models. By fine-tuning Stable
Diffusion [31] with only in-domain data, we perform zero-shot generation
of visual scenes in OOD domains or inpainted with OOD objects. This
synthetic data is employed to evaluate the robustness of pretrained seg-
menters, thereby offering insights into their performance when confronted
with real edge cases. Through extensive experiments, we demonstrate a
high correlation between the performance of models when evaluated on
our synthetic OOD data and when evaluated on real OOD inputs, show-
ing the relevance of such virtual testing. Furthermore, we demonstrate
how our approach can be utilized to enhance the calibration and OOD
detection capabilities of segmenters. Code and data are made public.

1 Introduction

Despite the rapid adoption of deep networks in safety-critical applications, relia-
bility [26,36,38] has been an overlooked factor when designing and training these
models. Recent efforts are geared toward enhancing model robustness under co-
variate shifts in data distributions [26, 30] and improving the model’s ability
to detect the unknown [10, 12, 41]. For open-world validation, in-domain data
is no longer sufficient [16]; reliable and trustworthy systems demand more rig-
orous testing on diverse distributions, potentially exhibiting unknown objects.
However, data collection campaigns can be quickly overwhelmed by the growing
number of out-of-distribution (OOD) objects and conditions, sometimes extreme.

In this paper, we propose to leverage pretrained generative models, e.g . Stable
Diffusion 1.5 (SD), to alleviate the need for real OOD data. We use SD as a
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Fig. 1: Assessing 40 pretrained segmenters under covariate shifts. Segmenta-
tion models under scrutiny were trained on Cityscapes train set only (in-domain data).
They are evaluated on (i) Cityscapes validation set, (ii) real OOD data, and (iii) pro-
posed synthetic data. We observe a strong correlation between results on (ii) and (iii).

general validator, targeting multiple faces of reliability:
- First, we fine-tune SD on in-domain data to enable mask conditioning; in
action, zero-shot prompting generates covariate shift images for testing. Fig. 1
illustrates the generation of synthetic data in OOD domains and its use for model
evaluation. By assessing 40 pretrained segmenters under covariate shifts, our first
contribution demonstrates how our generated synthetic OOD benchmark can act
as a powerful proxy for the real OOD benchmark ACDC [33].
- Second, we explore a similar strategy for OOD object detection assessment: we
inpaint objects of unknown classes into in-domain data by injecting appropriate
prompts during the zero-shot inpainting process. Inpainted images and OOD
masks are used to benchmark the 40 models to see how well they can recognize
OOD objects. Our results are strongly correlated to the real OOD benchmark [4].
Our high-quality synthetic data is featured in the official BRAVO benchmark.
- Third, we demonstrate the usefulness of our two synthetic OOD benchmarks
for hyperparameter tuning (here model calibration) and training. We calibrate
the pretrained models to targeted OOD domains using our synthetic data and
validate our strategy by comparing results to using real OOD data. We also train
segmenters on inpainted data for OOD detection, obtaining competitive results.

2 Related Work

Covariate Shifts. Modern machine learning models, notably deep networks, fall
short in preserving their robustness and estimating their prediction confidence
in the presence of covariate shifts [26, 30]. Various benchmarks [5, 11, 16, 35, 36]
have emerged to address the need for assessing models’ reliability under differ-
ent distributional shifts. Hendrycks et al. [11] propose a pioneering benchmark
featuring data corrupted by various synthetic perturbations such as noise, blur,
and brightness. Taori et al. [36] emphasize the importance of realistic shifts in
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reliability assessment; they highlight the disparity between natural and synthetic
shifts, asserting that there is minimal to no robustness transfer from synthetic
to natural distribution shifts. Sign et al. [35] study low-shot robustness to nat-
ural distribution shifts, highlighting the robustness properties of advanced ar-
chitecture and pretraining strategies. In [14], de Jorge et al. extend beyond the
standard classification setup to address the reliability problem in semantic seg-
mentation, with findings largely aligned with previous works on classification;
interestingly, they point to the disconnection between robustness and confidence
calibration, urging more attention to calibration during segmenter design and
training. On a related line, prior works study the connections between in-domain
and out-of-domain robustness [14, 23, 37]; they suggest either positive, none, or
even negative correlations between ID and OOD robustness, which indeed largely
depends on the type of shifts. In line with [14], we focus on segmentation as the
visual perception task of interest. Different from previous works, we advocate
for the use of advanced generative models to generate realistic synthetic data
for testing segmenters under arbitrary covariate shifts. Taori et al. [36] criti-
cize the synthetic robustness benchmarks and advocate for using real-shift data;
while we agree on the importance of realism in testing, we demonstrate that the
rapid advancement of generative models now permits very meaningful virtual
assessment. Our goal is to study whether synthetic data can be a superior choice
compared to ID data in correlation studies against OOD robustness – referred
to as real-shift robustness here to avoid confusion with OOD detection. Inspired
by [14], we also calibrate models but using synthetic OOD data instead.

OOD Object Detection. In addition to robustness and calibration, the abil-
ity to detect the “unknown” is equally important to assess for trustworthy sys-
tems [10,12,41]. In semantic segmentation, several datasets are available for eval-
uating OOD detection on the road, namely LostAndFound [27], StreetHazards [9]
(synthetic), BDD-Anomaly [9], Fishyscapes [3] (synthetic), and SegmentMeIfY-
ouCan [4]. Encountering and capturing images of OOD objects in real-world
scenarios, without deliberately placing them on the road, is quite uncommon.
Effectively, existing datasets are limited in scale, both in terms of the number
of images and the variety of object classes. In this work, we propose leveraging
advanced zero-shot inpainting techniques to augment an existing segmentation
dataset with the insertion of OOD objects; this enables the generation of highly
realistic synthetic data for testing and training OOD detection.

Synthetic Data for Testing. Generative models have been exploited to create
training data for image classification [2,8,34], object detection [22], or semantic
segmentation [7, 17, 18, 40, 43]. Only recently, a few works have delved into the
topic of generative testing data. Li et al. [19] exploit diffusion models to real-
istically edit images, controlling over various object attributes. This approach
enables stress-testing models and understanding their sensitivity to different at-
tributes. Using SD, LANCE [29] generates counterfactual images capable of chal-
lenging any given perception model. To the extent of our knowledge, no existing
works have proposed to generate testing data for segmentation reliability.
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3 Reliability Under Covariate Shifts

In this section, we explore whether synthetic data can be used to assess the
robustness of pretrained segmenters in the presence of covariate shifts to un-
seen OOD domains. We describe the data generation process and present the
benchmarking results for a wide range of segmenters on our synthetic data. We
demonstrate the validity of the approach using domains for which a real OOD
dataset exists so that we can have access to a gold standard. We stress that
we do not use the OOD data at any point in the method itself. This aspect is
critical for the method to be applicable to benchmark robustness in the presence
of extreme or hazardous conditions.

3.1 Generating images in arbitrary domains

Captionner image caption

Text-to-Image
Diffusion Model

ControlNet

ControlNet Training Step

Reconstruction Loss
Captionner image caption

Text-to-Image
Diffusion Model

ControlNet

Zero-Shot Generation Steps

+ "snow"

k denoising
steps

Fig. 2: Generating data with covariate shifts. Training (left) and Sampling (right)
processes for producing the synthetic data with shifts. For training, only in-domain
images and masks are used. For inference, we use the in-domain masks to generate
OOD images. No real OOD data is required in the framework.

Our goal here is to obtain pairs of images and semantic masks, with the
images belonging to visual domains for which we lack data. To this end, we
leverage a pretrained text-to-image Stable Diffusion 1.5 (SD) model [31], repur-
posed as a semantic-conditioned model called ControlNet [42]. ControlNet is
trained solely on images and segmentation ground truths from the Cityscapes
dataset; at train time, the text prompts are captions automatically extracted
using CLIP-interrogator [1]. As a result, the model is able to perform mask-
to-image generation of driving scenes while retaining the ability to steer the
generation through text prompting of Stable Diffusion.

To generate synthetic data, we prompt a trained ControlNet by the concate-
nation of OOD domain descriptions and CLIP-interrogator captions obtained
from Cityscapes validation images. Also, segmentation masks in Cityscapes val-
idation set are used to condition the generative process. Thanks to zero-shot
prompting, the synthetic images are aligned with the semantic condition while
displaying the visual properties of arbitrary OOD domains. Fig. 2 illustrates
the training and generation steps. Detailed technical descriptions and more vi-
sualizations are in the Supplementary Material.
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Fig. 3: Robustness correlation between real and synthetic covariate shifts
across 40 pretrained segmenters. The tested models, see families in bottom legend,
cover different architectures and sizes. (top) Pearson Correlation Coefficients of mIoUs
between Cityscapes and real-shifts (‘PCC_CS’ ), and between synthetic shifts and
real ones (‘PCC_Syn’ ). (bottom) Scatter plots of synthetic vs. real mIoUs along with
the linear regression line accompanied by 95% confidence intervals (‘CI’). (a-e) Five
types of domain shifts from Cityscapes in-domain distribution, sorted by increasing gap
as assessed by decreasing PCC_CS. The robustness results on synthetic data exhibit a
strong correlation with those on real data, particularly in the case of the most distant
shifts like ‘snow’ and ‘night’. More details are provided as Supplementary Materials.

3.2 Robustness Assessment with Synthetic Data

With the pipeline outlined in Sec. 3.1, one can generate synthetic data to assess
the robustness of pretrained segmenters in any unseen OOD domains through
zero-shot prompting. To quantify robustness, we employ the traditional mean
Intersection-over-Union (mIoU) score, measuring the correct overlap between
semantic predictions and ground-truth masks. Given that our synthetic dataset
comprises pairs of segmentation masks and synthetic images, one can straight-
forwardly derive synthetic scores for any pretrained segmenters. We here inves-
tigate whether synthetic performance can faithfully reflect the performance on
real data in OOD domains under covariate shifts.
Experimental Setups. We address weather shifts and geographical shifts,
which are often encountered in autonomous driving. These covariate shifts are ex-
hibited in two existing real datasets: the Adverse Conditions Dataset (ACDC) [33]
and the Indian Driving Dataset (IDD) [39]. We utilize those real data to quantify
the quality of our synthetic data and to validate its usefulness.

Synthetic data are generated by conditioning on semantic masks from the
Cityscapes validation set. To prompt ControlNet, we concatenate CLIP-interrogator’s
caption with a domain description following a simple template [<caption>, in
<domain>] where domain is either ‘india’, ‘fog’, ‘rain’, ‘snow’ or ‘night’.

For testing, we gather a collection of 40 publicly available segmenters trained
only on Cityscapes, representative of different backbones, segmentation architec-
tures, and sizes. The full list of models is in Supplementary Material.
Results. In Fig. 3, we present our main results. Our primary metric is the Pear-
son Correlation Coefficient (PCC) between the mIoUs on testing data and on
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real-shift data from ACDC’s splits or from IDD. The testing data can be either
the Cityscapes validation set (CS) or our synthetic data (syn); the idea is to see
which testing data –whether real CS or our synthetic one– correlates more with
the real-shift data. Note that in the absence of OOD data, the Cityscapes vali-
dation set acts as the closest easily available proxy and is a reasonable predictor
for OOD performance as pointed out by Jorge et al. [14].

We organize our results based on increasing domain gaps relative to the
Cityscapes domain. The domain gaps are quantified by the Pearson correlation
between Cityscapes mIoUs and real-shift mIoUs, annotated as PCC_CS and
visualized as red bars in the subplots of Fig. 3. Moving from left to right, i.e.
with growing domain gaps, we observe a widening discrepancy between PCC_CS
and PCC_Syn. Here, PCC_Syn ( ) represents the Pearson correlation between
synthetic mIoUs and real-shift mIoUs. In domains with small gaps, PCC_CS and
PCC_Syn are relatively comparable. However, in domains with more adverse
shifts, such as ‘snow’ and ‘night’, PCC_Syn outperforms PCC_CS significantly,
exceeding PCC_CS in ‘night’ by more than double.

In Fig. 4, we analyze the results for the ‘night’ condition using the most
robust models across different architectures, ranging from ConvNets to recent
transformer networks. We use the Semantic-FPN score as the reference to nor-
malize the scores of other models. This normalization aims to illustrate the
relative improvement in robustness in terms of architecture. We rank the mod-
els from left to right based on their performance on real night data from the
ACDC-night split. The consistently increasing trend of synthetic scores ( )
from left to right demonstrates a strong correlation with the ranking based on
real scores. In contrast, Cityscapes scores ( ) are not indicative of night per-
formance: a higher mIoU obtained on Cityscapes does not immediately translate
into a higher mIoU at night.

Since synthetic data can be generated in any desired quantity, a natural
question arises: how many images are sufficient? In addressing this question,
we conducted experiments and presented the results in Fig. 5. Our empirical
finding suggests that ∼ 500 synthetic images are adequate for a stable and
reliable assessment of robustness.
Discussion. In their recent work on reliability in semantic segmentation, Jorge
et al. [14] systematically quantified the robustness of segmenters on real-shift
data; similarly to ours, they draw comparisons from ACDC and IDD datasets.
One intriguing finding in this paper is that “[...] the larger the domain shift, the
larger the improvement brought by more recent segmentation models”, hinting
at a correlation between model robustness on in-domain data and covariate-
shift data; that corresponds to the CS baseline we consider here. In our study,
we delve deeper into this correlation, choosing to separately address different
weather types instead of grouping them all together as done in [14]. In domains
exhibiting small gaps to Cityscapes, such as IDD or ACDC-Fog, our conclusion
aligns with [14]. However, as domain gaps increase, the discrepancy between
Cityscapes mIoUs and real-shift mIoUs becomes more pronounced, resulting in
poor PCC_CS scores. On the contrary, synthetic mIoUs and real-shift mIoUs
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in the results. Empirical plots demonstrate
that approximately 500 samples are suffi-
cient for a stable correlation assessment.

exhibit a strong correlation across shifts. Our empirical study has validated that
synthetic performance is a reliable indicator of model robustness in the presence
of covariate shifts.
With synthetic data, we are able to confirm observations from the literature on
real data, such as (i) the robustness of transformer and ConvNext backbones and
that (ii) within an architecture family, robustness correlates with the number of
parameters and the robustness of the backbone.
Different generative models? The important ingredient in our pipeline is
the generative model. In Tab. 1, we ablate by replacing the default SD1.5 model
with other available ones: image-2-image GAN called TSIT [13], physics-based
fog simulator [32], and a bigger SD variant called SDXL [28]. On ‘night’, ‘rain’,
and ‘snow’, SD variants perform better than TSIT, while of note, TSIT was
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OOD expertise? OOD data? Night Rain Snow Fog India

GAN-based TSIT [13] no required 0.83 0.84 0.81 - -
Physics-based Fog Sim. [32] required no - - - 0.82 -
Ours w/ SD1.5 (default) no no 0.85 0.86 0.85 0.77 0.71
Ours w/ SDXL [28] no no 0.84 0.90 0.82 0.89 0.93
Table 1: Different generative models. Our pipeline achieves better performance
(PCC with real-shifts) while does not require any OOD knowledge. Of note, it’s very
easy to apply to new unseen OOD domains using our pipeline, which remains challeng-
ing for GAN-based and physics-based models.

trained on real OOD data. The dedicated fog simulator performs very well, on
par with our results using the larger model SDXL. Physics-based simulators are
definitely valuable and this direction should be investigated further; however,
such simulators require in-depth knowledge of OOD domains and hence are very
difficult to design. Both GAN-based and physics-based approaches are limited
in their scalability to many more OOD domains. Comparing SD1.5 vs. SDXL,
we observe comparable results on challenging OOD domains while SDXL per-
forms much better on ‘fog’ and ‘india’; such results hint at the future potential
of stronger and better generative models in further advancing virtual testing.
Unfortunately, as SDXL is much more memory-demanding, we only limit our
experiments with SDXL in this particular study.
In the Supplementary Material, we report the FID scores, which measure the
direct distance between synthetic and real distributions; we also extend a dis-
cussion on some limitations of our framework.

3.3 Confidence Calibration with Synthetic Data

Confidence calibration is a crucial aspect of deep networks, particularly when
employed in safety-critical applications such as autonomous driving. Jorge et
al. [14] highlighted a disconnection between model robustness and calibration,
asserting that “... despite the remarkable improvements in terms of robustness,
recent models are not significantly better calibrated”. Therefore, it is essential to
devise techniques and protocols for recalibrating data, particularly in domains
exhibiting covariate shifts. Drawing inspiration from this, we explore the feasi-
bility of using synthetic data to recalibrate pretrained segmenters.

We perform temperature scaling using our synthetic data. Temperature scal-
ing [6] is a well-established technique for calibrating pretrained models, typically
conducted on a small validation set within the OOD domain. In our study, for
each segmenter, we utilized the same sets of synthetic data generated in Sec. 3.2
to optimize temperature scaling factors, with one adjustment made for each co-
variate shift. For comparison, we replicate the process using real-shift data from
ACDC and IDD.

Fig. 6 reports the calibration improvement for the 40 pretrained segmenters
using either real-shift data ( ) or synthetic data ( ). The subplots are arranged
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in increasing domain gap order from top to bottom, with the segmenters ranked
from left to right based on increasing robustness on real-shift data. The Expected
Calibration Error (ECE) [24] quantifies the calibration results, with a lower ECE
indicating a better-calibrated model. For better interpretation, we present the
relative ECE improvement, computed as the percentage decrease in ECE after
calibration compared to the original ECE without calibration. For example, a
model with an ECE of 0.4 before calibration and an ECE of 0.2 after calibration
will achieve a (0.4− 0.2)/0.4 = 50% relative improvement.

We observe promising calibration results when employing our synthetic data.
While not as good as real-shift data, synthetic data achieves a promising success
rate of 72.5% on IDD and exceeds 90% on the four ACDC shifts. Interestingly,
in weather shifts, we empirically observe that more robust models derive greater
benefits when calibrated using our synthetic data; the reverse is observed for
‘europe-india’ geographical shift. While with real-shift data, robustness and cal-
ibration are not well correlated [14], our results suggest that a potential corre-
lation might exist between the two factors when using synthetic data. We note
that calibration with temperature scaling does not always guarantee ECE im-
provement. Such phenomenon may happen even using real data, especially under
domain shifts as explored in prior work [26]. In the Supplementary Material, we
provide more technical details and results.

3.4 On Practical Applicability

One significant advantage of our framework lies in its potential to address rare
conditions simply through prompting. The practical applicability of generative
testing is tremendous. Our results demonstrate promising signals; practition-
ers can begin assessing and ranking their pretrained models for a new, unseen
OOD domain of interest without the need for real data collection. In practice,
our proposed generative benchmarking can serve as the initial step in a full val-
idation pipeline, helping filter out non-robust prototypes and thereby saving on
total operational costs. Starting from complementing real-data validation, one
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can envision a future where generative techniques mature to the point of fully
replacing real-data validation. In Fig. 7, we visualize some synthetic images and
model predictions under rare conditions, such as being flooded with water, having
autumn leaves scattered across the road, or having a building on fire. We observe
clear visual distinctions between weaker (Semantic-FPN and MobileNetV3) and
stronger (SegF-B5) models, knowing that their Cityscapes scores do not differ
significantly. More examples are provided in the Supplementary Material.

4 Reliability Against OOD Objects

We now address the reliability of segmentation models in the presence of Out-
of-Distribution (OOD) objects. To begin, we explain our pipeline for inpainting
random OOD objects into existing Cityscapes images. Following that, we demon-
strate how one can utilize inpainted images for OOD detection assessment and
for enhancing OOD detection.

4.1 Inpainting Anomaly Objects

We inpaint random objects into Cityscapes images. To this end, we initially
sample a location — a square box to which we inpaint the new object. We crop
the box, upsample its content to match the preferred output size of the generative
model, and inpaint an object guided by a text prompt. In this step, we leverage
Stable Diffusion inpainting capabilities, obtaining high-definition square images
of the desired object. This image is then resized and pasted back into the original
image, creating a final high-definition synthetic image. To ensure compositional
consistency, we employ two techniques: Firstly, we divide the cropped box into
two regions by center cropping it again. We inpaint only the inner region, leaving
the outer region untouched, similar to the approach in RePaint [21]. Secondly,
after composing the final image, we address any remaining inconsistencies by
applying a light noise over the entire picture and performing reverse diffusion
again. Details and visualizations are provided in the Supplementary Material.

After inpainting, it is necessary to extract the mask corresponding to the
new object. To achieve this, we begin with a high-definition square image and
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apply the Grounded Segment Anything [15,20], prompted with the name of the
object. This process yields a mask within the square image, which can then be
repositioned in the full image.
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Fig. 9: Correlation in OOD Detection. Each subplot scatters computed anomaly
scores of segmenters on real OODs (y-axis) and on synthetic OODs (x-axis). The
top row shows the four anomaly metrics utilized: FPR95, AUROC, AUPRIN , and
AUPROUT . The results are organized into two rows corresponding to two different
confidence measures (i) Entropy and (ii) MaxLogit. In the top-left corner of each sub-
plot, an inset plots Pearson correlations to real OOD for ‘curated‘ ( ) and ‘all‘ ( )
synthetic sets. Evaluations are performed on the same model set used in Fig. 3, with
similar markers.

Our end-to-end generation pipeline is fully automatic. Through qualitative
assessment, we achieve a satisfactory success rate in terms of generation real-
ism; some inpainted images are illustrated in Fig. 10 and much more in the
Supplementary Material. However, this still leaves a few generations with ar-
tifacts, characterized by either unusual compositions or unrealistic details. We
here question the criticality of realism in assessing OOD detection and, further-
more, in improving OOD detection. To this end, we construct two different sets:
(i) all 23,040 images generated automatically and (ii) 656 curated images where
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we manually select the best images in terms of visual quality and realism; specif-
ically, curators filter out strong color saturation differences or partial objects,
e.g . animal heads. We note that the manual selection process for the curated set
is not exhaustive and is constrained by our allocated resources; there are many
more high-quality images in the ‘all’ set. In what follows, we present results using
both curated and uncurated sets.

4.2 Assess OOD Detection

Experimental setup. To measure how the segmenters react to unseen OOD
objects, we use standard anomaly detection metrics [41], which are False Positive
Rate at 95% true positives (FPR95), Area Under ROC curve (AUROC), and
Area Under Precision-Recall curve (AUPR). AUPR are declined into AUPRIN
and AUPROUT, which consider the in-distribution regions, respectively the out-
of-distribution regions (the inpainted object), as positive regions to compute the
Precision-Recall curves.

All segmenters in our study are not designed to produce confidence scores.
We thus seek various techniques to derive confidence scores from pretrained
models [9] and eventually narrow down the options to two measures: (i) Entropy
of soft-probability predictions, and (ii) MaxLogit as the maximum logit value
(before softmax) among the classes. While Entropy is the traditional measure of
uncertainty, MaxLogit is a recent and surprising finding that has been proven to
be more effective in estimating OOD confidence [9].
Results. For quantitative comparison, we leverage the SegmentMeIfYouCan
(SMIYC) dataset [4], a recent dataset for OOD detection. We resort to the
RoadAnomaly21 split in SMIYC, due to similarity in object scales to our syn-
thetic data. We analyze the correlation between the OOD scores obtained on
RoadAnomaly21 and one using our synthetic inpainted data. Fig. 8 reports our
first analysis on the entropy in the OOD areas, either real or generated. For each
model, we compute the Pearson Correlation (PCC) between real-OOD entropy
and synthetic-OOD entropy; the computation is done on both ‘curated‘ and ‘all‘
sets. We observe a very high entropy correlation between real- and synthetic-
OOD, reaching 0.94 PCC using both ‘curated‘ and ‘all‘ sets. In Fig. 11, we
show a control experiment in which we inpaint in-domain object class ‘car‘ into
Cityscapes scenes, and we analyze models’ responses to synthetic cars, real cars,
and OOD objects.

We then analyze the correlation between real and synthetic anomaly metrics.
Fig. 9 presents our primary findings and Fig. 10 illustrates some qualitative re-
sults. We observe a strong correlation with real scores when utilizing the ’cu-
rated’ set for computing synthetic scores; the curated PCCs ( ) are consistently
around 0.8 across multiple metrics, irrespective of the two confidence measures.
Although the correlations are somewhat weaker when using all uncurated syn-
thetic data ( ), such results remain acceptable, particularly when no effort is
dedicated to curation.

Our results validate the potential of utilizing realistic synthetic data, inpainted
with anomaly objects, for assessing OOD detection. In OOD testing, it is quite
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Fig. 10: Qualitative results. Confidence maps are visualized for the four exemplified
models on real data (first row) and synthetic inpainted data (second and third rows).
Hotter colors correspond to higher OOD likelihood. Ideally, results should exhibit hot
colors in OOD areas and cold colors everywhere else. We observe a strong correlation
in model reactions to real and synthetic OOD regions, particularly for more recent and
robust models. We note that the real data in SMIYC also exhibit distributional shifts
against Cityscapes; which already causes confusion to weak models in the background.

Fig. 11: In-domain vs OOD inpainted
objects. Models’ responses to synthetic
cars are close to real cars, and far from syn-
thetic OOD objects

important to use high-quality synthetic inpainted data. Nonetheless, even non-
curated synthetic data can offer an acceptable estimation of real performance
with minimal curation costs.

Method AUROC (↑) AUPR (↑) FPR95 (↓)

RbA [25] Swin-B 95.6 78.4 11.8
+ COCO [25] 97.8 85.3 8.5
+ Ours (curated) 97.2 84.9 8.1
+ Ours (all) 97.3 84.8 8.2

RbA [25] Swin-L 96.4 79.6 15.0
+ COCO [25] 98.2 88.7 8.2
+ Ours (curated) 97.2 88.0 7.9
+ Ours (all) 98.1 88.6 8.3

Table 2: Improving
OOD detection on real
SMIYC benchmarking
using our synthetic data.
All results are obtained
using the published code
and default parameters.

4.3 Improve OOD Detection

In this experiment, we investigate if synthetic inpainted data can be used to
enhance a deep network’s ability to detect OOD objects. To this end, we adopt
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the state-of-the-art RbA [25] approach for OOD detection and train RbA models
on our synthetic data.

OOD metrics are computed on RoadAnomaly21 and reported in Tab. 2. The
RbA models trained on our data significantly outperform the vanilla RbA model.
We reach comparable performance to the RbA variants that leverage the external
COCO dataset for augmentation. Notably, there are no clear differences between
using ‘curated’ or ‘all’ sets. We conjecture that, unlike benchmarking, training
for OOD detection does not demand a high degree of realism from synthetic data.
This explains why the simple strategy of copy-pasting COCO objects [25] already
proves effective. All results are consistent across the two addressed backbones.
Fig. 10 illustrates a few qualitative results.
Discussion. In our work, we take all available levers and study the extent to
which synthetic data can be used for evaluation and specific training purposes.
We acknowledge the fact that the models used in this work were trained on sub-
stantial amounts of data. Of note, we do not claim the efficacy of synthetic data
in all aspects, particularly regarding the total amount of training data required.
Our findings are limited to highlighting the significant potential of published
generative models in the task of reliability assessment. Advances in efficient
training of generative models may address concerns regarding data quantity but
are beyond the scope of this work.

5 Takeaways

In this work, we explore the potential of synthetic data in reliability assess-
ment for semantic segmentation networks. We introduce two automatic zero-
shot pipelines to generate data in OOD domains and to inpaint OOD objects
for virtual reliability assessment. Our promising results encourage further col-
lective investigations into this research problem, paving the way for synthetic
system validation, especially in safety-critical applications. We summarize here
our findings:

▷ Reliability Under Covariate Shifts: synthetic data can help assess the relative
robustness of models in real-life covariate shifts, especially when shifts to
the training condition are significant. Synthetic data can well complement
real data in system validation, helping reduce the total operational cost.
Pretrained models can be calibrated using synthetic data to better estimate
prediction confidence in any shifted domains.

▷ Reliability Against OOD Objects: synthetic data is useful in both OOD test-
ing and OOD training; however, the demands on synthetic data quality
differ in these two cases. In OOD testing, the best result estimations are
obtained with the most realistically inpainted data, which may require a
certain amount of curation time for qualitative assessment. The curation
task is not time-demanding and can be done quickly with a reasonable bud-
get. On the other hand, for OOD training, no curation is actually needed to
achieve improvements.
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