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1 Comparison of our Method with additional SOTA
methods

1.1 Comparison of our Method with the DoubleField

Besides DeepMultiCap [10], DoubleField [9] is another SOTA method that uses
self-attention mechanism to combine features from different views together. In
this section, we will compare our 3DFG-PIFu model against DoubleField.

We trained DoubleField with the same training data (THuman2.0 dataset)
that we have trained our 3DFG-PIFu model on, and we show the results in Fig.
1. We find that, compared to our 3DFG-PIFu model, the meshes produced by
DoubleField suffer from structural inaccuracies and lack of appearance details.
The meshes shown in the figure are some of the best ones that DoubleField
has produced. The results of DoubleField differ from our expectations, and one
reason could be that DoubleField requires more training meshes and training
meshes of a higher quality. The authors of DoubleField trained their model on
1500 human meshes collected from Twindom4. Twindom is not open-source, and
we are unable to inspect the quality of these meshes. But 1500 human meshes is
around thrice the size of our training data.

1.2 Comparison of our Method with the ‘Data-Driven 3D
Reconstruction’ method by Zins et al.

Another existing pixel-aligned implicit method that uses multiple views to form
a 3D clothed human mesh is ‘Data-Driven 3D Reconstruction’, and it is proposed
by Zins et al. in [11]. The ‘Data-Driven 3D Reconstruction’ method also uses
self-attention mechanism to combine features from different views together.

A qualitative evaluation between our 3DFG-PIFu models and the ‘Data-
Driven 3D Reconstruction’ method is presented in Fig. 2. Column (c) shows
meshes produced by a 3DFG-PIFu model that is given a 512x512 RGB image
4 https://web.twindom.com/
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as input. Column (d) shows meshes produced by a 3DFG-PIFu model that is
given a 1024x1024 RGB image as input. Neither of the two 3DFG-PIFu models is
given groundtruth SMPL-X meshes as input. The figure shows that our models
clearly outperformed the ‘Data-Driven 3D Reconstruction’ method.

In addition, we provided a quantitative evaluation in Tab. 1. The table shows
that our models significantly outperformed the ‘Data-Driven 3D Reconstruction’
method.

left view

wavy artifacts

(a) Groundtruth (b) DoubleField (c) Ours (LowRes)
Fig. 1: DoubleField produces meshes with structural issues.

Table 1: Quantitative evaluation of our models against the ‘Data-Driven 3D Recon-
struction’ method [11] (‘HR’ indicates if a 1024x1024 RGB image is used in the method.
By default, a 512x512 RGB image is used.)

THuman2.0 BUFF MultiHuman
Methods HR CD (10-5) P2S (10-5) CD (102) P2S (102) CD (10-5) P2S (10-5)
Data-Driven 3D Reconstruction × 12.67 21.37 4.158 7.340 8.812 11.63
Ours (No HR, No GT Smplx) × 5.796 5.811 2.509 2.286 6.320 5.737
Ours (HR, No GT Smplx) ✓ 5.133 5.028 2.508 2.121 5.315 4.866
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(a) Groundtruth (b) “Data-driven 
Reconstruction” by 
Zins et al.

(c) Ours (LowRes) (d) Ours (HighRes)

Fig. 2: Qualitative evaluation of our models against an additional SOTA method
(‘Data-Driven 3D Reconstruction’ method by Zins et al. [11] ). None of the models
here uses groundtruth SMPL-X meshes as inputs.

2 More Analysis of Quantitative Results from the Main
Paper

2.1 Analysis of Results from Models using SMPL-X priors

In our main paper, there are both existing SOTA models and our own models
that use priors derived from a SMPL-X mesh as an input. However, as seen from
our quantitative results in the main paper (‘Table 1’ in our main paper), the
use of priors from a groundtruth SMPL-X mesh may not always lead to better
results. This is because even the groundtruth SMPL-X mesh can have pose and
shape errors. These errors arise because it is extremely difficult for a clothless and
hairless SMPL-X mesh to perfectly fit the corresponding groundtruth clothed
human body mesh. For example, a groundtruth clothed human body mesh of
a human subject wearing a thick jacket is often given a ‘groundtruth’ SMPL-X
mesh with an unusually large waistline or stomach. These errors diminish the
value of using a SMPL-X prior in a model.

However, in many contexts, there is still value in using SMPL-X meshes as
priors. In our experimental set-up, we set the angle between each pair of given
views to be 90 degree. If we have set the angle to be much smaller, say 10
degree, then the benefit of using SMPL-X meshes will be much more obvious
and significant. This is because when the angle is smaller, the depth ambiguity
problem becomes more of an issue. This means that the model is unable to
tell whether the clothed human body mesh should be located nearer or further
away from the camera. Taking into account that weak perspective projection
is used to render the images (or views), the model can really only guess the z-
position (or distance away from camera) of the clothed human body mesh. But
if SMPL-X priors are used, then the depth ambiguity problem can be largely
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Fig. 3: Pipeline and Architecture of the Single-view PIFu [8] method.

resolved. In other words, if the angle between the pair of views is smaller (e.g. 10
degree), then models that use SMPL-X priors (e.g. SDF-based SMPL-X features,
PaMIR’s voxel-aligned features, or S-PIFu features) are likely to have a much
better results compared models that do not use any SMPL-X priors.

3 Elaborating on the Problems with Existing Methods

Single-view PIFu To fully understand the problems with existing methods for
3D clothed human reconstruction from sparse views, we have to first look at how
a generic pixel-aligned implicit model works. Hence, we will look at one of the
earliest (and most general) pixel-aligned implicit models, which is the single-view
PIFu [8].

In Fig. 3, we show the pipeline of the single-view PIFu method. First, an
input image is fed into an Encoder, which is a 2D CNN (e.g. Stacked Hourglass
Network). The Encoder outputs a set of feature maps which, as a whole, has the
dimensions of (C, H, W), where C = Channels, H = Height, and W = Width.
Please note that, for simplicity, we are ignoring the batch dimension here.

This set of feature maps is actually designed to correspond to the 3D camera
space of the input image. During training or testing, a set of 3D points (i.e. x,y,z
coordinates) are sampled from the 3D camera space of the input image. These
3D points are called either sample points or query points. For each query point,
we will take its (x,y) coordinates to index the set of feature maps (as shown
in Fig. 3). After indexing, each query point will give us a feature vector. This
feature vector is concatenated with the z coordinate of that query point and
then fed into a Multilayer Perceptron (MLP). The MLP will then predict the
occupancy of that query point (i.e. whether the query point is inside or outside
a groundtruth human mesh that has been transformed into the camera space of
the input image). In practice, the occupancy prediction outputted by the MLP
is a continuous value that ranges from 0 to 1 where the value of 0.5 is interpreted
as the surface of a mesh. Any value from 0 to 0.5 is interpreted as being outside
the mesh. Any value from 0.5 to 1 is interpreted as being inside the mesh.

During testing, a 3D grid (e.g. 256x256x256) of query points will be passed
into the PIFu’s pipeline to yield a 3D grid of occupancy predictions. From these
occupancy predictions, we will apply the Marching Cubes algorithm [6] to obtain
a predicted human mesh.
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Multi-view PIFu With the understanding of single-view PIFu, we can now take
a closer look at Multi-view PIFu [8]. In this section, we consider the number
of views given to a Multi-view PIFu to be 2. Multi-view PIFu is basically an
extension of single-view PIFu, and we show the pipeline of Multi-view PIFu in
Fig. 4. The first difference between single-view PIFu and Multi-view PIFu is that
we have a 3D world coordinate space. The 3D world coordinate space is a space
that connects the 3D camera space of view 1 with the 3D camera space of view 2.
In other words, any point in the 3D world coordinate space can be transformed
into a point in each of the 3D camera spaces, and any point in either of the 3D
camera spaces can be transformed into a point in the 3D world coordinate space.

In Multi-view PIFu, as shown in the figure, view 1 and view 2 are separately
processed by the same Encoder to generate two different sets of feature maps.
Each set of feature maps corresponds to the 3D camera space of a view. Next,
query points are sampled from the 3D world coordinate space. Each of these
query points are transformed into both the 3D camera spaces of view 1 and
view 2. In other words, each query point in the 3D world coordinate space will
generate a pair of query points: One query point in the 3D camera space of view
1 and one query point in the 3D camera space of view 2.

As illustrated in the figure, the pair of query points will be used to index
their respective set of feature maps, and this will give us two different feature
vectors (one from each view). To combine the feature vectors from the two views,
often either averaging (used by Multi-view PIFu [8] ) or self-attention mechanism
(used by DeepMultiCap, DoubleField, and the ‘Data-Driven 3D Reconstruction’
method) is used. To be more precise, Multi-view PIFu does not average up the
two feature vectors but first pass the two feature vectors separately into the MLP.
An intermediate layer in the MLP will produce two different feature embeddings
from the two feature vectors. The feature embeddings are averaged up to form
an average feature embedding, which is then passed into the subsequent layers of
the MLP to produce an occupancy prediction for that query point in 3D world
coordinate (in green in the figure).

On the other hand, DeepMultiCap, DoubleField, and the ‘Data-Driven 3D
Reconstruction’ method use self-attention (i.e. weighted averaging) to combine
the two feature vectors (in orange and red in the figure) into a single feature
vector (in purple in the figure). This single feature vector is used by the MLP
to produce an occupancy prediction. Now we will explain the problem with
existing methods like Multi-view PIFu, DeepMultiCap, DoubleField, and the
‘Data-Driven 3D Reconstruction’ method.

3.1 The Problem with Combining features of different views only
late in the Pipeline

From Fig. 4, we see that existing methods only combine features of different views
after the query points in different camera spaces are used to index the sets of
feature maps. In other words, the features of different views are combined only
locally and not globally. This happens because the two sets of feature maps are
not directly combined together. Each time before the MLP makes a prediction,
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Fig. 4: Pipeline and Architecture of the Multi-view PIFu [8] method. Assume the
number of views given is 2.

only a selected part (a feature vector) from the two sets of feature maps are
combined together. The resulting problem is that the two views are not combined
in a cohesive and coherent manner.

3.2 The Problem with using Averaging or Self-attention mechanism
to combine features of different views

Using Fig. 4, we see that it is possible for a query point in world coordinate
space to be visible in view 1 but not visible in view 2. In such a case, more
weight should be given to the feature vector (corresponding to that query point)
from view 1 and less weight should be given to the corresponding feature vector
from view 2. As such, taking the average of the two feature vectors (or the two
feature embeddings) is not optimal.

As for self-attention mechanism, we can see from Fig. 4 that the two Sets of
Feature Maps are each generated using information from one view and without
any information from the other view. With a query point in world coordinate
space Pw, two feature vectors (each from a Set of Feature Maps) can be obtained
as aforementioned. The problem arises when the two feature vectors disagree
with each other. The feature vector from the first Set of Feature Maps may be-
lieve that Pw lies outside the human body mesh. But the feature vector from
the second Set of Feature Maps may believe otherwise. The self-attention mech-
anism works by acting on (and analysing) the two feature vectors in a bid to
obtain a single, meta-view feature vector. In this case, the self-attention mecha-
nism will not perform well because both of two feature vectors believe that they
are correct, and the self-attention mechanism only has access to information in
these two feature vectors. Thus, a coherent meta-view feature vector cannot be
produced by the self-attention mechanism.



3DFG-PIFu 7

Table 2: Efficiency Comparison against SOTA methods. ‘SM’ = SMPL-X mesh is
used. ‘HR’ = 1024x1024 RGB images are used. By default, 512x512 RGB images are
used.

Methods Time per test instance (ms)
Multi-view PIFu 1437
IntegratedPIFu 1564
DeepMultiCap 9817
‘Data-Driven 3D Reconstruction’ by Zins et al. 6798
DoubleField 6311
Ours (No HR, No SM) 1759
Ours (HR, No SM) 1796
Ours (No HR, w SM) 1886
Ours (HR, w SM) 1927

SeSDF [1] attempted to address this by using a SMPL-X mesh to identify
which of the two feature vectors is more visible and assign a greater weight to
the more visible feature vector. But a SMPL-X mesh is a clothless and hair-
less representation of a human body. This coarse and imprecise representation
will inherently have errors in deciding which feature vectors are more visible.
Moreover, it is impractical to assume that we will always have access to the
groundtruth SMPL-X mesh. A non-groundtruth (i.e. predicted) SMPL-X mesh
will inevitably have substantial pose and shape errors, which make it even more
difficult to use the SMPL-X mesh for deciding which of the two feature vectors
is more visible.

4 Efficiency and Computation Time of 3DFG-PIFu

While efficiency is not a claim made by our 3DFG-PIFu, we understand concerns
related to it. 3DFG-PIFu’s efficiency can be drastically improved by some imple-
mentation tricks that we developed. For example, instead of using the Marching
Cubes algorithm multiple times (for base mesh, partial refined meshes, and final
mesh), we do it only for the final mesh. This is possible by keeping the base mesh
and partial refined meshes in their SDF form (i.e. a 3D Feature Grid of SDF
values). Using these 3D Feature Grids, we are able to obtain required features
such as G′

S and GV using hash maps and optimised Numpy functions. Given
that Marching Cubes takes the bulk of the inference time, this implementation
trick made 3DFG-PIFu very efficient.

As seen in Tab. 2, compared to SOTA methods, 3DFG-PIFu fared reason-
ably well in terms of efficiency. Values reported are the average test time with
a NVIDIA RTX A5000 GPU. For our models, we included time incurred to
generate our required features like GN , GM , GX , G′

S , and GV .

5 Training details and Hardware used

3DFG-PIFu is trained with a RMSprop optimizer with an initial learning rate
of 10−3. The encoders (in both the 1st stage and 2nd stage) are each a stacked
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hourglass network [7] that consists of 4 stacks. Our Multilayer Perceptron (MLP)
has layers with the following dimensions: (257, 1024, 512, 256, 128, 1). The 3rd,
4th, 5th layers of our MLP are fitted with skip connections (same as [2–5]). Dur-
ing training, 8000 sample points (or query points) are used for every RGB image
that is fed to the model. More details about the other hyperparameters can be
found in our source code, which will be released publicly. These hyperparameter
values are chosen using grid search.

In terms of hardware, we train all our models using NVIDIA RTX A5000
GPUs. Minimally, 1 GPU is required to run our training script.
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