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Abstract. Category-Agnostic Pose Estimation (CAPE) aims to local-
ize keypoints on an object of any category given few exemplars in an
in-context manner. Prior arts involve sophisticated designs, e.g., sundry
modules for similarity calculation and a two-stage framework, or takes
in extra heatmap generation and supervision. We notice that CAPE is
essentially a task about feature matching, which can be solved within
the attention process. Therefore we first streamline the architecture into
a simple baseline consisting of several pure self-attention layers and an
MLP regression head—this simplification means that one only needs to
consider the attention quality to boost the performance of CAPE. To-
wards an effective attention process for CAPE, we further introduce two
key modules: i) a global keypoint feature perceptor to inject global se-
mantic information into support keypoints, and ii) a keypoint attention
refiner to enhance inter-node correlation between keypoints. They jointly
form a Simple and strong Category-Agnostic Pose Estimator (SCAPE).
Experimental results show that SCAPE outperforms prior arts by 2.2 and
1.3 PCK under 1-shot and 5-shot settings with faster inference speed and
lighter model capacity, excelling in both accuracy and efficiency. Code
and models are available at github.com/tiny-smart/SCAPE.
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1 Introduction

Category-Agnostic Pose Estimation (CAPE), introduced by Xu et al . [34], is a re-
cent emerging topic in pose estimation. It extends conventional category-specific
pose estimation [14,24,31,33] and multi-category pose estimation [36] to unseen
categories given few image-annotation examples. In their preliminary solution
POMNet [34], CAPE is regarded as a similarity matching problem, solved by
generating a similarity map for keypoint prediction. Under a similar vein, Cape-
Former [29] adopts an additional transformer decoder [18] to iteratively refine
matched keypoints in a two-stage manner. Besides applying self-attention blocks
to extract image features, their models further involve a series of sophisticated
⋆ Yujia Liang and Zixuan Ye contributed equally. Hao Lu is the corresponding author.
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Fig. 1: Comparison with prior arts. (a) POMNet [34] relies on similarity match-
ing to obtain similarity maps and infer keypoint coordinates. (b) CapeFormer [29]
presents a two-stage framework, iteratively refining unreliable initial predictions. (c)
Our SCAPE employs self-attention for feature interaction and directly regresses key-
points without explicit matching. For better similarity matching, we introduce two
modules. The circle size indicates the model parameters (excluding backbone). The y-
axis represents the accuracy (PCK), and the x-axis indicates the inference speed (FPS).
Our model facilitates the seamless integration of state-of-the-art self-supervised learn-
ing techniques for scaling Vision Transformers (ViTs).

Fig. 2: Implicit attention map is closer to ground truth than explicit similar-
ity map. The second column represents the similarity map obtained from CapeFormer,
and the third column denotes the final layer of attention map between support key-
points and query image in the first stage of CapeFormer.

modules for feature matching. Their pipelines are shown in Fig. 1. Actually,
there is a common sense that transformer attention is already a strong operator
for similarity calculation and matching, suggesting redundancy in previous mod-
els and matching policies. Per Fig. 2, an initial exploration of CapeFormer [29]
shows that the attention maps exhibit even closer responses to ground truth
before extra stage-two post-processing. This reveals that extra complex blocks
or additional supervision may be redundant or suboptimal.

We thus streamline the pipeline, and build a simple baseline including several
self-attention layers and an MLP head, where the output coordinates are directly
supervised. This simplification makes it easier to improve the localization accu-
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Fig. 3: Visualization of the last three attention maps between keypoints
and query image and result. (left) The query target is the right foot; however, the
attention easily focuses on the left foot with a similar appearance, leading to inaccurate
estimation. GKP injects global information for the support keypoints, equipping it with
relative positional information to distinguish left and right keypoints. (right) However,
GKP struggles when facing shelter. By modeling the correlation between keypoints, we
enable the inference from visible to invisible. Despite the right knee is sheltered, the
model can infer its correct position by locating the right foot.

racy of CAPE, by only concerning about the attention quality in self-attention.
On this basis, we then share insights to fit the internal attention maps right
for CAPE. We begin with two representative hard cases in CAPE: symmetric
keypoints and sheltered keypoints. i) Symmetric keypoints, due to their similar
appearance, are difficult to be distinguished by the model. As shown in Fig. 3, the
attention mechanism struggles to capture correct keypoint positions and turns
to other confusing keypoint choices. To enhance the discrimination ability for
symmetric keypoints, we propose a Global Keypoint feature Perceptor (GKP)
module to fuse the global information from the support image into support key-
point. By leveraging the surrounding information, the attention map can easily
identify keypoints that have symmetric counterparts or similar neighbor key-
points. ii) Sheltered keypoints are another difficult case, where attention fails to
find the invisible target keypoint. A natural solution is to infer its position with
the assistance of other visible correlated keypoints. Therefore, we attempt to
address this issue by establishing the intrinsic correlation among all keypoints,
whose necessity and benefit have also been verified in category-specific pose es-
timation (CSPE) [16,17,22]. We thus introduce the Keypoint Attention Refiner
(KAR) module, which infuses the intrinsic relationship among keypoints as a
refinement for the attention map. KAR effectively enables the reasoning power
from visible to sheltered keypoints, as shown in Fig. 3.

The simplified transformer architecture, the direct MLP-style regression, and
the GKP and KAR modules jointly constitute our Simple and strong Category-
Agnostic Pose Estimator (SCAPE). The results on the MP-100 dataset [34]
indicate that, SCAPE invites 2.2 and 1.3 PCK improvements under the 1-shot
and the 5-shot setting, respectively, with ResNet-50 backbone. With ViT back-
bones and strong pretraining, we observe significantly improved CAPE metrics,
where SCAPE further reaches 91.95 and 93.98 PCK metric under the 1-shot and
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the 5-shot setting, with more pronounced relative improvement compared with
the state of the art. Excluding the backbone, SCAPE uses only 51% parameters
compared with CapeFormer [29]. Ablation studies are also conducted to justify
our propositions. In a nutshell, sufficient evidence has been provided to show
that SCAPE is a better baseline for CAPE.

2 Related Work

2.1 Category-Agnostic Pose Estimation

Category-Specific Pose Estimation (CSPE) has been the focus of the field for
decades [14, 15, 24, 26, 30, 31, 33, 35]. Yet, estimating pose on new categories of-
ten means model redesign and retraining. Recently, the task of CAPE is intro-
duced [34], and two baseline approaches POMNet [34] and Capeformer [29] are
also proposed, enabling pose estimation on new categories with few exemplar
images. The difference against CSPE is that the two approaches both focus on
similarity metrics: keypoints are obtained by comparing the similarity between
the query and support features. POMNet concatenates keypoint tokens with
the query image, measuring similarity using a window to generate a similarity
map, indirectly predicting coordinates from the map. Capeformer extends this
approach into a two-stage framework, introducing a second stage to iteratively
refine the unreliable matches from the first stage. This two-stage framework
significantly enhances accuracy, but it is computationally expensive and adds
6.4× more parameters than POMNet (excluding the backbone). Our first goal is
to reduce the computational burden in both model capacity and computation,
without hurting accuracy.

2.2 Similarity Matching

Similarity matching is widely used in vision tasks like object detection [3,4] and
tracking [1], formulated as a problem of template matching. CAPE can also be
viewed as executing similarity matching by aligning sparse support keypoints to
the most similar keypoints in the target image. Semantic correspondence have
typically explored point-level similarity matching using matching heads. How-
ever, challenges arise with models like SuperGlue [27] and SCOT [19], indicating
that relying solely on matching may lead to multiple responses in similarity
maps, thus requiring additional post-processing modules like optimal transport
for refinement. In the sparse setting of CAPE, CapeFormer [29] uses a two-stage
process to optimize matching results. With the rise of transformer, self-attention
shows strong implicit matching capabilities. Recent studies in semantic corre-
spondence has shifted towards transformer-based implicit matching, as seen in
COTR [11] and ACTR [32], which uses transformers for feature matching and
fusion, without post-processing. However, sparse point semantic matching in
the context of CAPE remains underexplored. This work focuses on leveraging
implicit matching abilities of transformer for accurate CAPE.
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2.3 Keypoint Correlation in Pose Estimation

In CSPE, such as in human pose estimation ,the correlation among keypoints has
been proven to be a useful cue. Previous CNN-based models like ContextPose [22]
have developed modules to model the keypoint correlation. Transformer-based
approaches [9, 16, 28] also reveal the implicit expression of keypoint correla-
tion within them. These approaches treat keypoints as learnable tokens, akin
to DETR [2], allowing them to learn a universal representation for specific key-
points. The prior correlation among keypoints is also captured. In this way, these
transformer models can easily capture correlations through attention maps be-
tween keypoints. However, keypoint correlation has yet to be exploited in CAPE.
Inspired by the good practices in CSPE, we attempt to find a way to model and
exploit keypoint correlation in CAPE.

3 Simple and Strong Category-Agnostic Pose Estimator

Here we present our SCAPE. We first review the framework and then reveal
our explorations and understanding of the model and task. These explorations
further motivate us to devise two enhancements specifically designed for CAPE.

3.1 Overall Framework

Previous methods [29, 34] interact features and measure the similarity between
the query feature Fq ∈ Rn×c and support keypoints Fs ∈ Rk×c by concatenating
them and feed into the convolutional layer to obtain a similarity map S ∈ Rk×n,
then indirectly identifying the target keypoints P ∈ Rk×2. POMNet [34] uses
a decoder θM to infer similarity maps from combined support keypoints and
query features, i.e., S = θM (Fs, Fq). The keypoint coordinates are obtained by
searching the peaks such that P = argmax(S). This matching head accounts
for 70% of the overall training memory consumption. CapeFormer [29] simplifies
this by taking the inner product of Fq and Fs after mapping. Both methods
compare Fs and Fq to obtain similarity maps with supervision, categorized as
similarity-explicit matching heads. CapeFormer uses a two-stage paradigm, the
inferred coordinates P0 are considered the initial coordinates. Then P0 is refined
at the second stage with offsets by P l+1 = P l+MLP(F l+1

s ). Our SCAPE adheres
to the one-stage paradigm, but discards explicit similarity matching, and uses
pure self-attention for implicit similarity matching and MLP direct coordinate
regression. To enhance implicit matching in the transformer, we use GKP to en-
rich the semantics of Fs, reducing subsequent matching stress. We employ KAR
to establish strong relations between keypoints, facilitating mutual assistance in
point prediction. The technical pipeline of SCAPE model is shown in Fig. 4. We
visualize the cosine similarity between the left foot keypoint and the support
image (values less than 0.6 are masked) before and after the Global Keypoint
Feature Perceptor (GKP) operation. After GKP, the similarity map of support



6 Y. Liang et al.

CNN
 /

 ViT

 Feature Extractor

��
Labeled heatmap

(local feature)

   ��
∗

Support Image

Query Image

��

��

Muti-head Self-Attention
(with KAR)

FFN
×4

MLPL1 loss

 Feature Interaction and Matching

Support Keypoint Tokens
(Local Feature)

Regression Head

Muti-head
Cross Attention

Support Keypoint Tokens
(Global Feature)

Query Image Tokens

SinePos 
Encoding

Element-wise
Addition

Element-wise
Multiplication

×2

cos sim
(before GKP)

cos sim
(after GKP)

Global Keypoint Perceptor

Fig. 4: Technical pipeline of SCAPE. SCAPE consists of four modules: feature ex-
tractor, global keypoint feature perceptor, feature interactor, and regression head. The
feature extractor is identical to the poir method. After processing support and query
features through the backbone, support keypoint tokens are created by a weighted sum
of the labeled keypoint heatmap and support features. Support keypoints (local) are
then combined with a support keypoint identifier (form Capeformer), while query image
tokens are formed from the query features with positional embedding. Support key-
points feed in Global Keypoint Perceptor to cross-attend the support image to obtain
global support keypoints. Next, an interaction module composed of multi-head refined
self-attention (MHRSA) conduct the interaction between the keypoint and query fea-
tures. And the Keypoint Attention Refiner (KAR) is inserted into each self-attention
stage to refine the attention maps among keypoints. Finally, a simple MLP head are
used for support keypoint to regress keypoint coordinates.

keypoints (left foot), fused with global information, exhibits reduced responses
compared to symmetric points. This reduction can be considered as alleviating
subsequent matching pressure.

3.2 Explicit Matching Is not Necessary

Previous methods generate similarity maps and supervise them in map level, we
refer to this operation as explicit matching. We first study the feature interactor
of CapeFormer [29] (all other implementation details stay fixed). As shown in
Fig. 2, its similarity map has multiple responses, and the peaks do not converge.
Yet, we observe that the final attention map of the feature interactor between
support keypoints and query features is an effective similarity map, with clearer
peaks. This suggests that the implicit similarity within self-attention seems a
better substitution for explicit similarity. We surmise explicit matching has the
following drawbacks: (i) Explicit matching methods, such as generating similarity
maps and supervising on map level can lead to overfitting and increased match-
ing difficulty, and (ii) it introduces extra blocks or modules that increase the
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Table 1: Comparison with prior CAPE methods. ‘S-map’ is the similarity map, and
‘coord’ means direct coordinate regression, ‘offset’ is supervise layer by layer.

stage matching form surpervison end-to-endexplicit implicit s-map coord offset

POMNet one ✓ ✓
CapeFormer two ✓ ✓ ✓ ✓
SCAPE one ✓ ✓ ✓

complexity and bring expensive computation. We thus discard explicit similar-
ity matching in CapeFormer, relying solely on the inherently implicit matching
mechanism of attention, and also try direct coordinate regression from Fs,

P = MLP(Fs) . (1)

CapeFormer incorporates multiple loss functions, yet we solely supervise the
coordinates P output by the MLP, as indicated in Table 1. Subsequently, we
employ ℓ1 loss to compute loss. Such simple modifications lead us to a promising
PCK of 88.6 on the split1 of the MP-100 dataset [34].

In addition, previous methods use DETR-Decoder for feature interaction,
which we consider as a rough utilization of the DETR. Unlike the previous
DETR-Decoder, which only updated Fs, our approach concatenates Fs and Fq

and feeds them into self-attention, enabling simultaneous updates to both Fs and
Fq. This interpretation inspires us to replace the previous DETR-Decoder with
self-attention layers for feature interaction. Therefore, our feature interaction,
as shown in Fig. 4, concatenates Fs and Fq, sending them into the fully self-
attention Encoder for simultaneous updates. By doing so, we not only reduce
the parameters but also improve accuracy to 89.1 (+0.5).

In previous work, Fs and Fq possess distinct additional encodings. Fs encom-
passes keypoint identifiers to differentiate between keypoints, while Fq contains
positional encoding. Using the same query and key weights for Fs and Fq is in-
appropriate, we therefore choose to have unshared projection weights for them.
Therefore, in self-attention: Ks= WK1Fs, Kq= WK2Fq, K=cat(Ks,Kq), Qs=
WQ1Fs, Qq= WQ2Fq, Q= cat (Qs, Qq). The PCK further reaches 89.8 (+0.7).

3.3 Global Keypoint Feature Perceptor

Previous approaches initialize the support keypoints Fs with only local fea-
tures, i.e., extracting feature tokens from the support image centered on support
ground-truth keypoints with Gaussian kernels. The extracted Fs lacks global
context, which hinders subsequent matching. As shown in Fig. 3, the attention
process can not distinguish similar keypoints, leading to predictions shifting onto
neighboring keypoints.To address this, we further introduce Global Keypoint
Feature Perceptor (GKP) that aims to infuse the global and context informa-
tion from the support image to enrich the support keypoint representation. A
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 Self-Attention among Keypoints Keypoints Matching Query Images

Fig. 5: Visualization of the attention maps of support keypoints. Initially,
due to significant disparities between support and query image, accurate matching
is challenging, the attention process focuses on self-attention among keypoints (with
yellow highlight) to build contextual information. Later attention leans towards implicit
matching between keypoints to query images.

cross-attention block where support keypoint features Fs (query) cross-attend
the support image enables this fusion process. Note that the introduction of
GKP makes the structure more simple. In practice, the first two self-attention
blocks are replaced by GKP. This replacement reduces both parameter count
and matching complexity, leading to improved performance of 90.3 (+0.5) and
accelerated model convergence.

3.4 Keypoint Attenion Refiner

As shown in Fig. 5, in the early attention blocks, due to the different feature dis-
tributions, the attention stage concentrates on establishing the correlation among
keypoints. As the number of layers increases, attention gradually shifts towards
matching the query image. We aim to investigate the effectiveness of early-stage
modeling of correlations among keypoints, so we mask the self-attention among
keypoints (highlighted in yellow) and observe the PCK drop by -1. We argue
that modeling keypoint correlation matters in CAPE.

However, in Fig. 5, We find attention maps among support keypoints show
meaningless patterns, appearing to be random. However, transformer-based hu-
man pose estimation [16] suggests that the attention among keypoints tends
to be highly regular, showing certain correlation among keypoints. The specific
keypoint tokens serve as learnable parameters [9, 16]. As shown in Fig. 6, data-
driven learning tokens establish meaningful prior keypoint correlation (initial
keypoint similarity) with other keypoints, enabling subsequent transformers to
easily model reasonable keypoint correlation (attention map). In CAPE, due to
unknown categories, the keypoint correlation in CAPE is difficult to model ac-
curately by the transformer, thus introducing noise into the attention map of
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Fig. 6: Attention map modulated by KAR exhibits a clearer correlation. The
inner product (use cosine similarity with the range of [0, 1] and no row normalization)
among initial keypoint tokens represents the prior keypoint correlation. In CSPE, such
prior correlation is used as adjacency and symmetry constraints (strongly correlated
with the right wrist are the left wrist and right arm), and transformers can easily
model keypoint correlation (attention map) from these priors. And this correlation will
aid keypoints in better locating each other. In CAPE, the unclear definition of prior
correlation leads to noisy attention maps. KAR uses attention filters to filter out the
noise of the base attention map and weights the output through a support keypoint
weight assigner. The combined output with base attention yields a refined attention
map, closer to the attention in CSPE.

keypoints. We want to strengthen the correlation between keypoints by refining
this attention map in self-attention (Encoder) blocks.

Firstly, we introduce the Attention Filter (AF) to filter out noise. We set an
attention filter, composed of a ReLU layer followed by an MLP, to filter out
the undesired parts of the current base attention map (A) and thus make the
attention weights more distinct. The ReLU layer mainly charges the filtering, and
the MLP re-models these correlations. The positive output signifies important
node information, while unimportant details are filtered out. In this way, the
PCK further reaches 90.9 (+0.6) on split1. The filter can be written as:

AF(A) = MLP(ReLU(A)) . (2)

Since keypoints of different categories may benefit from distinct structural data
propagation, we further introduce the Keypoint Attention Refiner (KAR). KAR
incorporates multiple keypoint filters to enhance the modeling of structural
details. It processes support keypoints Fs through a keypoint weight assigner
(Assign) to determine the weights of different keypoint filters, and one can
observe that similar tokens (dog leg and cat leg) possess similar weights (Per
supplementary materials). Formally, KAR is defined by:

KAR(A) =

n(n=4)∑
i=1

Assigni(Fs)AFi(A) , (3)
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where Assigni performs a linear projection on Fs by a weight matrix WAssign,
with dropout and layer normalization within Assigni to prevent overfitting.
Then, a softmax function is applied for another normalization, defined by

Assign(Fs) = softmax(layernorm((dropout(FsWassign))) , (4)

The output of KAR is summed with the base attention map A to yield the
refined attention Arefined

Arefined = softmax(A+ KAP(A)) . (5)

The refined attention, as shown in Fig. 6, shows clearer keypoint correlation.
By collaborating with multiple AF, we further advance PCK to 91.6 (+0.7). In
addition, previous methods removed [29] support keypoint identifier led to a
significant performance decrease. However, adding the KAR module and then
removing Is resulted in a slight decrease.

4 Experiments

4.1 Implementation Details

Dataset. We use the MP-100 dataset provided by Xu et al . [34]. Being the
first large-scale dataset for CAPE, the MP-100 dataset consists of 100 object
categories and contains over 20, 000 instances.
Data Pre-processing. Following POMNet [34], we divide the data into 5 splits,
each of which includes 100 categories, among which 70 for training, 10 for vali-
dation, and 20 for testing, ensuring no overlap between categories. We apply the
same data pre-processing as POMNet.
Metric. PCK (Probability of Correct Keypoint) is a widely used metric for
evaluating pose estimation algorithms. Like POMNet, we use PCK as the quan-
titative metric and set the threshold to 0.2 for all categories, and the mean of
PCK across 5 splits is also reported. To address the limitation of PCK, we fur-
ther report AUC [12] and NME [6] to evaluate the localization performance.
Please refer to the supplementary material for additional details.
Network Architecture. To validate the adaptation of our approach across dif-
ferent backbones, we choose: 1) ResNet-50 [10], 2) ViT-B [7] and Swin-S [20] pre-
trained on ImageNet-1K [5], and 3) ViT-S and ViT-B trained with DINOv2 [25].
Like CapeFormer [29], both the support and the query image share the same fea-
ture extractor. Then, We first uses 2 Global Keypoint Feature Perceptor (cross-
attention), followed by 4 Feature Interactor (self-attention), termed SCAPE. To
showcase the effectiveness of our approach, we streamline the model by introduc-
ing Lite-SCAPE, a baseline with only 3 attention blocks (1 GKP and 2 feature
interactors). The parameter for Lite-SCAPE is provided below, and additional
performance details can be found in the supplementary material.
Training Details. Following POMNet, we apply the Adam optimizer [13] with
a batch size of 16. The model is trained for 180 epochs with an initial learning
rate of 2e−4, while in pervious method [34] [29] the totol epoch is 210. The
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Fig. 7: Visual results of CapeFormer, SCAPE (W/O KAR and GKP) and SCAPE(W
KAR and GKP) on the MP-100 dataset. Red boxes indicate incorrect estimates.

Table 2: Comparison with state-of-the-art approaches on the MP-100 dateset under
the 1 and 5-shot setting. Best performance is in boldface.

1-shot Backbone split1 split2 split3 split4 split5 Mean
ProtoNet [21] R50 46.05 40.84 49.13 43.34 44.54 44.78

MAML [8] R50 68.14 54.72 64.19 63.24 57.20 61.50
Fine-tune [23] R50 70.60 57.04 66.06 65.00 59.20 63.58
POMNet [34] R50 84.23 78.25 78.17 78.68 79.17 79.70

CapeFormer [29] R50 89.45 84.88 83.59 83.53 85.09 85.31
SCAPE (Ours) R50 91.67 86.87 87.29 85.01 86.92 87.55

5-shot Backbone split1 split2 split3 split4 split5 Mean
ProtoNet [21] R50 60.31 53.51 49.13 43.34 44.54 44.78

MAML [8] R50 68.14 54.72 64.19 63.24 57.20 61.50
Fine-tune [23] R50 70.60 57.84 66.76 66.53 60.24 64.61
POMNet [34] R50 84.72 79.61 78.00 80.38 80.85 80.71

CapeFormer [29] R50 91.94 88.92 89.40 88.01 88.25 89.30
SCAPE (Ours) R50 93.42 89.91 90.61 89.44 89.95 90.66

learning rate is multiplied by 0.1 at the 140-th and the 170-th epoch (cosine
annealing can achieve the same effect), respectively. We solely employ ℓ1 loss to
supervise the regression of 2D coordinates.

4.2 Results on the MP-100 Dataset

We first compare the performance to show the effectiveness and efficiency of our
approach. Following previous methods, we test our model on MP-100 dataset.
Effectiveness. As shown in Table 2, SCAPE outperforms other approaches on
all splits. Compared with CapeFormer, using the same R50 as the backbone,
SCAPE achieves an improvement of +2.2 and +1.3 under the 1-shot and the
5-shot setting respectively. Qualitative results are shown in Fig. 7. Additionally,
our simple framework is highly compatible with transformer-based backbones.
In Table 3, To underscore our high compatibility, we compare SCAPE with
CapeFormer using a DINOv2-pretrained VIT-B approach, achieving improve-
ments of +4.4 and +3.4, notably surpassing the performance gap on R50. Note
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Table 3: Performance across different transformer backbones. We report the mean
across 5 splits on the MP-100 dataset. The improvement relative to R50 as the backbone
is highlighted in red.

Method Backbone 1-shot Mean 5-shot Mean

SCAPE(Ours) ViT-B 88.19 91.53
SCAPE(Ours) Swin-S 87.93 92.01
SCAPE(Ours) ViT-S (DINOv2) 90.74 92.65

CapeFormer ViT-B (DINOv2) 89.11(+3.8) 91.91(+2.6)
SCAPE(Ours) ViT-B (DINOv2) 91.95(+4.4) 93.98(+3.4)

Table 4: Efficiency comparison are tested on 256 × 256 × 3 input on RTX 3090 The
experiments are conducted under the 1-shot setting of the MP-100 dataset. R50 is
employed as backbone. ∆Params indicates the model parameters (excluding backbone).

Method Attn Blocks GFLOPs ∆Params (M) Mem (G) FPS PCK Mean

POMNet 6 38.01 +1.19 13.8*2 6.80 79.70
CapeFormer 9 23.68 +7.63 7.8 26.09 85.31

Lite-SCAPE(ours) 3 22.20 +1.95 6.0 36.89 86.13
SCAPE(ours) 6 22.81 +3.88 6.3 29.43 87.33

Table 5: Cross super-category pose estimation under the 1-shot setting.

Method Human Body Human face Vehicle Furniture

ProtoNet 37.61 57.80 28.35 42.64
MAML 51.93 25.72 17.68 20.09

Fine-tune 52.11 25.53 17.46 20.76
POMNet 73.82 79.63 34.92 47.27

CapeFormer 83.44 80.96 45.40 52.49
SCAPE(ours) 84.24 85.98 45.61 54.13

that, SCAPE with ViT-S even outperforms CapeFormer ViT-B. This reveals the
benefit of a simple end-to-end architecture for CAPE.
Efficiency. From Table 4, Here we provide more evidence to show that SCAPE
achieves a good trade-off between efficiency and performance, further enhanc-
ing model performance without much workload. Note that, our light version
Lite-SCAPE (with only half blocks of SCAPE and 1/3 of CapeFormer) still
outperforms CapeFormer by +0.8 PCK, with reduced additional parameters by
75%, boosting the inference speed by 39%. Our simplicity is not only evident in
our design but also reflected in practical efficiency.

4.3 Cross Super-Category Generalization

Previous experiments suggest limited generalization ability, meaning the capac-
ity to predict specific categories heavily relies on knowledge acquired from those
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categories. To validate the generalization of our model, we conduct a cross super-
category experiment, similar to previous methods. As shown in Table 5. ours
exhibits good generalization ability, yielding best performance.

4.4 Ablation Study

Here we verify our design choices: i) the comparison between the regression head
and the matching head, along with supervision signal choices; ii) the design
choice of KAR; iii) the effectiveness of individual components in SCAPE; iv) the
number of attention blocks and the proportion of attention layers used by GKP
and feature interaction. All experiments are conducted under the 1-shot setting
on split1. And the design in light blue is our choice.
Matching and Regression. Our approach relies on implicit self-attention
matching to directly regress coordinates. This is different from the explicit
matching used in previous methods that indirectly obtain coordinates from sim-
ilarity maps. We justify two main differences: 1) the form of matching (implicit
vs. explicit), and 2) the form of supervision signal or get keypoints (coordinates
vs regressed similarity maps). Results are shown in Table 6. For 1), We use L1
(Line 1) as a baseline which applies the additional matching head and map-level
supervision on SCAPE (w/o GKP and KAR). L2 directly regresses similarity
maps from the final keypoint tokens and outperforms L1, which shows that im-
plicit matching proves superiority over explicit matching. For 2), we compare
L2 and L3, and the results demonstrate that direct regression of coordinates
outperforms regressing similarity maps.

Table 6: Validation of matching head
and direct regression head.

Paradigm Result Form PCK

Matching similarity map 86.3
Regression similarity map 88.2
Regression coordinate 89.1

Table 7: The design of multiple Atten-
tion Filters in KAR.

AF hidden-dim PCK
1 50 90.5

1 200 90.3

4 50 91.2

Design of Keypoint Attention Refiner (KAR). We introduce to employ
multiple(4) Attention Filters to refine the base attention simultaneously. This
design can further tackle the varying categories for CAPE (PCK +0.7). To figure
out whether the improvement comes from the increased parameters or the mul-
tiple aspects modulation of node relationships. We augment a single Attention
Filter by increasing its hidden layer dimensions to n times the original, to align
with parameters of n Attention Filters for a fair comparison. Specifically, the
linear transformation changes from (100-50-100) to (100-200-100), with corre-
sponding results presented in Table 7. Surprisingly, increasing the hidden layer
dimensions results in a performance drop of -0.1. On the contrary, increasing
the number of Attention Filter can boost the performance, which suggests the
improvement comes from better refinement to attention map but not parameters.
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Performance Gains of SCAPE Components. In Table 8, the comparison
between S1 and S2 indicates that the feature interaction of the full encoder
outperforms DETR (used by CapeFormer) by 0.5. By comparing S2 with S3,
unsharing query and key weights in self-attention between keypoint tokens and
query image leads to a performance gain of 0.7. By contrasting S3 with S5, KAR
shows an improvement of +1.4. By comparing S3 with S4, GKP demonstrates an
improvement of +1.0, and combining these two modules proposed by us further
enhances the performance.
Performance of Different Attention Blocks. As shown in Table 9, employ-
ing 6-layer attention blocks, involving 2 layers of GKP to refine initial support
keypoint tokens and 4 layers of the self-attention feature interactor, exhibits the
best performance. Additionally, increasing the number of attention blocks also
improves performance.
Further Exploration. We address some uncertainties in the supplementary
materials. (a) Our proposed GKP and KAR are tailored to the CAPE task,
and we assess their generalization across other CAPE models. (b) Some existing
large models exhibit class-agnostic matching and even multi-task capabilities, it
would be interesting to evaluate whether CAPE-specific models are even needed.

Table 8: Performance gains of SCAPE
components.

Interactor
Form Unshare Q/K KAR GKP PCK

S1 DETR – 88.6
S2 Encoder 89.1
S3 Encoder ✓ 89.8

S4 Encoder ✓ ✓ 90.8
S5 Encoder ✓ ✓ 91.2
S6 Encoder ✓ ✓ ✓ 91.9

Table 9: Performance of proportion
occupied by GKP and feature fusion
layers and number of attention blocks.

Proportions GKP Interactor PCK

All Interactor 0 6 91.2

1:1 3 3 91.2

1:2 2 4 91.6

Lite-SCAPE 1 2 90.4

SCAPE 2 4 91.6

5 Conclusion and Limitaion

Conclusion We propose a simple, strong, and straightforward CAPE baseline.
Initially, we rely solely on implicit attention matching, discarding complex ex-
plicit matching heads, and directly regress coordinates with a simple MLP head.
Subsequently, to enhance attention quality in CAPE, we introduce GKP to
equip support keypoints with global semantics.Then we present KAR to estab-
lish correlations among keypoints to enable the inference from related keypoints.
SCAPE surpasses the state-of-the-art CAPE models in accuracy and efficiency.
Limitation We test the applicability of SCAPE on multiple instance scenarios
across categories and even across domains, as per the supplementary materials.
The current CAPE only finds one-to-one correspondence. We believe that future
CAPE could explore multi-instance scenarios.
Acknowledgement This work is supported by Hubei Provincial Natural Sci-
ence Foundation of China under Grant No. 2024AFB566.
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