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Abstract. We propose a novel unsupervised cross-modal homography
estimation framework based on intra-modal Self-supervised learning,
Correlation, and consistent feature map Projection, namely SCPNet.
The concept of intra-modal self-supervised learning is first presented
to facilitate the unsupervised cross-modal homography estimation. The
correlation-based homography estimation network and the consistent
feature map projection are combined to form the learnable architec-
ture of SCPNet, boosting the unsupervised learning framework. SCP-
Net is the first to achieve effective unsupervised homography estima-
tion on the satellite-map image pair cross-modal dataset, GoogleMap,
under [-32,+32] offset on a 128 × 128 image, leading the supervised
approach MHN by 14.0% of mean average corner error (MACE). We
further conduct extensive experiments on several cross-modal/spectral
and manually-made inconsistent datasets, on which SCPNet achieves the
state-of-the-art (SOTA) performance among unsupervised approaches,
and owns 49.0%, 25.2%, 36.4%, and 10.7% lower MACEs than the su-
pervised approach MHN. Source code is available at https://github.
com/RM-Zhang/SCPNet.

Keywords: Homography estimation · Unsupervised learning · Multi-
modal and multi-spectral images

1 Introduction

Homography estimation aims to compute the global perspective transform among
images. Present supervised homography estimation approaches [6,8,12,28,37,45]
can usually handle the homography estimation task under large offsets and
modality gaps. However, in real applications, the homography deformation be-
tween images is usually unknown, especially for the cross-modal images captured
by different devices or at various times [11, 40]. Therefore, unsupervised cross-
modal homography estimation is vital for real-world tasks such as multi-spectral
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Fig. 1: Unsupervised homography estimation results of UDHN [35], CA-UDHN [44],
biHomE [27], and our SCPNet on GoogleMap dataset under [-32,+32] offset. CL de-
notes the common cross-modal intensity-based learning, SL denotes the intra-modal
self-supervised learning, C denotes correlation, and P denotes consistent feature map
projection. CL (perceptual) means the cross-modal intensity-based learning is con-
ducted by the perceptual loss. Green polygons denote the ground-truth homography
deformation from IB (map) to IA (satellite). Red polygons denote the estimated homog-
raphy deformation using different algorithms on IA (satellite). Different from the pre-
vious works that only adopt cross-modal intensity-based learning, SCPNet introduces
intra-modal self-supervised learning as extra supervision and has a special architecture
based on correlation and consistent feature map projection, leading to successful un-
supervised cross-modal homography learning under large offsets and modality gaps.

image fusion [43, 46], multi-modal image restoration [13, 33], and GPS denied
navigation [19,45].

For the above reasons, unsupervised deep homography estimation has raised
growing interest. Nguyen et al . [35] trained a deep homography estimation net-
work in an unsupervised manner by comparing the pixel intensity of warped
source image and target image. Wang et al . [38] constrained the intensity loss in
a cyclic manner that further improves the homography estimation accuracy. To
cope with the illumination change, several works have been presented [41,44] to
achieve unsupervised homography estimation by introducing the feature repre-
sentation for both homography estimation and consistency supervision. Based on
the above two works, Hong et al . [23] adopted the GAN [20] model to improve the
supervision of feature similarity. However, most of the above approaches focus
only on cross-modal intensity-based learning, and can only separately address
either large offsets or modality gaps [27].

To cope with the above problem, in this paper, we propose a novel unsuper-
vised cross-modal homography estimation framework, namely SCPNet, which
adopts intra-modal Self-supervised learning, Correlation, and consistent feature
map Projection. As illustrated in Fig. 1, different from the previous unsuper-
vised works that only adopt cross-modal intensity-based learning, SCPNet intro-
duces intra-modal self-supervised learning as extra supervision and has a special
architecture based on correlation and consistent feature map projection. It is
observed that SCPNet achieves successful unsupervised homography estimation
on the cross-modal data under such large offsets, while the others cannot.
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The intra-modal self-supervised learning lays the foundation of our SCP-
Net, which mines the two-branch self-supervised information via applying simu-
lated homography within the two modalities. The network with shared weights
is trained simultaneously by the two-branch self-supervised learning. Accord-
ing to the ablation on GoogleMap, simply using the intra-modal self-supervised
learning, our SCPNet can produce converged training, even without the cross-
modal intensity-based learning in [35,38,41,44]. On the contrary, only using the
cross-modal intensity-based learning fails to converge on such a large modal-
ity gap and offset. The two learning strategies are combined to form the final
supervision of SCPNet. The correlation and consistent feature map projection
have been separately employed in many previous homography estimation frame-
works [6,23,37,41,44]. However, the strategy and effectiveness of combining them
to form an effective unsupervised cross-modal homography estimation framework
haven’t ever been investigated. The above two parts form the powerful learn-
able architecture of our SCPNet, which also boosts the unsupervised training
framework.

To the best of our knowledge, SCPNet is the first method that achieves effec-
tive unsupervised homography estimation on such a large offset (offset range of
[-32,+32] on a 128× 128 image) and modality gap (GoogleMap [45] of satellite-
map image pairs as in Fig. 1), outperforming the supervised approach MHN [28]
by 14.0% of mean average corner error (MACE). We further evaluate our SCPNet
on Flash/no-flash [21] cross-modal dataset, Harvard [10] and RGB/NIR [5] cross-
spectral datasets, and PDS-COCO [27] manually-made inconsistent dataset,
which also achieves the state-of-the-art (SOTA) performance among unsuper-
vised approaches. In summary, our contributions are as follows:

– We propose SCPNet, a novel unsupervised cross-modal homography esti-
mation framework, which combines three key components, including intra-
modal self-supervised learning, correlation, and consistent feature map pro-
jection. SCPNet ranks top in the unsupervised homography estimation on
cross-modal/spectral and manually-made inconsistent data under large off-
sets.

– The concept of intra-modal self-supervised learning is devised to support the
unsupervised learning framework, which mines the two-branch self-supervised
information via applying simulated homography within the two modalities.
By simultaneously training the weight-shared network using the two-branch
self-supervised learning, the homography estimation knowledge can be gen-
eralized from intra-modal to cross-modal.

– We combine the correlation and consistent feature map projection to form
a powerful unsupervised learning network architecture of SCPNet. The cor-
relation constrains the network to learn a clearer knowledge that can be
generalized from intra-modal to cross-modal. The projected consistent fea-
ture map can monitor both the cross-modal homography estimation and
cross-modal consistent latent space projection, which will further improve
the estimation accuracy.
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2 Related Work

Traditional Approaches. The most widely used traditional homography es-
timation approaches, namely feature-based approaches, typically involve three
key steps: feature extraction, feature matching, and homography estimation [37].
Commonly used feature extraction approaches include SIFT [32], SURF [4],
and ORB [34]. Popular homography estimation techniques include DLT [16],
RANSAC [17], IRLS [22], and MAGSAC [3]. To further improve the robustness
of cross-modal feature extraction, some approaches such as LGHD [1], RIFT [29],
and DASC [26] have been presented. The above approaches achieve reliable ho-
mography estimations under moderate intensity variance and deformation but
may produce unsatisfactory results dealing with cross-modal images under large
offsets [6, 7, 28,37].

Supervised Approaches. DeTone et al . [12] first introduced the end-to-end
homography estimation network DHN. To further improve the accuracy of ho-
mography estimation, many approaches have been subsequently presented. For
example, MHN [28] used a multi-scale network concatenation and DLKFM [45]
adopted deep Lucas-Kanade iteration. Furthermore, LocalTrans [37] trained a
multi-scale local transformer, IHN [6] employed deep learnable iteration, and
RHWF [8] combined homography-guided image warping and focus transformer,
etc. However, obtaining the ground-truth is often difficult and costly, making it
challenging for supervised learning approaches to be widely applicable in prac-
tice.

Unsupervised Approaches. Nguyen et al . [35] trained the homography
estimation network using pixel-level photometric loss in an unsupervised man-
ner. Based on this pioneering work, Wang et al . [38] added extra supervision
by the invertibility constraints. Zhang et al . [44] presented CA-UDHN to de-
pict the similarity in feature space instead of pixel space. However, CA-UDHN
has poor robustness for images with large viewpoint changes [27]. Koguchiuk
et al . [27] then expanded CA-UDHN with perceptual loss [25], which improves
the robustness of unsupervised training of deep homography estimation under
large intensity and viewpoint changes. Furthermore, Ye et al . [41] introduced
feature identity loss to enforce the image feature to be warp-equivalent, and pro-
posed a homography flow representation. Besides the above approaches, some
unsupervised techniques such as NeMAR [2], UMF-CMGR [14], and RFNet [39]
use modality transfer networks to migrate one modality to another, achieving
unsupervised cross-modal/spectral motion estimation.

3 Pilot Experiments and Finding

We first denote the image pair from modality A and B as IA and IB, with homog-
raphy deformation between them. To train a homography estimation network in
a supervised manner, the objective of network training can be formulated as

argmin
θ

LS

(
ϕθ(IA, IB),HGT

)
, (1)



SCPNet 5

0 20 40 60 80 100 120
Training Iterations (k)

0

10

20

30

40

50

60

70

M
AC

E 
(p

ix
el

s)

Cross-modal intensity-based learning
Intra-modal self-supervised learning

Fig. 2: The cross-modal test MACEs of the network trained using intra-modal self-
supervised learning and cross-modal intensity-based learning during the training iter-
ations, respectively.

where HGT denotes the ground-truth homography between the two images, ϕθ
the network, and θ the network parameters to be optimized. LS denotes the
supervised loss, which is usually L2 [28] or L1 [6,37] norm. However, in practical
applications, ground-truth homography is generally difficult to obtain, especially
for the cross-modal images captured by different devices or at various times
[11,40]. To cope with this difficulty, unsupervised homography estimation is then
investigated, and the training for most of them [23,27,35,44] can be modeled as

argmin
θ

LC

(
IA,W(IB, ϕθ(IA, IB))

)
, (2)

where W denotes the warping operation using the predicted homography ϕθ(IA, IB),
and LC denotes the cross-modal loss that monitoring the content similarity of
the warped IB and IA. The cross-modal intensity-based loss varies from the L1

pixel-wise photometric loss [35], the L1 similarity loss of the feature maps [41,44],
and the perceptual loss [27]. Nevertheless, under large homography deformation
and intensity variance, the above losses may fail, according to [27] and our ex-
periments. As the cross-modal image intensity similarity is generally highly non-
convex [7], making the solution space of the loss function hard to optimize, the
training process is prone to fall into non-convergent as demonstrated in [27].

Inspired by multitask learning [9], which simultaneously tackles multiple
tasks using a shared representation, we propose intra-modal self-supervised learn-
ing to achieve better supervision. Multitask learning implicitly learns task rela-
tionships within a shared representation through gradient aggregation [9], and
recent studies have shown that various tasks benefit from it [15,18,24]. The moti-
vation of our intra-modal self-supervised learning is to enhance the unsupervised
learning process by introducing highly related extra tasks that provide direct
supervision. While obtaining cross-modal ground-truth homography is challeng-
ing, intra-modal ground-truth homography can be easily generated by directly
applying simulated deformations [12]. This allows the knowledge of homogra-
phy transformation to be directly learned, rather than indirectly as in common
cross-modal intensity-based learning. Additionally, the relationship between im-
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ages from two modalities, such as mutual structures, is likely to be learned
within the shared representation during two-branch intra-modal self-supervised
learning. To validate the aforementioned statement, we train a weight-shared
network to separately predict the homography within the two modalities under
direct supervision from simulation, which can be expressed as

argmin
θ

LS

(
ϕθ(IA, I

′
A),HGT,A

)
+ LS

(
ϕθ(IB, I

′
B),HGT,B

)
, (3)

where I′A denotes the homography warped IA with the simulated ground-truth
homography HGT,A, and modality B in the same manner. We conduct this pilot
experiment on the cross-modal dataset, GoogleMap [45], which is of large in-
tensity and content difference, under [-32,+32] offset on a 128× 128 image. The
cross-modal test MACEs of the network trained using intra-modal self-supervised
learning and common cross-modal intensity-based learning during the training
iterations are illustrated in Fig. 2. Interestingly, we find that the network trained
by intra-modal self-supervised learning has an evidently better cross-modal per-
formance than the common cross-modal intensity-based learning trained one.
Therefore, we can obtain the finding: The cross-modal homography es-
timation can be indirectly facilitated by training the weight-shared
network using the simulated transform within the two modalities.

4 SCPNet

Based on the finding in Section 3, we hope to further design a network architec-
ture and complement it with an appropriate training strategy. For this purpose,
we propose the unsupervised cross-modal homography estimation framework
that adopts intra-modal Self-supervised learning, Correlation, and consistent
feature map Projection, namely SCPNet. Fig. 3(a) demonstrates the schematic
diagram of the training and inference framework of SCPNet. Fig. 3(b) and 3(c)
show the two learnable modules that form the architecture of SCPNet. Con-
sidering that the learnable modules and the training strategy are coupled and
mutually promote each other, in the following section, we will follow the idea
of building a powerful unsupervised learning framework based on the finding of
intra-modal self-supervised learning to demonstrate our SCPNet.

4.1 Correlation-based Homography Estimation Network

Similar to the previous unsupervised network architectures [27,35,38,41,44], the
finding in Section 3 is obtained by concatenating the image pairs in the channel
dimension and expecting the network to directly predict the homography. The
knowledge of homography estimation is implicitly learned without any constraint
or hint, and hence the potential of our intra-modal self-supervised learning might
not be fully explored.

With the above consideration, we alter to construct the homography estima-
tion network with correlation. The architecture of the correlation-based homog-
raphy estimation network is illustrated in Fig. 3(b). The feature extractor with
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Fig. 3: Schematic diagram of unsupervised cross-modal homography estimation frame-
work using intra-modal Self-supervised learning, Correlation, and consistent feature
map Projection, namely SCPNet. (a) Overall structure and training/inference strategy
of SCPNet. (b) Detailed illustration of the correlation-based homography estimation
network. (c) Detailed structure of the consistent feature map projector.

shared weights produces the features of the two modalities, namely FA and FB.
The correlation is realized by computing the inner product of FA and FB around
a local area, which can be expressed as

C(x, r) = ReLU(FA(x)
TFB(x+ r)), ∥r∥∞ ≤ R (4)

where R controls the radius of each local area. The correlation is then sent into
the homography estimator to conduct the homography prediction. The structural
details of the homography estimation network can be found in the supplemen-
tary material. By adopting correlation, the homography estimation network is
clarified into the weight-shared feature extractor, correlation computation, and
the homography estimator. Under the intra-modal self-supervised learning, each
of the above parts is constrained to learn a clearer knowledge that can be gener-
alized to cross-modal: 1) the feature extractor is constrained to produce feature
representations that are effective for correlation, which is indirectly enforced to
share the intra-modal self-supervised knowledge to cross-modal; 2) the similar-
ity of features is explicitly encoded by correlation, which is unified among each
modality; 3) the knowledge of homography decoding is strictly defined by the
correlation input, which is also unified. The intra-modal self-supervised learning
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of the network can then be formulated by

argmin
ξ

LS

(
ψξ(IA, I

′
A),HGT,A

)
+ LS

(
ψξ(IB, I

′
B),HGT,B

)
, (5)

where ψξ denotes the correlation-based homography estimation network, with
the parameters to be optimized by ξ.

4.2 Consistent Feature Map Projector

After introducing intra-modal self-supervised learning, we then consider bringing
in valid cross-modal supervision to further improve the estimation accuracy.
As discussed in Section 3, directly applying intensity-based supervision in Eq.
2 on cross-modal images with severe content differences is infeasible. To cope
with the problem, we introduce consistent feature map projection to assist the
intensity-based cross-modal supervision, which projects the input images from an
intensity-variant space to an intensity-invariant latent space. The architecture of
the consistent feature map projector is illustrated in Fig. 3(c). The input image
is processed with a convolutional block of kernel size 3 × 3 first. The produced
feature map is then processed by two residual blocks. Finally, the feature map
with a higher number of channels is projected into the consistent feature map
of 1 channel by a 1× 1 convolutional block.

Boosted by the consistent feature map projector, the cross-modal intensity-
based training can be expressed as

argmin
ξ,ζ

LC

(
δζ(IA),W(δζ(IB), ψξ(δζ(IA), δζ(IB)))

)
, (6)

where δζ denotes the consistent feature map projector, with ζ denoting its learn-
able parameters. We note that, with the consistent feature map projector, the
cross-modal intensity-based learning not only supervises the cross-modal ho-
mography estimation but also makes the projected feature maps as similar as
possible, which will further boost the estimation accuracy.

4.3 Training/Inference Framework

Now that we have separately introduced the intra-modal self-supervised learning,
the correlation-based homography estimation network, and the consistent feature
map projector with cross-modal intensity-based learning. The complete frame-
work of SCPNet can be determined by combining the above learning strategies
and modules. The training framework of SCPNet contains two self-supervised
learning branches and one cross-modal learning branch, which is the most sig-
nificant difference compared to the previous approaches. The three branches
apply simultaneously supervision on the weight-shared learnable modules as
demonstrated in Fig. 3(a). For better illustration, the projected consistent fea-
ture maps are denoted by PA = δζ(IA), PB = δζ(IB), and the warped PB

by PB,W = W(δζ(IB), ψξ(δζ(IA), δζ(IB))). The predicted cross-modal homogra-
phy is denoted by HAB = ψξ(δζ(IA), δζ(IB)), and intra-modal ones by HA =
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ψξ(δζ(IA), δζ(I
′
A)) and HB = ψξ(δζ(IB), δζ(I

′
B)). As mentioned in Section 3, for

the two self-supervised branches, the input IA and IB are separately deformed
and trained under the direct supervision of the simulated homography HGT,A

and HGT,B. Meanwhile, cross-modal intensity-based learning is conducted by
applying supervision on the projected consistent feature map PA and warped
one PB,W. The correlation-based homography estimation network and consis-
tent feature map projector are both absorbed to form the network. Finally, the
entire unsupervised cross-modal learning framework can be formulated as

argmin
ξ,ζ

LC

(
δζ(IA),W(δζ(IB), ψξ(δζ(IA), δζ(IB)))

)
+λLS

(
ψξ(δζ(IA), δζ(I

′
A)),HGT,A

)
+λLS

(
ψξ(δζ(IB), δζ(I

′
B)),HGT,B

)
.

(7)

We note that once combined, the correlation can also facilitate the projected con-
sistent feature map to have clear contents with the promotion of the cross-modal
intensity learning, which will be discussed in Section 5.2. As for the inference
phase, only the cross-modal prediction branch of SCPNet functions.

4.4 Loss Function and Implementation Details

For the intra-modal self-supervised loss, we parameterize the homography matrix
by the offsets of four corner points to stabilize the training [6,8,12]. We use the
L1 norm on the differences between the predicted offsets O ∈ R2×2×2 and the
ground-truth OGT ∈ R2×2×2, which can be formulated as:

LS = ∥O−OGT∥1. (8)

The homography parameterization using offsets of four corner points can be
found in the supplementary material.

We set the cross-modal intensity-based loss as follows:

LC =
∥PA −PB,W∥1
∥PA −PB∥1

, (9)

where the numerator minimize the differences between the consistent feature
map PA and the warped one PB,W, while the denominator maximizing the dif-
ferences between PA and PB, which can prevent invalid feature map projection.

We set λ = 0.1 in Eq. 7 during training. We use the AdamW [31] optimizer,
with the maximum learning rate of 4×10−4 for the network training. The batch
size is set to 8, with a total of 120000 training iterations.

5 Experiments

5.1 Datasets and Experimental Settings

Datasets. We evaluate our SCPNet on cross-modal datasets including GoogleMap
[45] and Flash/no-flash [21], cross-spectral datasets including Harvard [10] and
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RGB/NIR [5], together with the manually-made inconsistent dataset PDS-COCO
[27]. The GoogleMap dataset contains satellite images and the corresponding
map images, which can be used for navigation and geolocation. We use the same
training and test data splitting as in [45]. The Flash/no-flash dataset contains
120 pairs of images that are with and without flash. We randomly select 60 image
pairs for training and 60 for testing. For multi-spectral data, the Harvard dataset
contains 77 real-world image scenes, with each scene containing 31 band images.
We take the 16th band image of each scene as the reference image and form a
cross-spectral image pair with the image of each remaining band respectively.
The training and test data are divided by different scenes of 1170 and 1140 image
pairs. For the RGB/NIR dataset, we use 103 pairs of images for training and 153
pairs for testing. PDS-COCO artificially simulates random combined changes in
brightness, contrast, saturation, and hue noise to the MS-COCO dataset [30].
We use the same training and test splitting as the MS-COCO dataset.

Experimental Settings. The homography deformation is generated in the
same way as [6, 8, 12, 45], which randomly perturbs the four corner points of
a 128 × 128 image. Unless otherwise stated, the perturbation range is set to
[-32, +32]. We adopt the mean average corner error (MACE) for homography
accuracy evaluation. Lower MACE indicates higher accuracy.

Comparison Approaches. We evaluate SCPNet on cross-modal and cross-
spectral datasets with handcrafted approaches including SIFT [32], ORB [36],
DASC [26], RIFT [29], unsupervised approaches including UDHN [35], CA-
UDHN [44], biHomE [27], BasesHomo [41], UMF-CMGR [14], and supervised
approaches including DHN [12], MHN [28], LocalTrans [37], IHN [6], RHWF [8].
For SIFT, ORB, DASC, and UMF-CMGR, we choose RANSAC [17] as their ho-
mography estimation and outlier rejection algorithm. In addition, UMF-CMGR
is an image fusion approach based on registration, and we use the registration
network part for comparison. We also tried to compare with the unsupervised
approaches MU-Net [42] and NeMAR [2], but according to our experiments,
neither of them performs successful homography estimation. To make a more
comprehensive comparison, we also evaluate our SCPNet on PDS-COCO [27].

5.2 Ablation

Ablation Study on GoogleMap Dataset. We conduct extensive ablation
studies on the architecture and supervision of our SCPNet by evaluating the
mean average corner error (MACE), as shown in Table 1. Using only cross-modal
intensity-based learning for supervision leads to non-convergence or unsatisfac-
tory results (Settings 1–4). In contrast, our intra-modal self-supervised learning
achieves superior performance (Settings 5–9). Moreover, the results of SCPNet
show gradual improvement as additional ablation components are incorporated.

The Effectiveness of Correlation on Consistent Feature Map Pro-
jection. We further show the consistent feature maps produced by concatenation
and correlation architecture in Fig. 4. It is observed that the correlation visibly
facilitates the consistent feature map generation by the direct constraint of the
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Table 1: Ablation study of SCPNet. NC denotes the training is not converged. Self
denotes intra-modal self-supervised learning, projection denotes consistent feature map
projection, and cross denotes cross-modal intensity-based learning.

Setting Self Correlation Projection Cross MACE↓
1 % % % ! NC
2 % ! % ! NC
3 % % ! ! 24.64
4 % ! ! ! 24.80
5 ! % % % 13.06
6 ! ! % % 9.68
7 ! % ! % 10.01
8 ! ! ! % 7.70
9 ! ! ! ! 4.35

concatenation correlationAI BI

Fig. 4: Comparison of the consistent feature maps produced by concatenation and
correlation.

input feature maps using the inner product. Therefore, cross-modal intensity-
based learning can then be boosted by high-quality feature maps.

5.3 Evaluation on Cross-modal/spectral Datasets

We divide testing image pairs into three levels by the degree of ground-truth
offsets, and define the 0 ∼ 30% as ‘Easy’, the 30 ∼ 60% as ‘Moderate’, and the
60 ∼ 100% as ‘Hard’. Table 2 shows the quantitative comparison of cross-modal
datasets. On GoogleMap, homography estimation faces greater challenges due to
the large modality differences between image pairs. The handcrafted and other
unsupervised approaches produce unsatisfactory results even under the Easy
level. On the contrary, our SCPNet can produce stable and accurate homog-
raphy estimation, owning 37.2% and 14.0% lower MACEs than the supervised
approaches DHN and MHN. On Flash/no-flash, SCPNet also provides the best
performance compared to all handcrafted and unsupervised approaches, and is
superior to the supervised DHN and MHN. However, our SCPNet fails to sup-
press the supervised approaches LocalTrans, IHN and RHWF. It is due to the
supervision difference and their architectures that combine iterative and multi-
scale refinement.
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Table 2: Quantitative results of our SCPNet and other approaches on cross-modal
datasets. NC denotes the training is not converged. Bold indicates the best result
among unsupervised methods.

Dataset GoogleMap Flash/no-flash
Offset Easy Moderate Hard Mean Easy Moderate Hard Mean

Handcrafted

SIFT [32] 19.17 23.87 29.04 24.53 14.61 18.69 23.85 19.53
ORB [36] 19.11 23.9 29.02 24.52 16.91 22.44 27.01 22.63
DASC [26] 14.29 20.73 28.12 21.76 11.64 19.50 28.11 20.59
RIFT [29] 10.43 15.46 21.93 16.55 11.22 13.95 21.66 16.21

Unsupervised

UDHN [35] 18.63 21.55 26.89 22.84 16.27 21.27 24.85 21.20
CA-UDHN [44] 19.31 23.92 29.10 24.61 16.01 21.54 25.14 21.32
biHomE [27] NC NC NC NC 8.24 12.56 14.04 11.86

BasesHomo [41] 19.43 23.97 28.66 24.49 19.45 24.73 29.66 25.12
UMF-CMGR [14] 19.22 24.01 29.02 24.60 17.99 22.43 28.40 23.49
SCPNet (Ours) 3.60 4.44 4.85 4.35 1.80 2.33 3.59 2.67

Supervised

DHN [12] 7.06 6.82 7.00 6.93 5.28 6.13 7.51 6.42
MHN [28] 4.75 5.00 5.34 5.06 3.18 6.55 5.81 5.24

LocalTrans [37] 0.91 1.43 6.30 3.22 0.49 0.67 4.05 1.96
IHN [6] 0.70 0.96 1.06 0.92 0.76 0.65 0.94 0.80

RHWF [8] 0.62 0.68 0.93 0.76 0.79 0.68 0.53 0.65

Table 3: Quantitative results of our SCPNet and other approaches on cross-spectral
datasets. NC denotes the training is not converged. Bold indicates the best result
among unsupervised methods.

Dataset Harvard RGB/NIR
Offset Easy Moderate Hard Mean Easy Moderate Hard Mean

Handcrafted

SIFT [32] 17.27 21.49 26.70 22.30 15.54 23.90 28.81 24.40
ORB [36] 18.61 23.06 28.29 23.82 17.75 22.84 27.01 23.00
DASC [26] 11.85 18.29 25.03 19.05 13.50 17.91 25.73 19.78
RIFT [29] 10.41 15.69 21.98 16.62 11.22 13.80 23.34 16.84

Unsupervised

UDHN [35] 18.03 22.20 26.55 22.69 18.54 23.27 27.16 23.43
CA-UDHN [44] 18.77 23.64 28.55 24.14 18.31 23.88 28.66 24.12
biHomE [27] NC NC NC NC 18.61 23.05 28.18 23.77

BasesHomo [41] 19.77 24.20 28.46 24.57 19.23 23.44 28.89 24.41
UMF-CMGR [14] 16.61 21.08 26.25 21.81 17.04 22.16 26.53 22.38
SCPNet (Ours) 2.34 3.70 5.48 4.00 1.65 4.69 7.13 4.78

Supervised

DHN [12] 5.30 6.34 8.09 6.72 9.55 10.08 14.87 11.88
MHN [28] 4.37 5.09 6.27 5.35 6.88 7.10 8.26 7.51

LocalTrans [37] 0.27 0.43 4.58 2.04 0.53 0.77 5.15 2.47
IHN [6] 1.40 1.72 2.03 1.75 1.25 2.14 2.21 1.90

RHWF [8] 1.37 1.76 1.85 1.68 0.68 1.44 1.08 1.07
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SIFT ORB DASC RIFT UDHN biHomE UMF-CMGR DHN SCPNet (Ours)MHN

Fig. 5: Qualitative homography estimation results on GoogleMap, Flash/no-flash, Har-
vard, and RGB/NIR datasets respectively. Green polygons denote the ground-truth
homography deformation from IB (source, the deformed image) to IA (target). Red
polygons denote the estimated homography deformation using different algorithms on
the target images.

Table 3 lists the results of the cross-spectral datasets. It is observed that our
SCPNet consistently surpasses other handcrafted and unsupervised approaches
on Harvard and RGB/NIR datasets. On Harvard, SCPNet outperforms DHN
and MHN by 40.5%, 25.2% respectively. We note that on Harvard dataset, the
images are under intensity and gradient variation caused by the alternation of 31
spectral bands, but the training strategy of our SCPNet still works robustly. On
RGB/NIR dataset, SCPNet also outperforms a part of supervised, unsupervised,
and handcrafted methods as in other datasets.

Fig. 5 visualizes the homography estimation results of SCPNet and other
comparison approaches on GoogleMap, Flash/no-flash, Harvard, and RGB/NIR
datasets. It can be seen that our SCPNet can produce accurate homography
predictions on a variety of data, while the others fail due to the large modal-
ity/spectral variance and homography deformation.

5.4 Evaluation on PDS-COCO

We further conduct an evaluation on PDS-COCO, with results illustrated in
Table 4. Following [27], δ represents the content distortion of brightness, contrast,
saturation, and hue, the absolute value of which is bigger when there is a larger
distortion. As the intensity and gradient variation of PDS-COCO dataset is
inferior to the cross-modal/spectral ones, some unsupervised methods such as
biHomE and UDHN produces much more accurate homography estimation than
on the previous datasets. However, they are still inferior to our SCPNet. SCPNet
leads biHomE by 58.2% under the maximum content distortion and 59.5% under
the minimum one, and also outperforms the supervised methods including DHN
and MHN.
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Table 4: Quantitative results of our SCPNet and other approaches on PDS-COCO. δ
represents the content distortion of brightness, contrast, saturation, and hue. NC de-
notes the training is not converged. Bold indicates the best result among unsupervised
methods.

Distortion
Unsupervised Supervised

UDHN CA-UDHN biHomE SCPNet (Ours) DHN MHN LocalTrans IHN RHWF
δ = ±8 3.24 NC 2.20 0.89 2.09 1.07 0.68 0.19 0.07
δ = ±16 5.51 NC 2.37 0.88 2.24 1.10 0.70 0.19 0.07
δ = ±32 NC NC 2.61 1.09 2.50 1.22 0.79 0.21 0.09

5.5 Computational Burden

The computational burden of two-branch intra-modal self-supervised learning
in the training process mainly involves the extra synthetic data generation, the
network forward propagation, and the computation and backward propagation
of the self-supervised loss. Table. 5 lists the training time and memory usage on
an NVIDIA GeForce RTX 4090. Besides, we note that the inference time and
memory usage will not increase.

Table 5: The computational burden of training process. Self denotes intra-modal self-
supervised learning.

Setting Time (Hours) Memory usage (MBs)
w/o Self 3.18 4622
w/ Self 6.98 9144

6 Conclusions

We have proposed a novel unsupervised cross-modal homography estimation
framework, named SCPNet. The concept of intra-modal self-supervised learn-
ing is introduced for the first time, wherein two-branch self-supervised informa-
tion is fully exploited by applying simulated homography within two modalities,
providing strong support for unsupervised cross-modal training. Building upon
this, by combining correlation and consistent feature map projection, SCPNet
achieves successful unsupervised homography estimation on multiple challeng-
ing datasets. Extensive experiments demonstrate the effectiveness of SCPNet in
handling large offsets and modality gaps.

Limitations. The homography estimation network of SCPNet is designed
for better facilitating the unsupervised training framework. The strategies such
as multi-scale, iteration, and replacing CNN using transformer that can further
improve the homography estimation accuracy at the network design level can be
further investigated in our future work.
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