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Abstract. Knowledge distillation (KD) is a particular technique of model
compression that exploits a large well-trained teacher neural network
to train a small student network . Treating teacher’s feature as knowl-
edge, prevailing methods train student by aligning its features with the
teacher’s, e.g., by minimizing the KL-divergence or L2-distance between
their (logits) features. While it is natural to assume that better feature
alignment helps distill teacher’s knowledge, simply forcing this align-
ment does not directly contribute to the student’s performance, e.g.,
classification accuracy. For example, minimizing the L2 distance between
the penultimate-layer features (used to compute logits for classification)
does not necessarily help learn a better student classifier. We are mo-
tivated to regularize student features at the penultimate layer using
teacher towards training a better student classifier. Specifically, we
present a rather simple method that uses teacher’s class-mean features
to align student features w.r.t their direction. Experiments show that this
significantly improves KD performance. Moreover, we empirically find
that student produces features that have notably smaller norms than
teacher’s, motivating us to regularize student to produce large-norm
features. Experiments show that doing so also yields better performance.
Finally, we present a simple loss as our main technical contribution that
regularizes student by simultaneously (1) aligning the direction of its
features with the teacher class-mean feature, and (2) encouraging it
to produce large-norm features. Experiments on standard benchmarks
demonstrate that adopting our technique remarkably improves existing
KD methods, achieving the state-of-the-art KD performance through the
lens of image classification (on ImageNet and CIFAR100 datasets) and
object detection (on the COCO dataset).

Keywords: knowledge distillation · large-norm · feature direction

1 Introduction

Knowledge distillation (KD) is a specific technique for model compression that
aims to train a smaller model (called student) by distilling knowledge learned
B Corresponding author: chenglc@hfut.edu.cn
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Fig. 1: Our main contribution is a simple loss, termed Ldino, that regularizes the
direction and norm of the student features (details in Sec. 3.3). Ldino is applicable
to different KD methods which can be categorized into two types in the context of
classification: (left) logit distillation that regularizes logits or softmax scores (e.g.,
KD [15] and DKD [48]), and (right) feature distillation that regularizes features other
than logits (e.g., ReviewKD [4]). In this work, we apply Ldino to the embedding feature
particularly at the penultimate layer (before logits). Experiments show that learning
with Ldino improves existing KD methods, achieving the state-of-the-art benchmarking
results for image classification (Tab. 1) and object detection (Tab. 3).

by a larger teacher model [15]. Deploying the small student model reduces
inference computation (e.g., running time and memory use) compared against
the original large model. Different from other model compression methods such
as pruning [44] and quantization [10], KD has the flexibility of using different
architectures of the student, which is preferred by certain real-world applications.

Status quo. Treating teacher features as knowledge, KD distills such knowl-
edge to train student by encouraging its features to be similar to the teacher’s.
Through the lens of image classification, prevailing methods can be categorized
into two types: logit distillation (Fig. 1-left), and feature distillation (Fig. 1-right).
Logit distillation trains the student by minimizing the KL divergence between
its logits and the teacher’s [15, 48]. It assumes that, if student can produce
logits more similar to teacher’s, it should achieve better performance that ap-
proaches teacher’s performance. However, logit distillation considers only the
logit layer but not other intermediate layers. To exploit such, feature distillation
trains student by encouraging its intermediate-layer features to be similar to
the teacher’s, e.g., by minimizing the L2 distance between their features [4, 46].

Motivation. Despite the promising results of logit distillation and feature
distillation methods, forcing the student to produce similar logits or features
to the teacher’s does not directly serve the final task, e.g., classification. For
example, minimizing the L2 distance between the penultimate-layer features
(used to compute logits for classification) does not necessarily help learn a
better student-classifier. Rather, student features are better regularized by
the teacher to facilitate learning a better student classifier. Therefore, we are
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motivated to exploit teacher’s classifier to train better student towards better
performance. Moreover, we empirically find that encouraging the student to
produce large-norm features yields better performance (Fig. 2). Other lines of
work such as domain adaptation [40] and pruning [44] also find the benefit of
learning large-norm features, motivating us to train the student to produce
large-norm features.

Contributions. We make three major contributions. First, we take a novel
perspective to improve KD by regularizing student to produce features that
(1) are aligned with class-means features computed by the teacher, and (2)
have sufficiently large norms. Second, we study multiple baseline methods to
achieve such regularizations. We show that when incorporating either or both,
existing KD methods yields better performance, e.g., classification accuracy
and object detection precision by the student. Third, we propose a novel and
simple loss that simultaneously regularizes feature direction and norm, termed
dino-loss. Experiments demonstrate that additionally adopting our dino-loss
helps existing KD methods achieve better performance. For example, on the
standard benchmark ImageNet [5], applying dino-loss to KD [15] achieves 72.49%
classification accuracy (Fig. 5), better than the original KD (71.35%), with
ResNet-18 and ResNet-50 architectures for student and teacher, respectively.
This outperforms recent methods ReviewKD [4] (71.09%) and DKD [48] (71.85%).

2 Related Work

Knowledge distillation. (KD) aims to train a small student model by distilling
knowledge of a well-trained large teacher model. The knowledge is delivered by
features produced by the teacher for training data. Therefore, the key to KD is
to align student features to the teacher’s. The seminal KD method [15] propose
to train student by aligning its logits with the teacher’s, i.e., minimizing the
Kullback-Leibler divergence (KL) between logits. Other works improve KD by
decoupling the KL loss into multiple terms [48] or consider logits rankings [16].
Distilling logit knowledge alone may not be sufficient as this does not exploit
intermediate-layer features. Hence, feature distillation propose to align more
features at other layers [1, 4, 14,25,26,30,34,41,45,46]. Another line of research
adopts network architecture search towards finding small student for KD [7,19,
20], achieving the state-of-the-art at a cost of extra computation for architecture
search. In this work, we take a different and orthogonal perspective to improve
KD with simple methods, by encouraging the student to produce features to be
aligned with the direction of teacher classifier and of large norms.

Constructing classifiers using off-the-shelf features. Off-the-shelf fea-
tures extracted from a well-trained model can be used to construct strong
classifiers. One simple classifier is to compute class-mean of training examples in
the feature space, and uses such as the classifier [6, 17,33]. On the other hand,
recent literature of pretrained large models [28] shows that using off-the-shelf
features and cosine similarity is a powerful classifier for zero-shot recognition. In
this work, we propose to regularize student features using class-mean of teacher
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Fig. 2: Regularizing feature direction and norm helps knowledge distillation and
improves student’s performance. We train a ResNet-56 teacher and use the classic
KD method [15] to train a ResNet-8 student on the CIFAR10 dataset. (a) We propose
to regularize student by aligning its feature direction with the class-mean features
computed by teacher. To do so, we adopt a simple cosine loss term on the penultimate-
layer features (Sec. 3.2). Results show that regularizing feature direction improves
student’s performance. (b-c) We train teacher and student to produce 2D features
at the penultimate layer from scratch (without using method KD [15]). We visualize
them as 2D points, colored by class labels, and mark the class center by ⋆. Notably,
the large teacher model produces large-norm features (b), while the small student
model produces small-norm features (c). (d) This motivates us to regularize student by
encouraging it to produce large-norm features (Sec. 3.2). To do so, we use the method
SIFN [40]. Results show that properly regularizing feature norms improves student’s
performance. Our technical contribution is a simple loss that simultaneously regularize
student feature direction and norm, so we call it dino-loss.

features, as well as other different methods for feature alignment. We hypothesize
that doing so helps learn better student classifiers. Indeed, our experiments
justify this hypothesis (Tab. 4).

Learning large-norm features. Multiple lines of work find it important to
learn large-norm features or weight parameters. For example, domain adapta-
tion [40] reveals that the erratic discrimination of the target domain mainly stems
from its much smaller feature norms w.r.t that of the source domain, and adopting
a larger-norm constraint helps adapt a pretrained model (in the source domain)
to a new target domain. Moreover, model pruning finds that features with smaller
norms play a less informative role during the inference [44], so it is safe to remove
weight parameters that produce small-norm features without causing notable
performance drop. In our work, we also empirically find that a small-capacity
model produces features that tend to collide in the small-norm region (Fig. 2c).
Therefore, we are motivated to train student to produce large-norm features,
hypothesizing that doing so improves student performance. Our experiments
justify this hypothesis (Fig. 2d, Tab. 4).

Feature regularization w.r.t norm and direction. The literature has
multiple works studying feature regularization w.r.t its norm and direction in KD.
We present them and explain how our method stands out. PKD [2] normalizes
student and teacher features to have zero mean and unit variances to eliminate
the gap in feature norms between them, and applies MSE loss between the
normalized features. Our method encourages learning large-norm features of the
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student and additionally regularizes features using teacher classifier for better
classification. Guo [8] transforms student logits to have the same norm of the
teacher logits and performs KL-divergence on the transformed logits, whereas
we encourage learning large-norm student features which can have feature norm
larger than the teacher’s (Fig. 4). FNKD [39] also advocates learning large-norm
features but chooses to tune a temperature (shared by all classes) to enlarge logit
values before softmax; differently, our method unifies norm regularization and
feature direction regularization into a simple loss. Both SimKD [3] and SRRL [42]
use MSE loss to align the student features with the teacher’s without enlarging
feature norms; Wang [35] uses an L2 loss to align features of teacher and student
models and further adopts a loss based on locality-sensitive hashing to encourage
the direction of student features to be aligned with teacher’s. These methods
do not necessarily learn a student to have feature norms that can be larger than
the teacher’s. In sum, our simple dino-loss not only aligns directions of student
and teacher features but also explicitly encourages learning student to produce
large-norm features.

3 Improving Knowledge Distillation by Regularizing
Feature Direction & Norm

We first describe notations and motivate our study of regularizing feature direction
and norm to improve KD. Then, we introduce baselines, followed by our proposed
dino-loss.

3.1 Notations and Background

Notations. Without losing generality, we think of a classification neural network
as two modules: a feature extractor f(·;Θ), and a classifier g(·;w), which are
parameterized by Θ and w, respectively. For the teacher, given input data x, we
denote its embedding feature as f t = f t(x;Θt), and the logits as zt = gt(f t;wt).
Similarly, the student outputs the embedding features for x as fs = fs(x;Θs)
and logits as zs = gs(fs;ws). We compute softmax scores in a vector qt =
softmax(zt; τ), where τ is a temperature (default value as 1). Given N training
examples from C classes, xi and its label yi (where i = 1, . . . , N), one can train
a classification model (e.g., the teacher) by minimizing the cross-entropy (CE)
loss Lce on all the training data.

Logit distillation trains the student by transferring the teacher knowledge
using both the CE loss Lce and a KD loss Lkd. The seminal work of KD [15] uses
KL divergence as the KD loss Lkd, i.e., Lkd = 1

N

∑N
i=1 KL(qt

i,q
s
i ).

Feature distillation distills teacher knowledge by minimizing the difference
of intermediate features at more layers other than the logits [4, 45, 46]. A typical
loss term is the L2 distance L2 between student and teacher features.1 For
1 When student and teacher have different features dimensions, one can learn extra

layers in student to project its features to the same dimension as teacher’s [4].
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example, over the embedding features at the penultimate layer (before logits), it
applies the L2 loss Lkd = 1

N

∑N
i=1 L2(f

s
i , f

t
i ) in addition to the CE loss Lce.

The final loss is L = Lce + αLkd, where α controls the significance of the KD
loss Lkd depending on distillation choice: logit distillation or feature distillation.

3.2 Baseline Methods

Recall that we are motivated to regularize student features during training:
aligning their direction with teacher class-mean features, and encouraging them
to be large in norm. In the main paper, we focus on the embedding features fs at
the penultimate layer, which are the direct input to a classifier; we also validate
its effectiveness at other layers (Tab. 5). We compute the class-mean of the kth

class as ck = 1
|Ik|

∑
j∈Ik

f tj , where Ik is the set of indices of training examples
belonging to class-k. We now introduce simple techniques to regularize student
features using ck w.r.t feature direction and norm.

Feature Direction Regularization. We present two simple baseline meth-
ods below to regularize student w.r.t feature direction.

Baseline-1: cosine similarity. We use a simple cosine similarity based loss
term to regularize the feature direction of fsi according to the mean feature ck of
the corresponding class-k:

Ld =
1

C

C∑
k=1

1

|Ik|
∑
i∈Ik

(1− cos(fsi , ck)) (1)

Baseline-2: InfoNCE. Using the cosine similarity loss Eq. 1 considers only
paired examples and their corresponding class-mean. Inspired by InfoNCE [24], we
also consider inter-class examples and class-means. Therefore, we train student
by minimizing:

Ld =
1

C

C∑
k=1

1

|Ik|
∑
i∈Ik

− log
exp (cos(fsi , ck))∑C
j=1 exp (cos(f

s
i , cj))

(2)

Feature Norm Regularization. We present two baseline methods below
to regularize student towards producing large-norm features.

Baseline-1: L2 distance. As shown by Fig. 2c, the small-capacity student
model produces features that have notably smaller norm than the teacher’s. To
train the student to produce larger-norm features, perhaps a naive method is to
increase student feature norm towards teacher’s. To this end, we minimize the
L2 distance between features of student and teacher:

Ln =
1

C

C∑
k=1

1

|Ik|
∑
i∈Ik

∥fsi − f ti ∥22 (3)

Minimizing Eq. 3 is a common practice in feature distillation [1, 4, 14]. It
implicitly trains student to produce features with norms approaching the corre-
sponding larger-norm teacher features.
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Baseline-2: Stepwise increasing feature norms (SIFN). We now describe a
loss to explicitly increase the norm of the student features. Inspired by [40], we
gradually increase the feature norm by minimizing:

Ln =
1

N

N∑
i=1

L2

(
fs(xi;Θ

s
previous) + r, fs(xi;Θ

s
current)

)
, (4)

where Θs
previous and Θs

current are parameters of an early checkpoint and the
current model being optimized, respectively; r is a step size to increase the norm
of student features during training.

3.3 The Proposed dino Loss

We now present the proposed dino-loss that simultaneously achieves the above
two goals: (1) aligning student features to teacher’s w.r.t direction, and (2)
learning large-norm student features. For simplicity, we drop the subscript (i.e.,
the index of a training example or class ID). Let fs and f t be the embedding
features of an input x computed by student and teacher, respectively. Based
on x’s ground-truth label y, we have its corresponding class-mean c. We denote
the unit vector e = c/∥c∥2, and pt = e∥f t∥2. We compute the projection of fs
along c’s direction: ps = e∥fs∥2 cos(fs, c). Fig. 3 shows the geometric meaning.

Fig. 3: Illustration of nota-
tions used in our dino-loss loss
and its geometric meaning.

When the norm of fs is small, or its projection
ps has small norm, i.e., ∥ps∥2 < ∥f t∥2, we encour-
age the student to output larger-norm features
and align them with the teacher class-mean by
minimizing ∥pt − ps∥2.

Because the feature norms of different examples
can vary by an order of magnitude (see Fig. 2c),
naively learning with the above can produce arti-
ficially large gradients from specific training data
and negatively affect training. Thus, we divide the
above by ∥f t∥2, which is equivalent to ∥pt∥2:

Ldino =
∥pt − ps∥2

∥f t∥2
=

∥pt∥2 − ∥ps∥2
∥f t∥2

= 1− fs · e
∥f t∥2

(5)
Minimizing Eq. 5 amounts to simultaneously

(1) increasing the norm of fs and (2) reducing the angular distance between fs

and the class-mean c.
When fs has large norm, i.e., ∥fs∥2 ≥ ∥f t∥2, we only minimize the angular

distance between student feature and the class-mean defined by the teacher:

Ldino = 1− fs · e
∥fs∥2

(6)

The above loss means that the feature norm of student is no longer explicitly
required to reach a larger value if it is already large enough; yet it is still allowed
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to increase freely during training. We merge Eq. 5 and 6 and average over all
training examples as our dino-loss (dropping the constant 1):

Ldino = − 1

C

C∑
k=1

1

|Ik|
∑
i∈Ik

fsi · ek

max {∥fsi ∥2, ∥f ti ∥2}
(7)

Compatible with existing KD methods, our dino-loss Ldino can be used
altogether with CE loss Lce and KD loss Lkd to train student:

L = Lce + αLkd + βLdino (8)

α and β are the weights for Lkd and Ldino, respectively. The definition of Lkd

depends on the distillation method. Otherwise stated, we study Ldino with the
seminal logit distillation method KD [15], so Lkd = KL.

Remark. The dino-loss simultaneously encourages student to output large-
norm features (possibly larger than teacher’s, as shown in Fig. 4), and minimizes
the angular distance between student features and the class-mean defined by
the teacher during training. This is a desired property in terms of training the
student to achieve better classification accuracy.

4 Experiments

4.1 Datasets and Settings

For fair comparisons, our implementation adheres to the previous methodologies
outlined in [4, 16,34,48].

CIFAR-100 [18] contains 50k training images and 10k testing images. During
training, we adopt random cropping and random left-right fliping augmentations.
We randomly initialize weight parameters following [12] and train all student
networks from scratch. The teacher models are publicly available that are
adopted in prior art [34]. The student networks are trained using a batch size of
128 for 240 epochs (with a linear warm-up for the first 20 epochs), employing
SGD with a weight decay of 5e-4 and momentum of 0.9. We set the initial learning
rate of 0.1 for ResNet [13] and WRN [47] backbones, and 0.02 for MobileNet [32]
and ShuffleNet [23] backbones, decaying it with a factor of 10 at 150th, 180th,
and 210th epochs. The temperature is empirically set to 4.

ImageNet [31] has 1.28 million training images and 50,000 validation images
spanning by 1,000 categories. We employ SGD with a batch size of 512 for a total
of 100 epochs (with a linear warm-up for the first 5 epochs). The initial learning
rate is set to 0.2 and is reduced by a factor of 10 every 30 epochs. Besides, the
weight decay and momentum are set to 1e-4 and 0.9, respectively. The pre-trained
weights for teacher come from PyTorch2 and TIMM [38] for fair comparisons.
The temperature for knowledge distillation is set to 1.

COCO 2017 [22] consists of 80 object categories with 118k training images
and 5k validation images. We utilize Faster R-CNN [29] with FPN [21] as the
2 https://pytorch.org/vision/stable/models.html
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Table 1: Benchmarking results on CIFAR100. Methods are reported w.r.t top-1
accuracy (%) on the test set. ++ means that we apply the proposed dino-loss to
existing methods. Clearly, doing so improves performance over the original KD methods
and outperforms prior KD methods. We mark performance gains over corresponding
methods using green superscripts.

Homogeneous architectures Heterogeneous architectures
ResNet-56 wide-ResNet-40-2 ResNet-32×4 ResNet-50 ResNet-32×4 ResNet-32×4

Methods ResNet-20 wide-ResNet-40-1 ResNet-8×4 MobileNet-V2 ShuffleNet-V1 ShuffleNet-V2

teacher (T) 72.34 75.61 79.42 79.34 79.42 79.42
student (S) 69.06 71.98 72.50 64.60 70.50 71.82

Feature distillation methods
FitNet [30] 69.21 72.24 73.50 63.16 73.59 73.54
RKD [25] 69.61 72.22 71.90 64.43 72.28 73.21
PKT [27] 70.34 73.45 73.64 66.52 74.10 74.69
OFD [14] 70.98 74.33 74.95 69.04 75.98 76.82
CRD [34] 71.16 74.14 75.51 69.11 75.11 75.65
ReviewKD [4] 71.89 75.09 75.63 69.89 77.45 77.78
ReviewKD++ 72.05+0.16 75.66+0.57 76.07+0.44 70.45+0.56 77.68+0.23 77.93+0.15

Logit distillation methods
KD [15] 70.66 73.54 73.33 67.65 74.07 74.45
KD++ 72.53+1.87 74.59+1.05 75.54+2.21 70.10+2.35 75.45+1.38 76.42+1.97

DIST [16] 71.78 74.42 75.79 69.17 75.23 76.08
DIST++ 72.52+0.74 75.00+0.58 76.13+0.34 69.80+0.63 75.60+0.37 76.64+0.56

DKD [48] 71.97 74.81 75.44 70.35 76.45 77.07
DKD++ 72.16+0.19 75.02+0.21 76.28+0.84 70.82+0.47 77.11+0.66 77.49+0.42

feature extractor, and employ the dino-loss on the R-CNN head, wherein both
teacher and student models adopt ResNet [13] as the backbone. In addition,
MobileNet-V2 [32] is used as a heterogeneous student model. All student models
are trained with 1x scheduler, following the public toolbox Detectron2.3

4.2 Comparisons with State-of-the-art Results

CIFAR-100 classification. Tab. 1 shows the KD performances on the CIFAR-
100 dataset. In this context, spanning homogeneous and heterogeneous architec-
tures, we undertake an extensive assessment over prominent feature distillation
methods and logits distillation methods. The ++ signifies the integration of our
novel dino-loss into the existing methods. A salient conclusion from Tab. 1 is
that our proposed dino-loss empowers existing KD methods to achieve better
classification accuracy. This suggests the effectiveness and compatibility of the
dino-loss, which can serve as a plugin for existing KD methods, irrespective of
the homogeneity or heterogeneity for network architectures.

ImageNet classification. We demonstrate the effectiveness of the proposed
dino-loss on the well-established benchmark ImageNet. Tab. 2 lists detailed
results. It is worth noting that with our simple dino-loss, the method KD++
already outperforms most of previous methods (e.g., ReviewKD [4], DKD [48],
and SRRL [43]). Moreover, incorporating our dino-loss, other methods such as
ReviewKD++ and DKD++ also achieve notable improvements.
3 https://github.com/facebookresearch/detectron2
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Table 2: Comparisons with state-of-the-art methods on the ImageNet validation set.
KD++ serves as a stronger baseline that introduces no more parameters and negligible
training time over the vanilla KD [15] and outperforms most of previous methods (e.g.,
ReviewKD [4], SRRL [42], and MGD [43]). Methods marked by † adopts a searching
strategy, demanding significant more computation cost to achieve the state-of-the-art
performance. In contrast, our dino-loss is rather simple that helps existing KD methods
to rival search-based methods.

ResNet-34 → ResNet-18 ResNet-50 → MobileNet-V1
Methods Top-1 Top-5 Top-1 Top-5

student 69.76 89.43 68.87 88.76
teacher 73.31 91.59 76.16 92.86
CRD ICLR2020 [34] 71.17 90.13 71.37 90.42
SRRL ICLR2021 [42] 71.73 90.60 72.49 90.92
MGD ECCV2022 [43] 71.58 90.35 72.35 91.00
CAT-KD CVPR2023 [9] 71.26 90.45 72.24 91.13
KD NeurIPS2015 [15] 70.66 89.88 70.50 89.80
KD++ 71.98 (+1.32) 90.53 (+0.65) 72.77 (+2.27) 91.14 (+1.34)
ReviewKD CVPR2021 [4] 71.62 90.51 72.56 91.00
ReviewKD++ 71.64 (+0.02) 90.61 (+0.10) 72.96 (+0.40) 91.16 (+0.16)
DKD CVPR2022 [48] 71.70 90.41 72.05 91.05
DKD++ 72.07 (+0.37) 90.59 (+0.18) 72.63 (+0.58) 91.07 (+0.02)
KD-Zero NeurIPS2023 [19]† 72.17 90.46 73.02 91.05
Auto-KD ICCV2023 [20]† 72.45 90.69 73.26 91.17

Table 3: Benchmarking KD methods for object detection on the COCO val2017
dataset (mAP in %). All methods use the Faster R-CNN detector with various teacher
and student architectures, including RestNet {18,50,101} amd MobileNet-V2 (MV2).
Incorporating our dino-loss, simple methods KD++ and ReviewKD++ obtain notable
performance gains (marks in green) over their original counterparts, achieving the
state-of-the-art performance.

R101→R18 R101→R50 R50→MV2
Methods mAP AP50 AP75 mAP AP50 AP75 mAP AP50 AP75

teacher 42.04 62.48 45.88 42.04 62.48 45.88 40.22 61.02 43.81
student 33.26 53.61 35.26 37.93 58.84 41.05 29.47 48.87 30.90
KD [15] 33.97 54.66 36.62 38.35 59.41 41.71 30.13 50.28 31.35
FitNet [30] 34.13 54.16 36.71 38.76 59.62 41.80 30.20 49.80 31.69
FGFI [36] 35.44 55.51 38.17 39.44 60.27 43.04 31.16 50.68 32.92
DKD [48] 35.05 56.60 37.54 39.25 60.90 42.73 32.34 53.77 34.01
ReviewKD [4] 36.75 56.72 34.00 40.36 60.97 44.08 33.71 53.15 36.13
KD++ 36.12 (+2.15) 56.81 (+2.15) 37.64 (+1.02) 39.86 (+1.51) 61.07 (+1.66) 43.57 (+1.86) 33.26 (+3.13) 53.71 (+3.43) 34.85 (+3.50)
ReviewKD++ 37.43 (+0.68) 57.96 (+1.24) 40.15 (+6.15) 41.03 (+0.67) 61.80 (+0.83) 44.94 (+0.86) 34.51 (+0.80) 55.18 (+2.03) 37.21 (+1.08)

We note that recent KD methods adopt a searching strategy for better results,
e.g., KD-Zero [19] and Auto-KD [20]. These methods search for a distiller in a
space of predefined modules, e.g., normalization methods, losses, transform opera-
tions, activation functions, etc. At the cost of significantly more computation time
for searching, they achieve the best performance on the benchmark, slightly better
than ours. Nevertheless, our dino-loss helps existing much simpler methods rival
search-based approaches! Compared against search-based methods, applying our
dino-loss, methods such as KD++ introduce no more parameters and negligible
training time over the counterparts (e.g., vanilla KD [15]). This makes the use of
our dino-loss a stronger baseline for knowledge distillation. Interestingly, current
search-based methods do not consider our proposed regularization methods, i.e.,
feature norm regularizer and feature direction regularizer. That said, our method
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Table 4: Analysis of feature direction and norm regularization. We train
teacher (ResNet-50, ResNet-56) and student (MobileNet-V2, ResNet-20) models on
the CIFAR100 dataset and report accuracy (%) on its test-set. We use KD [15] as
the baseline, which is a logit distillation method. From (a-b), we see that applying
either direction or norm regularization on student features improves KD as shown by
the increased student accuracy. While combining both outperforms baseline (c), using
dino-loss achieves the best (d).

(a) Regularizing feature direction only.
Cosine is more robust than InfoNCE.

case R50→MV2 R56→R20

baseline 67.65 70.66
cosine 69.18 (+1.53) 71.75 (+1.09)
InfoNCE 69.06 (+1.41) 70.73 (+0.07)

(b) Regularizing feature norm only.
SIFN is more robust than L2.

case R50→MV2 R56→R20

baseline 67.65 70.66
L2 69.05 (+1.40) 71.85 (+1.19)
SIFN 69.32 (+1.67) 72.13 (+1.47)

(c) Regularizing both feature norm and
direction. Simple addition does not
yield better results (e.g., cosine + L2

vs. cosine vs. L2).

case R50→MV2 R56→R20

cosine + L2 68.62 (+0.97) 71.58 (+0.92)
cosine + SIFN 69.07 (+1.42) 71.72 (+1.06)
InfoNCE + L2 68.47 (+0.82) 70.81 (+0.15)
InfoNCE + SIFN 68.71 (+1.06) 71.04 (+0.38)

(d) The proposed dino-loss can perfectly
integrate the advantages of regulariza-
tion feature norm and direction, and
perform best.

case R50→MV2 R56→R20

CE + KL (baseline) 67.65 70.66
CE + dino 68.78 (+1.13) 71.96 (+1.30)
KL + dino 68.68 (+1.03) 72.04 (+1.38)
CE + KL + dino 70.10 (+2.45) 72.53 (+1.87)

is orthogonal to existing KD methods and can potentially serve as modules for
searching, suggesting the novelty of our work.

COCO Object Detection. We verify the efficacy of the proposed dino-loss
for knowledge distillation through the lens of object detection on the COCO
dataset. Tab. 3 lists detailed results compared to prior works. Specifically, the
ReviewKD++ yields a significant improvement in performance, outperforming
state-of-the-art results with a remarkable margin. Moreover, this experiment and
the above demonstrate the applicability of our dino-loss across tasks (i.e., image
classification and object detection).

4.3 Ablation Study

In this subsection, we first conduct an ablation study on feature norm and
direction regularization with the CIFAR-100 dataset. Subsequently, we perform
a visual analysis of the impact before and after applying dino-loss. Finally, we
conduct intriguing experiments on ImageNet to validate the benefits of using our
approach that encourages learning large-norm features of the student model.

The effectiveness feature direction and norm regularization. Recall
the baseline methods in Sec. 3.2 and 3.2 for feature direction and norm regular-
ization. We present results for L2 (Eq. 3) and SIFN (Eq. 4) on CIFAR-100 in
Tab. 4b. Yet additional offline experiments substantiate that SIFN outperforms
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Table 5: Comparison of using teacher’s classifier weights (dubbed “w/ weights”) versus
per-class mean features (dubbed “w/ class-mean”) in our dino-loss. We study them with
the KD method [15] on CIFAR-100. Results show that using per-class mean features
outperforms classifier weights. Moreover, we apply our dino-loss at more layers other
than the penultimate layer (cf. the bottom row block). Here, layer-x means that the
dino-loss is applied to all the x layers right before the penultimate layer. In particular,
layer-0 means that the dino-loss is applied only at the penultimate layer (i.e., “w/
class-mean” in this table). Results show that applying dino-loss at other layers also leads
to improvements but doing so at the penultimate layer achieves the best performance.

Homogeneous architectures Heterogeneous architectures
ResNet-56 wide-ResNet-40-2 ResNet-32×4 ResNet-50 ResNet-32×4 ResNet-32×4

Methods ResNet-20 wide-ResNet-40-1 ResNet-8×4 MobileNet-V2 ShuffleNet-V1 ShuffleNet-V2

teacher 72.34 75.61 79.42 79.34 79.42 79.42
student 69.06 71.98 72.50 64.60 70.50 71.82
KD [15] 70.66 73.54 73.33 67.65 74.07 74.45

L2 of cls weights 70.54 73.61 73.76 66.81 73.62 74.13
w/ weights 71.73 73.97 75.06 69.76 75.24 75.61

w/ class-mean 72.53 74.59 75.54 70.10 75.45 76.42
apply dino-loss to other layers

layer-1 71.30 73.74 74.23 69.44 75.01 76.26
layer-2 71.96 73.81 74.12 69.10 75.72 76.53
layer-3 71.19 73.61 73.92 68.87 74.93 76.10

L2 regularization in terms of performance and consistently affirm that large
student feature norms encapsulate more teacher knowledge. Similarly, Tab. 4a
shows superior gains of cosine similarity-based regularizer (Eq. 1) over InfoNCE
(Eq. 2); both underscore the significance of feature direction regularization.

Our dino-loss yields better results. Tab. 4c shows that feature direction
regularization (cosine, InfoNCE) and feature norm regularization (L2, SIFN)
improve KD. While combining them helps KD (e.g., cosine + L2, cosine + SIFN),
our dino-loss performs the best at 70.10% accuracy (Tab. 4d). This convincingly
shows the superiority of our dino-loss over others.

Class-mean vs. classifier weights in regularizing student feature
direction. We perform a quantitative analysis of using the teacher’s classifier
weights and per-class feature mean to regularize student’s features. We adopt
the classifier weights that are derived from teacher as centers in our dino-loss to
train student models (dubbed “w/ weights”). In comparison, we utilize per-class
feature means, denoted as “w/ class-mean” (which is our proposed method). The
results in Tab. 5 clearly demonstrate that the utilization of per-class feature
mean performs better than the method of using teacher’s classifier weights for
feature direction regularization. Additionally, we have implemented an alternative
approach that employs an L2 loss to guide the student to output classifier weights
similar to those of the teacher (referred to as “L2 of cls weight”). However, this
approach consistently underperforms our “w/ class-mean” method and even lags
behind the baseline KD method [15] in most experimental settings. These findings
provide strong evidence for the superiority of employing class-mean features over
the teacher’s classifier weights.
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(a) teacher (b) naive small model (c) student by KD (d) student by KD++

Fig. 4: Visualization of 2D embedding features. (a) Features computed by
teacher (ResNet-50) are well separated at class label; note the purple class pointed by
red arrow. (b) A small-capacity model (ResNet-18) fails to separate this purple class,
which is occluded by others. (c) Even using KD [15] to train ResNet-18 student cannot
reveal this purple class. (d) Using our dino-loss along with KD, i.e., KD++, achieves
better separation of the points and reveals purple class. This attributes to the feature
direction regularization using teacher class-means. Moreover, student features in (d)
have larger-norms than the teacher in (a) because our dino-loss explicitly encourages
learning large-norm featurs of the student.

Applying the dino-loss to other layers. In the above experiment, we
apply the dino-loss to the penultimate layer only. Here, we study applying it
to other layers and evaluate on CIFAR-100 in bottom of Tab. 5. Results show
that our dino-loss applied at other layers also improves over the baseline KD but
performs the best when applied at the penultimate layer.

KD++ is a strong baseline. Tab. 4d illustrates the impacts of different
losses in KD. By incorporating dino-loss into conventional KD framework [15],
KD++ (i.e., CE+KL+dino) achieves a significant improvement: KD (67.65%)→
KD++ (70.10%). Further, combining dino-loss with CE or KL can also boost
the accuracy by ∼1% compared to the original KD method. It is worth noting
that KD++ introduces no additional parameters and negligible computation
overhead, making it a strong baseline for KD (cf. more results in Tab. 1, 2, & 3).

In addition, following [37], we visually examine the student feature in Fig. 4.
First, as indicated in Fig. 4d, KD++ demonstrates notably amplified feature
norms, surpassing even those of the teacher depicted in Fig. 4a. Furthermore,
the direction in KD++ align well with the teacher (Fig. 4a vs. Fig. 4d, thereby
maintaining consistent relative margins among categories. Another observation is
that both the naive student (Fig. 4b) and the conventional KD (Fig. 4c) exhibit
direct failures in classifying the purple category, whereas our approach, KD++
(Fig. 4d), effectively learns student features that can discriminate all classes.

The benefit from larger teacher models. Now we investigate whether our
approach exhibits monotonically incremental performance gains when exploiting
a larger teacher. We first examine the classic KD [15] framework, and two other
recently proposed methods, namely ReviewKD [4] and DKD [48].

As shown in Fig. 5, it is clear that for KD [15], DKD [48] and ReviewKD [4]
show a degradation or fluctuation when scaling up the teacher from ResNet-34 to
ResNet-152, with ResNet-18 as student. The main obstacle is the huge capacity
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Fig. 5: Using our dino-loss can benefit from larger teacher models. The student
is ResNet-18, with scaling up the teacher from ResNet-34 to ResNet-152 (denoted
in the x-axis). We report the top-1 accuracy (%) on the ImageNet validation set. All
results are the average accuracy over five runs. With the teacher capacity increasing,
our methods, KD++, DKD++ and ReviewKD++ (red) achieve better knowledge
distillation results, even though the original distillation methods (blue) suffer from
performance degradation with large teacher models (e.g., ResNet-152).

Table 6: A larger student gets better knowledge distillation performance.
The teacher is ResNet-152 (top-1 acc, 78.31%). We report the top-1 accuracy (%) on
the ImageNet validation set. Model marked with † adopts a stronger recipe [11]. Results
show that our dino-loss achieves consistent improvement, outperforming the model
trained from scratch (cf. the first row).

student ResNet-18 ResNet-34 ResNet-50 ResNet-101 ViT-S ViT-B ViT-B †

trained from scratch 69.76 73.31 76.16 77.37 74.64 78.00 81.80
KD [15] 70.66 74.84 76.93 78.04 75.77 78.51 82.39
KD++ 71.98 (+1.32) 75.53 (+0.69) 77.48 (+0.55) 79.15 (+1.11) 76.53 (+0.76) 79.85 (+1.34) 82.92 (+0.53)

gap between student and teacher [1, 16,34]. Surprisingly, upon incorporating
our dino-loss, distillation methods yield significant improvements compared to
the original methods (e.g., KD++ vs. KD, ReviewKD++ vs. ReviewKD). More
importantly, they show a consistent improvement with scaling up the teacher
size (e.g., KD++: 71.99% → 72.49% → 72.54% → 72.59%).

The benefit from larger student models. We use KD++ to study the
effect of increasing the size of the student for knowledge distillation, and set the
teacher as ResNet-152. The results in Tab. 6 demonstrate that increasing the
capacity of the student significantly improves distillation results.

5 Discussion and Conclusion

Broader Impacts As our work falls in the area of knowledge distillation, we do
not see any new potential societal impacts other than those already known, e.g.,
student models might learn bias and unfairness delievered by the teacher.

Conclusion. We study feature regularization w.r.t norm and direction when
training student models for better knowledge distillation (KD). Indeed, sufficient
experiments and ablation studies demonstrate that doing so with our proposed
dino-loss helps existing KD methods to achieve better performance.
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