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1 Appendix

This supplementary material includes the following parts:

– Additional results of SCAPE and on all splits of MP-100;
– More details about the proposed framework;
– Additional ablation experiments;
– Further Exploration for CAPE;
– The applicability of SCAPE on more scenarios.
– The code for SCAPE and and the testing for Painter [9] on MP100.
– More qualitative results;
– Visual comparison of attention maps between our state-of-the-art methods

and ours.

A Additional results of SCAPE on MP-100

Additional metrics reported. As mentioned in Section 4.1, PCK has some
limitation on evaluating the performance. Here we report two additional met-
rics including Area Under the Curve (AUC) [3] and Normalized Mean Error
(NME) [2] for CapeFormer and ours on the MP-100 dataset as shown in Table
1.

Complete results for Table 3 We supplement the complete results of Table
3 in main content. across five splits on both 1-shot and 5-shot setting on the
MP-100 dataset as shown in Table 2.

B More details about the framework

Downsampling the feature output by transformer backbones. Due to
the inconsistent resolution output by ResNet (8× 8) and transformer backbones
(16 × 16), we add an average pooling layer at the end of the used transformer
backbones for workload reduction and fair comparison.



2 Yujia Liang, Zixuan Ye, Wenze Liu, and Hao Lu

The structural differences between SCAPE (without GKP and KAR)
and SCAPE (with GKP and KAR). SCAPE (w/o GKP and KAR) consists
of six layers of feature interaction. To enhance the quality of the attention map,
we extends SCAPE by incorporating two designs, Global Keypoint Feature Per-
ceptor (GKP) and Keypoint Attention Refiner (KAR). In practice, the first two
self-attention blocks are replaced by Light GKP. The GKP is a cross-attention
layer which refines the initial support keypoint tokens, with a total of M = 2
layers in SCAPE. And the KAR is inserted into each feature interaction (self-
attention) stage to refine the attention maps among keypoints. In a nut shall,
to maintain the efficiency, we decrease the number of feature interaction layers
N = 6 in SCAPE (w/o GKP and KAR) to N = 4 in SCAPESCAPE (w GKP
and KAR). Moreover, the Lite-SCAPE model has M = 1 GKP module and
N = 2 interactive modules.

The results of Lite-SCAPE on the MP-100 dataset. Table 3 provides
the full metrics as supplement for Table 4 in main content, where one can see
that Lite-SCAPE performs well on all five splits of the MP-100 dataset.

Table 1: comparison with the results of AUC(↑) and NME(↓) on 5 splits under the
1-shot setting of the MP-100 dataset. Best performance is in boldface.

method metric split1 split2 split3 split4 split5 mean

CapeFormer NME↓ 0.088 0.110 0.111 0.116 0.108 0.106
AUC↑ 88.64 86.39 86.18 85.81 86.51 86.70

SCAPE NME↓ 0.078 0.101 0.097 0.105 0.101 0.096
AUC↑ 89.59 87.12 87.34 86.28 86.96 87.45

Table 2: Performance across different Transformer-based backbones, we report all
5 splits on the MP-100 dataset, considering both 1-shot and 5-shot settings. Best
performance is in boldface.

method backbone shot split1 split2 split3 split4 split5 mean

SCAPE ViT-B 1 91.74 87.57 87.70 86.49 87.46 88.19
5 94.83 90.65 90.94 90.98 90.19 91.52

SCAPE Swin-S 1 91.66 87.01 86.98 85.97 87.91 87.91
5 95.18 91.25 91.78 90.74 91.10 92.01

SCAPE ViT-S 1 94.47 89.55 89.81 89.04 90.85 90.74
(DINOv2) 5 96.29 92.11 90.48 92.27 92.11 92.65

CapeFormer ViT-B 1 93.43 89.03 87.50 86.32 89.31 89.11
(DINOv2) 5 95.34 92.10 90.84 90.60 90.71 91.92

SCAPE ViT-B 1 95.01 90.65 90.65 90.50 92.97 91.95
(DINOv2) 5 97.10 93.28 92.02 92.83 94.67 93.98
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Table 3: Lite-SCAPE on the MP-100 dateset on 5 splits under the 1-shot setting

split1 split2 split3 split4 split5 mean(PCK)

90.01 85.17 85.45 84.91 85.14 86.13

Table 4: Design of Global Keypoint Feature Perceptor .

Support image Query image PCK

D1 ✓ 90.0
D2 ✓ 89.3
D3 ✓ ✓ ✓ 90.3

Table 5: The Global Keypoint Feature Perceptor must be a separate module and
cannot be integrated into the feature fusion layer.

KGP Interactor Support image PCK

0 6 89.8
0 6 ✓ 89.3
2 4 90.3

C Additional Ablation Studies

The design of Global Keypoint Feature Perceptor. In Section 4.4, we
focus on the design of GKP, as depicted in Table 4, GKP enriches the semantic
content of the initial keypoint tokens by interacting again with the support
image. In implementation of attention, the term "key" and "value" encompass
not only support images but also include Fq (query images). By comparing D1,
D2 and D3, interacting the support image is essential with GKP and allowing
the support keypoints to pre-examine the Fq intended for fusion can further
improve performance. Then, as the core of our GKP lies in interacting with
the support image. We explore the possibility of incorporating this interaction
into the following feature interactor. That is to say, in addition to concatenating
Fs and Fq as before, we also concatenate the support image and update all
three in feature interaction. According to Table 5, performance of the second
line drops when incorporating the support image. The expected match for the
feature interaction module is only the query image, and including support images
disrupts matching. Therefore, the support image cannot be introduced during
the feature interaction stage.
Global Keypoint Feature Perceptor can expedite convergence. Learning
curves in Fig.1 S1 illustrate that GKP accelerates convergence and enhances
final performance. With the assistance of the GKP, SCAPE achieves optimal
performance of 90.3 within 160 epochs, whereas previous methods were trained
for 210 epochs.
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Fig. 1: The result of SCAPE w/ and w/o the GKP. We train the model for a
total of 160 epochs under the 1-shot setting on split-1 of MP-100, and evaluate the
PCK metric every 10 epochs. The x-axis and y-axis represents the number of epochs
and the PCK respectively.

Fig. 2: Similar support keypoints exhibit analogous weight distributions (for
the weight assigner). Even though they belong to different categories, their keypoints
are the same, and the inter-node relationships is similar, resulting in closely aligned
weight distributions.

Weight visualization of Weight Assigner in Keypoint Attention Re-
finer. With multiple node relationships in different aspects generated by multi-
ple Attention Filters, the Weight Assigner in KAR is used to selectively keep and
discard the relationships. Since the weights are obtained by the corresponding
support keypoint token, as mentioned in Section 3.4, therefore support keypoint
tokens with similar meaning (left eye of different animal) should yield more sim-
ilar weights. We visualize the weights in Fig. 2, one can see that the similar
support keypoint tokens generate similar weights for the 4 Attention Filters.
Likewise, as shown in Fig. 3, dissimilar support keypoints bring distinct weight
distributions.

Ablation study on unshared q and k for support keypoint tokens and
query images. The linear projection before self-attention can be formulated as:

Ks = WK1Fs ,Kq = WK2Fq ,K = concat(Ks,Kq) ,

Qs = WQ1Fs , Qq = WQ2Fq , Q = concat(Qs, Qq) ,
(1)

where WK1, WK2, WQ1 and WQ2 represent the linear projection matrix to gen-
erate key Ks, Kq and query Qs, Qq for support feature Fs and query feature Fq.
To eliminate the potential impact of increased parameters in Eq. (1) compared
to the vanilla self-attention, we conduct an experiment where the linear layers
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Fig. 3: The weight distributions of dissimilar support keypoints differ. On the
left side, nodes within the same category exhibit varying distributions due to different
ways of modeling inter-node relationships. The right side illustrates the distinct weight
distributions for the first keypoints in different categories.

are shared, i.e., WK1 = WK2 and WQ1 = WQ2 to maintain the same number of
parameters with the vanilla self-attention. Table 6 shows that the our method
performs comparably either with or without additional parameters, which im-
plies that it is the mechanism rather than the more parameters that boosts the
performance.

Table 6: Ablation study on parameter increase resulting from Non-Sharing of q and
k in Feature Interactor

share layer PCK
✓ 1 89.1
✓ 2 89.3

1 89.8

D Further Exploration for CAPE

The generality of GKP and KAR. i) We apply our GKP to the state-
of-the-art CapeFormer on split 1, enhancing PCK by 0.6. ii) By incorporating
KAR into the first three layers of the Encoder for interaction, PCK is further
improved by 0.8. iii) The combined effect of these two modules results in an
overall enhancement of 1.1 PCK.
Whether CAPE-specific models are needed

i) Models like VIT, trained in the DINOv2 [4] manner, demonstrate fine-
grained matching effects across various tasks [5, 7]. Stable Diffusion [6] has also
exhibited similar capabilities in DIFT [8]. We evaluated these approachs on the
MP100 dataset following the procedure outlined in DIFT [8]. Provided support
image and heatmap ground truth for target points, we utilized the visual ex-
tractor from Stable Diffusion to extract support features. These features were
then multiplied by the heatmap ground truth to obtain support keypoints. Cal-
culating the cosine similarity between keypoints and the query image produced
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Fig. 4: Visualization of similarity maps. The second column corresponds to DI-
NOv2, and the third column represents Stable Diffusion. Red points indicate the final
predicted points, with a checkmark denoting correct predictions and a cross indicating
incorrect predictions.

dog-body cow-body car bed

Fig. 5: Visualization of the rendered style maps for keypoint by Painter.

a similarity map, S. We identified the target point P as the argmax(S), yielding
the final target point. We applied a similar evaluation to DINOv2. We visualized
some of these similarity maps, as shown in Fig. 4. While they effectively han-
dle simple cases, they face challenges when encountering occlusion or significant
appearance differences between support and query images.

ii) Several recent papers on generalist models learning assert the ability to
solve diverse tasks with just a few task examples, as seen in Painter [9] or general
approach for visual prompting [1]. It would be interesting to evaluate whether
CAPE-specific models are even needed. Here we show the result of generalist
model (‘Images Speak in Images’) [9] on MP-100 with identical metrics and
settings. As shown in the table below, the performance is significantly lower than
the CAPE methods. Per visualizations in Fig. 5, the model can only output the
shape of furniture and vehicles, but fails to precisely localize the points. Hence,
we believe that generalist model cannot replace CAPE models at this moment.
The evaluation code is available in the supplementary material folder.

The results of the three approaches are reported in Table 7 using consistent
metrics. Through a combination of quantitative metrics and visualizations, it
becomes evident that the proprietary model of CAPE is needed. Moreover, these
general models are notably heavier compared to SCAPE.
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Table 7: Results for various general models on MP100 split1. Specifically,
Stable Diffusion performs better when provided with textual cues (right eye) compared
to cases without prompts.

Method spilt1
DINOv2-L 78.1
DIFT 60.0
DIFT (propmt) 66.8
Painter 23.9
SCAPE (ours) 91.6

E The applicability of SCAPE on more scenarios

We tested the applicability of our method in cross-category multiple-instance
scenarios as well as cross-style scenarios. Indeed, in an effort to seek the most
similar keypoint of support keypoint, the current CAPE only finds one-to-
one correspondence and cannot establish one-to-many correspondence. As shown
below, we have tested the applicability of our approach on multiple-instance
scenarios across categories (Row 1-3) and even across domains (Row 4). We
think the future CAPE could certainly benefit from datasets and frameworks
of multi-instance scenarios (including one-to-many correspondence of the same
categories).

Support image & GT

Support image & GT
Query&Pre (Cross-Domain)

Query & Pre  GT Query & Pre  GT

Fig. 6: The applicability of SCAPE on multiple-instance scenarios across
categories
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F The code for SCAPE and testing for Painter

The code of SCAPE and testing for Painter can be found in the attachment.

G More Qualitative Results

More qualitative results for visual comparison between the previous best method
CapeFormer and ours are shown in Fig. 7 and Fig. 8.

H Visualization of Attention Maps

Fig. 9, Fig. 10 depict the attention maps between support keypoints and the
query image of the last three layers. The attention maps of both CapeFormer
and ours are shown here for better understanding.
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Query image&GTSupport image CapeFormer SCAPE (w/o GKP&KAR) SCAPE (GKP&KAR)

Fig. 7: Qualitative results. #1



10 Yujia Liang, Zixuan Ye, Wenze Liu, and Hao Lu

Query image&GTSupport image CapeFormer SCAPE (w/o GKP&KAR) SCAPE (GKP&KAR)

Fig. 8: Qualitative results. #2
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CapeFormerSupport image SCAPEQuery & GT

CapeFormer

SCAPE

CapeFormer

SCAPE

CapeFormer

SCAPE

#4 #5 #6

Fig. 9: Attention map for the last three layers of support keypoints and
query image #1. In cases where predictions are generally accurate, our method
exhibits more convergent attention
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CapeFormerSupport image SCAPEQuery & GT

CapeFormer

SCAPE

CapeFormer

SCAPE

CapeFormer

SCAPE

#4 #5 #6

Fig. 10: Attention map for the last three layers of support keypoints and
query image #2. SCAPE+ can provide more accurate predictions.
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