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1 Details of Network

We will illustrate the network details of SCPNet in this section, including the de-
tailed structure of the correlation-based homography estimation net-
work and the homography parameterization using offsets of four corner
points.

1.1 Detailed Structure of the Correlation-based Homography
Estimation Network

Feature Extractor. The architecture of the feature extractor is illustrated
in Fig. 1. The image is initially processed by a convolutional layer of kernel
size 7 × 7. Subsequently, the produced features undergo a max-pooling layer
of stride 2, followed by two residual blocks with 64 channels. The features are
then proceeded by another max-pooling layer of stride 2 and two residual blocks
with 96 channels. Finally, the features are projected into 256 channels through
a convolutional layer of kernel size 1× 1.

Convolution Instance normalization + ReLU Residual block Max-pooling

P F

64
64

96
256

Fig. 1: The detailed architecture of the feature extractor.

Homography Estimator. We illustrate the architecture of the homography
estimator in Fig. 2. Following the main text, the size of the correlation C is
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H ×W × (2r + 1)× (2r + 1). To enable the 2D convolution, C is reshaped into
(2r+1)(2r+1)×H×W . As previous works [2,3,11], C is processed sequentially
by a basic unit consisting of a convolutional layer of kernel size 3 × 3, a group
normalization + ReLU layer, and a max-pooling layer of stride 2, until the spatial
resolution of the feature is downsampled to 2× 2. A convolutional layer is then
used to project the feature to 2× 2× 2, producing the residual offset prediction
O.
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Fig. 2: The detailed architecture of the homography estimator.

1.2 Homography Parameterization using Offsets of Four Corner
Points

Similar to the previous approaches [2, 3, 6, 9, 11], we use offsets of the four cor-
ner points of the image to parameterize the homography matrix, which can be
expressed as

Ah = b, (1)

where b is the coordinate of the projected 4 corner points, A is composed of the
projected 4 corner points and the original 4 corner points, h is the vectorized
H. We define the 4 corner points in IA as (u1, v1), (u2, v2), (u3, v3), (u4, v4), and
the corresponding projected ones in IB as (u′

1, v
′
1), (u′

2, v
′
2), (u′

3, v
′
3), (u′

4, v
′
4).

Through the above 4 pairs of matched points, the predicted corner points O
can be formulated as

u′
1 = u1 + O(0, 0, 0)

v′1 = v1 + O(1, 0, 0)

u′
2 = u2 + O(0, 0, 1)

v′2 = v2 + O(1, 0, 1)

u′
3 = u3 + O(0, 1, 0)

v′3 = v3 + O(1, 1, 0)

u′
4 = u4 + O(0, 1, 1)

v′4 = v4 + O(1, 1, 1).

(2)
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A can be expressed as

A =



u1 v1 1 0 0 0 −u1u
′
1 −v1u

′
1

0 0 0 u1 v1 1 −u1v
′
1 −v1v

′
1

u2 v2 1 0 0 0 −u2u
′
2 −v2u

′
2

0 0 0 u2 v2 1 −u2v
′
2 −v2v

′
2

u3 v3 1 0 0 0 −u3u
′
3 −v3u

′
3

0 0 0 u3 v3 1 −u3v
′
3 −v3v

′
3

u4 v4 1 0 0 0 −u4u
′
4 −v4u

′
4

0 0 0 u4 v4 1 −u4v
′
4 −v4v

′
4


, (3)

and b as
b =

[
u′

1 v′1 u′
2 v′2 u′

3 v′3 u′
4 v′4

]T
. (4)

Finally, the vectorized homography can be expressed as

h =
[
H11 H12 H13 H21 H22 H23 H31 H32

]T
, (5)

2 More Details of Datasets

Fig. 3 shows the example images of the cross-modal datasets including GoogleMap
[13] and Flash/no-flash [7], cross-spetral datasets including Harvard [4] and
RGB/NIR [1], together with the manually-made inconsistent dataset PDS-COCO
[8], under [-32,+32] offset. For fair comparison, all compared approaches are
trained and tested on the same training and test splitting of each dataset.

GoogleMap is a cross-modal dataset including corresponding satellite and
map images. We choose the map image as the source image and the satellite
image as the target one. We then use the training and testing data shared in
[13] with the size of 192 × 192. The 128 × 128 image pairs with homography
deformation are produced by center cropping. The simulation of homography is
implemented by randomly perturbing the four corner points of the 128 × 128
images.

Flash/no-flash contains 120 indoor and outdoor image pairs. We first resize
the image to 320×213, and then generate a 128×128 image pair with simulated
homography in the same way as GoogleMap.

Harvard contains multispectral images of 77 real-world scenes, each of which
has 31 spectral bands in the spectral range of 420nm∼720nm. We first resize the
image to 348 × 260, and then use the 16th band (i.e. 570nm) image of each
scene as the source image, and generate the target image by applying simulated
homography to other bands.

RGB/NIR dataset has images of the RGB and NIR spectral bands. We
resize the images to 256× 256, select RGB as the target image, and NIR as the
source one to generate homography deformation. As can be seen from Fig. 3 (d),
there are some low-texture images in the RGB/NIR dataset, which makes the
homography estimation task difficult.

PDS-COCO artificially simulates random combined changes in brightness,
contrast, saturation, and hue noise to MS-COCO dataset [10]. Similar to previous
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Table 1: Ablation study of the degree of offset of the intra-modal self-supervised
learning.

Cross-modal
Intra-modal

[-8, +8] [-16, +16] [-32, +32]

[-8, +8] 1.60 1.59 2.21
[-16, +16] 2.33 2.35 2.96
[-32, +32] 6.29 5.73 4.35

approaches [5, 6, 9, 13], we resize the image to 320× 240 and then construct the
homography deformed data.

3 More Quantitative Results

3.1 Additional ablation study on GoogleMap Dataset

Deeper Look at the Degree of Offset of Intra-modal Self-supervised
Learning. In real applications, the deformation degree between the cross-modal
images is generally unknown. It would be interesting to alter the degree of the
intra-modal self-supervised learning to evaluate their effects on the cross-modal
homography estimation. To this end, we train our SCPNet under the cross-modal
offset of [-8, +8], [-16, +16], and [-32, +32] with each of their corresponding intra-
modal self-supervised learning having different ranges of offset under [-8, +8],
[-16, +16], and [-32, +32]. The results are listed in Table 1. As expected, even
if there is a significant deviation from the actual cross-modal offset degrees, the
intra-modal self-supervised learning is continuously effective on the cross-modal
homography estimation. The above results further demonstrate the powerful
capability and generalization ability of our intra-modal self-supervised learning.

Unsupervised loss functions. We compare the cross-modal intensity based
loss in SCPNet (Eq. 9 in the main text) and the triplet loss in CA-UDHN [12].
The quantitative results are listed in Table. 2. The performance using triplet loss
is similar to our cross-modal intensity based loss. Both the two losses aim to min-
imize the distance between PA (anchor) and P

′

B (positive), while maximizing the
distance between PA and PB (negative). We note that our cross-modal intensity
based loss can omit the margin in triplet loss, which avoids the hyperparameter
tuning.

Table 2: Comparison of unsupervised loss functions.

Loss function Cross-modal intensity based loss Triplet loss
MACE ↓ 4.35 4.50
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Table 3: Cross dataset evaluation MACEs of SCPNet.

Train
Test

GoogleMap Flash/no-flash Harvard RGB/NIR PDS-COCO

GoogleMap 4.35 3.84 6.01 4.39 1.80
Flash/no-flash 16.95 2.67 5.04 5.27 1.36

Harvard 20.22 2.30 4.00 4.49 1.40
RGB/NIR 22.84 2.52 4.99 4.78 1.25

PDS-COCO 22.84 2.87 5.62 5.03 1.09

3.2 Cross Dataset Evaluation

We further conduct a cross dataset evaluation of our SCPNet, and the results are
listed in Table 3. It is observed that the model trained on challenging datasets,
such as GoogleMap, has superior generalization ability. This not only demon-
strates the robustness of our SCPNet but also highlights its great potential for
real-world applications.

4 More Visualization Results

We further show more visualization results, including the comparison of the
consistent feature maps produced by concatenation and correlation, as well as
qualitative homography estimation.

Consistent feature map. We illustrate more visualization results of consis-
tent feature maps in Fig. 4. It can be observed that the feature maps generated
by the correlation-based homography estimation network have salient structures
and rich details, which further improves the homography estimation accuracy.
However, the feature maps generated by the concatenation-based homography
estimation network are blurry and ambiguous.

Homography Estimation. Fig. 5 visualizes more results of homography
estimation. It can be seen that our SCPNet can produce accurate homography
predictions in a variety of scenes across different datasets, while the comparison
approaches cannot.
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(a) GoogleMap

(b) Flash/no-flash

(c) Harvard
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(d) RGB/NIR

(e) PDS-COCO

Fig. 3: Example images of the cross-modal datasets including GoogleMap and
Flash/no-flash, cross-spetral datasets including Harvard and RGB/NIR, together with
the manually-made inconsistent dataset PDS-COCO respectively, under [-32,+32] off-
set.
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(a) GoogleMap

(b) Flash/no-flash
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(c) Harvard

(d) RGB/NIR
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Fig. 4: Comparison of the consistent feature maps produced by concatenation and cor-
relation on GoogleMap, Flash/no-flash, Harvard, and RGB/NIR datasets respectively,
under [-32,+32] offset.
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(a) GoogleMap

SIFT ORB DASC RIFT UDHN biHomE UMF-CMGR DHN MHN SCPNet (Ours)
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SIFT ORB DASC RIFT UDHN biHomE UMF-CMGR DHN MHN SCPNet (Ours)

(b) Flash/no-flash
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(c) Harvard

SIFT ORB DASC RIFT UDHN biHomE UMF-CMGR DHN MHN SCPNet (Ours)
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SIFT ORB DASC RIFT UDHN biHomE UMF-CMGR DHN MHN SCPNet (Ours)

(d) RGB/NIR

Fig. 5: Qualitative homography estimation results on GoogleMap, Flash/no-flash, Har-
vard, and RGB/NIR datasets respectively, under [-32,+32] offset. Green polygons de-
note the ground-truth homography deformation from IB (source, the deformed image)
to IA (target). Red polygons denote the estimated homography deformation using dif-
ferent algorithms on IA (target).
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