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Abstract. Pixel-aligned implicit models, such as Multi-view PIFu, Deep-
MultiCap, DoubleField, and SeSDF, are well-established methods for
reconstructing a clothed human from sparse views. However, given V
images, these models would only combine features from these images in
a point-wise and localized manner. In other words, the V images are
processed individually and are only combined in a very narrow fashion
at the end of the pipeline. To a large extent, this defeats the purpose of
having multi-view information since the multi-view task in question is
predominantly treated as a single-view task. To resolve this, we introduce
3DFG-PIFu, a pixel-aligned implicit model that exploits multi-view in-
formation right from the start and all the way to the end of the pipeline.
Our 3DFG-PIFu makes use of 3D Feature Grids to combine features
from V images in a global manner (rather than point-wise or localized)
and throughout the pipeline. Other than the 3D Feature Grids, 3DFG-
PIFu also proposes an iterative mechanism that refines and updates an
existing output human mesh using the different views. Moreover, 3DFG-
PIFu introduces SDF-based SMPL-X features, which is a new method
of incorporating a SMPL-X mesh into a pixel-aligned implicit model.
Our experiments show that 3DFG-PIFu significantly outperforms SOTA
models. Our code is released at https://github.com/kcyt/3DFG-PIFu.

Keywords: 3D Clothed Human Reconstruction from Sparse Views · 3D
Feature Grids · Pixel-aligned Implicit Models

1 Introduction

The field of 3D reconstruction of human bodies has gained considerable inter-
est due to its potential use in various domains such as virtual reality, game
production, and 3D printing. Pixel-aligned implicit models, such as Multi-view
PIFu [13] DeepMultiCap [22], DoubleField [15], and SeSDF [1] are an influen-
tial class of deep learning methods for reconstructing clothed human bodies from
sparse views. These models learn an implicit function that represents the surface
of a human body. During testing, the learned implicit function is sampled using
a grid of uniformly-spaced sample points. For each sample point, the learned
implicit function (or the model) will return a predicted occupancy label (i.e.
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Fig. 1: Our models (last two columns) vs SOTA models.
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Fig. 2: (a) Existing multi-view pixel-aligned implicit models vs (b) Our 3DFG-PIFu.

whether the sample point is ‘inside’ or ‘outside’ of a human body surface). Once
a grid of predicted occupancy labels is obtained, a human body mesh can be
extracted from this grid using the Marching Cubes algorithm [11].

In order to predict the occupancy labels, existing multi-view pixel-aligned
implicit models [1, 13, 15, 22], when given V views or images, would compute V
different point embeddings for each sample point. This is illustrated in Fig. 2a for
the case where V = 2. For each sample point, its V point embeddings would be
fused together into a single point embedding via either simple averaging [13] or
weighted averaging [1,15,22], as illustrated in the same figure. These fused point
embeddings are then converted into predicted occupancy labels, from which a
human body mesh can be obtained. It is important to note that the “Point
Embeddings for View 1” grid and the “Point Embeddings for View 2” grid in
Fig. 2a are in different 3D coordinate spaces. The former is in the 3D camera
space of View 1, and the latter is in the 3D camera space of View 2. This means
that a point located at the top left corner of a grid may not correspond to the
top left corner of another grid. We let the “Fused Point Embeddings” grid follow
the 3D camera space of View 1 (It is possible to choose another 3D camera space,
but that is trivial).
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As shown in Fig. 2a, there are two problems with existing multi-view pixel-
aligned implicit models. 1. Firstly, the fusion of View 1 and View 2 are carried out
in a point-wise and very localized manner. This is a problem because, as shown
in the bidirectional red dashed arrow in Fig. 2a, there is no interaction between
fused point embeddings, even if they are located close to each other. So if there
is a sample point A that is closely surrounded by ten sample points, the existing
multi-view pixel-aligned implicit models may assign those ten points with the
same label and yet assign point A with an opposite label, which is an obvious
error that would lead to a floating artefact. 2. Secondly, the fusion of View 1 and
View 2 occurs at the end of the pipeline in a very simple manner (either simple
or weighted averaging (e.g. attention)). To a large extent, the existing multi-
view pixel-aligned implicit models are not very different from their single-view
counterparts except for the simplistic point-wise fusion of point embeddings at
the end of the pipeline.

Hence, we propose 3DFG-PIFu, a pixel-aligned implicit model that rethinks
how multi-view information is incorporated in its pipeline. One key feature of
3DFG-PIFu is its use of 3D Feature Grid(s). As seen in Fig. 2b, 3DFG-PIFu
makes use of 3D Feature Grid(s) to extract structural information from View
2. The 3D Feature Grid, due to its inherent design, is able to easily orient the
extracted information to a different camera space. Thus, we re-orient the 3D
Feature Grid from the 3D camera space of View 2 to the 3D camera space
of View 1. Now aligned with View 1, the transformed 3D Feature Grid can be
concatenated with View 1 and processed by a deep neural network to form ‘Fused
Point Embeddings’. These fused point embeddings will then be further refined
using the fine-grained information from View 2 (Section 3.2).

Crucially, this means that, unlike existing models, the fusion of multi-view
information in 3DFG-PIFu occurs from the start to the end of the pipeline.
Moreover, the multi-view fusion in 3DFG-PIFu occurs in a global and broad
manner (rather than point-wise and localized) as information from View 2 is
allowed to influence each and every fused point embedding.

In total, 3DFG-PIFu makes three contributions: 1. The aforementioned 3D
Feature Grids that fuse multi-view information (Section 3.1). 2. An iterative
mechanism that refines and updates an existing output human mesh using the
fine-grained information from the different views (Section 3.2). 3. Introduction of
SDF-based SMPL-X features, which is a new method of incorporating a SMPL-X
mesh into a pixel-aligned implicit model (Section 3.3).

2 Related Work

2.1 Human Reconstruction from Sparse Views

Methods that reconstruct a human body mesh from a sparse number of im-
ages can be broadly classified into two classes: Parametric approaches and non-
parametric approaches.
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Parametric approaches, such as [7,9,10,20], reconstruct a human body surface
by predicting parameters of a human parametric model (e.g. SMPL-X [12]).
However, these methods can only produce human body meshes that are clothless.

On the other hand, non-parametric methods do not use a human paramet-
ric model. An important subclass of non-parametric methods is pixel-aligned
implicit models. There are other subclasses like NERF methods (e.g. [21]), but
they have yet to outperform pixel-aligned implicit models.

Pixel-aligned implicit models can be single-view (e.g. [2, 5, 6]) or multi-view
(e.g. Multi-view PIFu [13], DeepMultiCap [22], DoubleField [15], and SeSDF [1]).

As a side note, there are also pixel-aligned implicit models that use stereo
images to reconstruct a clothed human mesh. However, these models, that in-
clude StereoPIFu [8] and DiffuStereo [16], require pairs of images to be taken at
two similar viewpoints. This is often infeasible in many real-life applications and
is thus not used in our experiments. Instead, our benchmarks are the aforemen-
tioned Multi-view PIFu, DeepMultiCap, DoubleField, SeSDF, and a few others.

As mentioned in Section 1 (‘Introduction’), these benchmark models suffer
from the problems of: 1. Fusing multi-view information in a very narrow or point-
wise manner, and 2. Fusing multi-view information only at the very end of the
pipeline. To resolve this problem, we introduce 3DFG-PIFu.

3 Method

3DFG-PIFu is a two-staged model that works as long as the number of views
V > 1 and the camera calibrations are known. One view will be randomly picked
as the primary view and the other view(s) will be designated as the secondary
view(s). Let us first assume V = 2. This means that we have one primary view
and one secondary view. As shown in Fig. 3, front and back normal maps, as well
as a mask, can be predicted from a RGB image. We use the method outlined in
PIFuHD [14] to predict the normal maps. Then, from the predicted normal maps,
we can easily extract out the mask. Hereafter, we refer to a view as a collection
of a RGB image, a front normal map, a back normal map, and a mask.

1st Stage In the first stage (refer to Fig. 4 and assume V = 2), we first generate
two 3D feature grids (GN and GM ) from the secondary view’s front normal
map and mask. We will elaborate on how GN and GM are generated later. In
short, the GN and GM contain normal pixels and mask pixels, respectively, from
the secondary view, but these pixels have been transformed into the 3D camera
space of the primary view. Then, GN and GM are concatenated with the primary
view’s RGB image, front normal map, and back normal map. The concatenated
output is sent to an encoder, which is a 2D CNN. The encoder will produce a
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Fig. 4: 1st Stage of 3DFG-PIFu. Each view includes the mask and the predicted front
and back normal maps. The primary view and the feature grids extracted from the
secondary view(s) are fed into an encoder and MLP to generate a base mesh.
set of feature maps that is used by a Multilayer Perceptron (MLP) to produce
a human body mesh, which we refer to as a base mesh.

2nd Stage While the base mesh from the 1st stage has good structural accuracy,
it fails to capture the more fine-grained appearance details (e.g. clothes wrinkles)
from all the views. Thus, a 2nd stage is needed. The 2nd stage of 3DFG-PIFu is
an iterative mechanism or pipeline to combine appearance details from multiple
views. We will briefly describe the flow of the pipeline here, but the details and
rationales behind each step in the pipeline will be explained in Section 3.2.

At the start of the 2nd stage, a view is picked from the set of input views.
Assume that V = 2, and the view that we selected is the secondary view. The
secondary view, as well as the base mesh from the 1st stage, will be used as inputs
in the 2nd stage (shown in Fig. 5). First, we will rotate (or transform) the base
mesh into the 3D camera space of the secondary view. From this rotated base
mesh, we would generate two additional 3D feature grids (GV and G′

S). GV and
G′

S will have the visibility information and the SDF values, respectively, of the
rotated base mesh. We will elaborate on how GV and G′

S are obtained later.
GV , G′

S and the secondary view will be concatenated together and fed into an
encoder, which is a 2D CNN. This encoder will produce a set of feature maps
that is used by a MLP to produce a partial refined mesh. The partial refined
mesh will have the fine-grained appearance details of the secondary view.

Finally, we will obtain a 3D feature grid of SDF values (GS) from the base
mesh. Then, GS is refined and updated using information from the partial refined
mesh via a process that we call visibility-based fusion (to be explained later).
Visibility-based fusion will return a final 3D grid of SDF values, GF . From GF ,
we will retrieve the final mesh via the Marching Cubes algorithm.

For simplicity, Fig. 5 only shows the scenario where there is only 1 secondary
view, and the secondary view (rather than the primary view) is picked at the
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Fig. 5: 2nd Stage of 3DFG-PIFu. The base mesh is first aligned to the secondary view.
Once aligned, it is combined with the secondary view to produce a partial refined mesh.

start of the 2nd stage. In reality, the primary view and every secondary view
will be separately processed in the 2nd stage (See the blue arrows in Fig. 5), and
each view will generate a different partial refined mesh. All these partial refined
meshes will be used to refine and update the base mesh during visibility-based
fusion before the final mesh is produced.

Optionally, in the 1st stage, if a SMPL-X mesh is given as an input, we will
convert the SMPL-X mesh into another 3D feature grid of SDF values (GX).
See illustration in Fig. 4. GX is what we refer to as SDF-based SMPL-X
Features. This feature grid will be concatenated with the other inputs in the
1st stage. Concurrently, we use the technique described in PaMIR [23] to obtain
voxel-aligned features. The voxel-aligned features will be used by the MLP at
the end of the pipeline. We will explain the rationale behind this set-up later.

Now, we will first elaborate on the different 3D feature grids (Sect. 3.1) before
moving on to our iterative mechanism described in 3DFG-PIFu’s 2nd stage (Sect.
3.2). Finally, we will explain our SDF-based SMPL-X Features (Sect. 3.3).

3.1 3D Feature Grids

In Section 1 (‘Introduction’), we thoroughly explained why we need to use 3D
feature grids. Indeed, the central theme of our paper revolves around the use of
3D feature grids. We define a 3D feature grid as a D x H x W grid where each
element on the grid can be either a scalar value or a vector. D, H, and W are
each an integer. A 3D feature grid is useful as it can contain various types of
information and can represent these information in different 3D camera spaces.
In total, we use four different types of 3D feature grids:

1. 3D Feature Grid for Visual Hull (GM ) In Fig. 6, we illustrate how a 3D
Feature Grid for Visual Hull is obtained if we only have 2 views - View 1 (Primary
view) and View 2 (Secondary view). First, given a 256×256 mask of View 2, we
replicate the mask pixels (i.e. the non-empty pixels) 256 times in the z-dimension
(camera direction), giving us M2×256 elements in the 3D camera space of View
2, where M2 represents the number of mask pixels in the mask of View 2. We do
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Fig. 6: 3D Feature Grid - Visual Hull. Above shows how GM is extracted.

the same for View 1 to get M1 × 256 elements in the 3D camera space of View
1. The elements belonging to View 2 are then rotated or transformed into the
3D camera space of View 1 and placed together with the elements that belong
to View 1. Lastly, we take the 3D intersection of the two groups of elements to
obtain a visual hull. The visual hull is stored in a 3D grid that corresponds to
the 3D camera space of View 1, and this is basically a 3D Feature Grid for
Visual Hull or GM . We will always store the visual hull in the 3D camera space
of the primary view (instead of a secondary view). On a side note, GM can be
generated with more than 2 views too. For example, with 3 views, the visual hull
is formed by the 3D intersection of 3 groups of elements.

GM is useful because it contains the structural information of both View 1
and View 2. Concretely, each element in GM is a binary value (‘0’ or ‘1’). ‘0’
means the element or grid position is unoccupied, and ‘1’ means the element is
occupied. Together, these elements represent a possibility space for occupancy.
No part of the groundtruth human body mesh can be outside of this possibility
space, and this is very useful information for a pixel-aligned implicit model whose
task is to predict and reconstruct a human body mesh.

2. 3D Feature Grid for Front Normals (GN ) However, GM does not fully capture
all the relevant information from View 2. Specifically, only mask information
from View 2 is captured. If we look at the mask of View 2 in Fig. 6, we cannot
actually differentiate the outlines of the arms from that of the torso, or the
outlines of the person’s left thigh from the right thigh. This information (the
outlines) is not captured by the mask but is captured by the front normal map
of View 2. Thus, we introduce 3D Feature Grid for Front Normals or GN as a
complement to GM . GN is similar to GM except that each element on its 3D
grid is a normal vector rather than a scalar occupancy value. GN is obtained
in a manner similar to the first row of Fig. 6 except that the mask of View
2 is replaced by the front normal map of View 2. First, given a 3 × 256 × 256
front normal map of View 2, we replicate the normal pixels (i.e. only the non-
empty pixels) 256 times in the z-dimension (camera direction), giving us N2×256
elements (i.e. vectors) in the 3D camera space of View 2, where N2 represents
the number of normal pixels in the front normal map of View 2. The elements
belonging to View 2 are then rotated or transformed into the 3D camera space
of View 1 and then stored in a 3D feature grid that corresponds to View 1’s 3D
camera space. This grid is the 3D Feature Grid for Front Normals or GN .
Like GM , GN is also used as an input in the 1st stage of our 3DFG-PIFu.
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Fig. 7: View visibility of different views

3. 3D Feature Grid for SDF values (GS, G′
S, GF ) Given an input view, a single-

view pixel-aligned implicit model produces a human body mesh that is oriented
in the 3D camera space of that input view. But once we have the mesh, we
can transform or rotate the mesh into the 3D camera space of any view. This
means that a mesh produced using View 1 can be transformed from its initial 3D
camera space of View 1 to the 3D camera space of View 2. Once oriented to the
3D camera space of View 2, the mesh becomes a useful prior for a pixel-aligned
implicit model that is trying to use View 2 to predict a human body mesh.

But we cannot feed a mesh, which consists of vertices and faces, into a pixel-
aligned implicit model. To resolve this, we propose converting the mesh into a
3D feature grid of SDF values. This 3D grid will correspond to the 3D camera
space of View 2, and each element in the 3D grid is a truncated SDF value that
ranges from -1 to 1, where the value of 0 represents a mesh surface.

This grid, which is 3D Feature Grid for SDF values, is a simple and
effective way to condition a pixel-aligned implicit model on a mesh (as a prior).
We will elaborate more on the usefulness of such a prior in Section 3.2. In our
3DFG-PIFu, 3D Feature Grid for SDF values is used as a prior in the 2nd stage
(see Fig. 5). In Fig. 5, we see three variants of 3D Feature Grid for SDF values:
GS , G′

S , and GF . GS and G′
S represent SDF values from an unrotated and

rotated base mesh respectively. GF represents SDF values from the final mesh.

4. 3D Feature Grid for View Visibility (GV ) In the 2nd stage (see Fig. 5), we use
G′

S as an input to the encoder. Since G′
S contains a rotated base mesh in SDF

form, we are essentially using the rotated base mesh as a prior in the encoder.
This rotated base mesh already has an accurate structure and shape of a

human body. Thus, given a view (e.g. View 2) in the 2nd stage, we only want
to modify the rotated base mesh in regions where we are confident of editing.
The regions that we are most confident of editing are the regions that are visible
from that given view. Examples of such regions are shown in Fig. 7. If we are
given View 2, for example, then we only want to edit the green regions of the
base mesh, as shown in the rightmost column of Fig. 7.

If the selected view in the 2nd stage is indeed View 2, then we want to have
a 3D feature grid that contains all those green regions. Such a 3D feature grid
would serve as a complement to the G′

S by telling the pixel-aligned implicit
model which part of the rotated base mesh should (and should not) be edited.
This 3D feature grid is our 3D Feature Grid for View Visibility or GV .
Each element in GV is a binary value (0 or 1). A value of 1 indicates that, at
that grid position, there is a mesh surface and this mesh surface is visible from
the view that is selected in the 2nd stage (as illustrated in Fig. 7).
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3.2 An Iterative Mechanism to Combine Appearance Details from
Multiple Views

Our iterative mechanism or pipeline to combine appearance details from multiple
views is the 2nd stage of our 3DFG-PIFu. It refines and updates the base mesh.

While a base mesh has a highly accurate structure, we observed that it often
lacks fine-grained appearance details from all the given input views (primary
view and secondary views(s)). This is illustrated in Fig. 9a and b.

To resolve this, we designed a 2nd stage that focuses on capturing the fine-
grained appearance details of each view. Our 2nd stage is outlined in Fig. 5.
Firstly, we select a view v from the set of input views. Then, as seen in the
figure, we condition our encoder on the rotated base mesh (G′

S), which already
captured the coarse but accurate structural information from all the input views.
Given such a conditioning, we allow the encoder to now focus on capturing fine-
grained appearance details from selected view v.

To further ensure that appearance details are captured, we have two addi-
tional features in the 2nd stage. The first feature, which was just explained, is
the use of GV (as shown in Fig. 5). By complementing G′

S with GV , the en-
coder is able to identify which regions on the rotated base mesh are visible from
view v. Relative to invisible regions, the encoder will make less error modifying
the visible regions. Thus, knowing where the visible regions are encourages the
encoder to make more decisive and sharper modifications to these regions.

The second additional feature in the 2nd stage is the use of Depth Oriented
Sampling (DOS) from IntegratedPIFu [4]. As shown in Fig. 5, for a given view,
we will generate a partial refined mesh. However, for a partial refined mesh, we
are actually only interested in the regions on the mesh that are visible from
that given view. For this reason, it makes sense to use DOS to train the encoder
and MLP that are used in the 2nd stage. This is because DOS works best when
reconstructing mesh surfaces that are directly facing the camera direction (i.e.
mesh regions that are visible from the given view). We briefly explain DOS now.

Our 1st stage model predicts coarse-grained occupancy (in or out) of sample
points in a 3D space to produce the base mesh. In contrast, our 2nd stage model,
with use of DOS, predicts fine-grained displacement values of the sample points
in the camera direction to produce a partial refined mesh.

Intuitively, given the base mesh as prior and the use of DOS, our 2nd stage
model is trying to shift and adjust the base mesh’s surface in the camera direction
such that the resulting partial refined mesh better reflects the appearance details
of the given views (see Fig. 8).

Visibility-based Fusion Each given view is used to generate a partial refined
mesh. We aim to use these partial refined meshes to update the original base
mesh. To do so, we transform the partial refined meshes to the primary view’s
3D camera space so that they are physically aligned with the base mesh. Then,
we will use these partial refined meshes to update the values in GS , which is a
256× 256× 256 3D feature grid containing the SDF values of the base mesh.

If a partial refined mesh is created from view v, then this mesh will have the
most accurate shape and geometry at regions that are visible from view v. For



10 K. Y. Chan et al.

Camera Direction

View 2

View 1

View 2

View 1

GT SDF (at exactly 0.5)
Predicted SDF 
(Base Mesh)

Predicted SDF 
(Partial Refined Mesh)

< 0.5 > 0.5

Errors 
(displacement 
in camera 
direction)

Corrections

Fig. 8: Illustration of our Iterative Mech-
anism

left view

wavy artifacts

(a) Groundtruth (b) Base Mesh (c) Final Mesh

Fig. 9: Evaluation of 3DFG-PIFu’s 2nd
Stage.

this reason, we will identify locations on a partial refined mesh that are visible
from its corresponding view and then extract the SDF values at these locations.
So, for each partial refined mesh, these ‘visible’ SDF values are extracted and
used to overwrite the GS grid. In the end, the updated GS , which is also referred
to as our final mesh in SDF form (GF ), will be a mix of SDF values from the
base mesh and the partial refined mesh(es). To convert the GF to mesh form,
we use the Marching Cube algorithm.

3.3 SDF-based SMPL-X features

In multi-view settings, it is possible to use methods, such as [18] and [9], to
predict a SMPL-X mesh that is fairly close to the ground truth. Thus, some
multi-view pixel-aligned implicit models, like DeepMultiCap [22] and SeSDF [1],
use a SMPL-X mesh as a prior before predicting a human body mesh. In 3DFG-
PIFu, we also offer an option to use SMPL-X meshes as a prior.

A well-known approach to incorporate a SMPL-X mesh as a prior in a pixel-
aligned implicit model is via the use of voxel-aligned features introduced by
PaMIR [23]. To obtain the voxel-aligned features, the SMPL-X mesh is first
voxelized and then fed as an input to a 3D CNN, as shown in bottom of Fig. 4.
Voxel-aligned features are produced by this 3D CNN. The voxel-aligned features
are then used as an input to a MLP, which will produce a human body mesh.
Voxel-aligned features are used in DeepMultiCap and SeSDF (with a PointNet).
We can use voxel-aligned features in 3DFG-PIFu as well, as seen in Fig. 4.

But, as Fig. 4 shows, the features produced by the Encoder (‘Pixel-aligned
Features’) are only fused with voxel-aligned features at the end of the pipeline.
Moreover, the fusion is point-wise and localized. This means the pixel-aligned
feature that corresponds to a sample point is fused only with the specific voxel-
aligned feature that corresponds to the same sample point. In other words, there
is no global interaction between voxel-aligned features and pixel-aligned features.

We aim to design a method to fuse a SMPL-X mesh earlier in the pipeline
and in a global manner. A recent method that does this is S-PIFu [3]. S-PIFu
extracts a set of handcrafted 2D feature maps from a SMPL-X mesh. These maps
are concatenated with the input image and then used as inputs at the start of the
pipeline. However, useful 3D information is lost when S-PIFu reduces a SMPL-X
mesh into a set of 2D handcrafted features. Thus, we propose our SDF-based
SMPL-X features to directly replace the 2D handcrafted features. SDF-based
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Fig. 10: Qualitative evaluation with SOTA models

SMPL-X features retain 3D information by directly converting a SMPL-X mesh
into a 3D feature grid of SDF values.

SDF-based SMPL-X features (GX) is a 3D grid of SDF values (as seen in Fig.
4). GX is similar to GS , G′

S , and GF except that GX involves a SMPL-X mesh.
To get GX , we first transform the SMPL-X mesh to the 3D camera space of
the primary view. From the transformed SMPL-X mesh, we sample a 3D grid of
SDF values. Each SDF value ranges from -1 to 1, where the value of 0 represents
a surface on the SMPL-X mesh.

As shown in Fig. 4, GX can be used together with PaMIR’s voxel-aligned
features, and we show later on that this combination yields the best results.

4 Experiments

As this is a sparse views set-up, we set the number of views V=2 and set the
angle between the two views as 90 degree. It is feasible to use other angles as
well. Later in Sect. 4.3, we experiment with V >2.

4.1 Datasets

In our experimental setup, we utilize the THuman2.0 dataset [17] as the training
set for our models as well as other competing models. The THuman2.0 dataset
comprises 526 high-quality, full-body scans (or meshes) of ethnic Chinese human
subjects. A 80-20 train-test split of the dataset is used. For each training mesh, we
render 36 RGB images (each spaced 10 degree apart) using a weak-perspective
camera. For each training iteration, two views that are 90 degree apart are
randomly selected.

Furthermore, we use BUFF dataset [19] and MultiHuman dataset [22] for
the evaluation of all models. No model is trained using these datasets. For
BUFF dataset, we followed IntegratedPIFu [4] and performed systematic sam-
pling (based on sequence number) on the dataset. This resulted in 101 human
meshes that were used for evaluating the models. Utilizing systematic sampling
allowed us to avoid meshes that have both the same human subject and the
same pose. For MultiHuman dataset, all single human scans are used.
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Table 1: SOTA vs Ours. The IntegratedPIFu [4] used is its multi-view version. ‘SM’
indicates if a groundtruth SMPL-X mesh is used. ‘HR’ indicates if 1024x1024 RGB
images are used. By default, 512x512 RGB images are used.

THuman2.0 BUFF MultiHuman
Methods SM HR CD (10-5) P2S (10-5) Normal CD (102) P2S (102) Normal CD (10-5) P2S (10-5) Normal
Multi-view PIFu × × 10.79 17.03 5471 4.357 7.005 4839 8.197 9.843 6046
IntegratedPIFu × ✓ 10.05 15.75 5324 4.576 7.497 4738 8.481 9.970 5961
DeepMultiCap ✓ × 8.208 7.506 9589 12.45 14.78 12081 32.83 29.16 11518
SeSDF ✓ × 6.302 9.181 5388 3.848 5.779 5259 7.167 9.276 6157
Ours (No HR, No SM) × × 5.796 5.811 5386 2.509 2.286 4797 6.320 5.737 5352
Ours (HR, No SM) × ✓ 5.133 5.028 5317 2.508 2.121 4694 5.315 4.866 5116
Ours (No HR, w SM) ✓ × 3.560 3.139 5285 3.375 2.694 4758 5.633 5.070 5428
Ours (HR, w SM) ✓ ✓ 3.555 3.129 5212 3.412 2.700 4560 5.391 4.934 5003

Fig. 11: SeSDF vs our 3DFG-PIFu.

left view

wavy artifacts

(a) Groundtruth (b) No GM (c) With GM
Hand length is inaccurate Hand length is 

accurate

Groundtruth Groundtruth

Groundtruth (colored) overlaid with Predicted Mesh

Groundtruth (colored) overlaid with Predicted Mesh

Fig. 12: Qualitative evaluation of GM

4.2 Comparison with State-of-the-art

We compared our models against other existing models on multi-view clothed hu-
man reconstruction. The models we compared with include Multi-view PIFu [13],
IntegratedPIFu (multi-view version) [4], DeepMultiCap [22], and SeSDF [1].
We also compared with DoubleField [15] and Data-Driven 3D Reconstruction
method [24] in our Supp. Mat. In our quantitative evaluation, we use metrics
that include Chamfer distance (CD), Point-to-Surface (P2S), and Normal repro-
jection error (Normal). These metrics are also used in [1, 4, 13,22].

Qualitative Evaluation We evaluate the methods qualitatively in Fig. 1 and Fig.
10. In these figures, we show the meshes produced by two of our models. Our
first model (in column (e)) uses neither a SMPL-X mesh nor 1024x1024 high-
res images. Our second model (in column (f)) does not use a SMPL-X mesh
but uses 1024x1024 high-res images. Among the SOTA models, IntegratedPIFu
uses high-res images, while DeepMultiCap and SeSDF use a groundtruth SMPL-
X mesh. Comparison with SeSDF is shown in Fig. 11. We find that our models
outperformed SOTA models in both structural accuracy and appearance details.

Quantitative Evaluation In Tab. 1, we compared our models with existing meth-
ods quantitatively. Because different SOTA methods require different types of
inputs (i.e. groundtruth SMPL-X or high-res images), and these different inputs
may give additional advantage to a method, we decided to train four different
versions of our model, with each version using a different combination of inputs
as shown in the table. The table shows that our methods significantly outperform
the existing models in all three datasets. See Supp. Mat. for more analysis.
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Table 2: Quantitative evaluation of GM

THuman2.0 BUFF
Methods CD (10-5) P2S (10-5) CD (102) P2S (102)
PIFu 26.97 25.10 9.651 9.247
PIFu + GM (GN not used) 6.626 7.212 2.530 3.005
PIFu + GM (GN is used) 6.007 6.634 2.386 2.999

Table 3: Quantitative evaluation of GV at visible regions
THuman2.0 BUFF

Methods CD (10-5) P2S (10-5) CD (10-4) P2S (10-4)
No GV 4.036 2.964 1.315 1.096
With GV 3.891 2.840 1.284 1.056

4.3 Ablation Studies

Evaluation of the Different 3D Feature Grids Firstly, in order to assess the effec-
tiveness of GM , we train and compare a single-view PIFu that is either not given
or given GM as an additional input. The comparison is shown quantitatively in
the first two rows of Tab. 2 and qualitatively in Fig. 12. Notably, with GM , the
single-view PIFu can also outperform a Multi-view PIFu (1st row of Tab. 1).

Next, as aforementioned, GM can be complemented with GN . Thus, we also
show the results when GM is used with GN in a single-view PIFu (see last row
of Tab. 2). The results clearly demonstrated the benefit of including GN .

We also evaluated GV by training the 2nd stage of 3DFG-PIFu with or
without GV . The results in Tab. 3 and Fig. 13 show that GV improves the
partial refined meshes obtained in the 2nd stage. Aside: As only visible regions
of partial refined meshes are used to form the final mesh, Tab. 3 must consider
only visible regions.

Evaluating our Iterative Mechanism (i.e. Our 2nd Stage) We also show that
3DFG-PIFu’s 2nd stage indeed improves the base meshes from the 1st stage.
See Fig. 9 and Tab. 4. The improved meshes show sharper appearance details.

When more views are made available (i.e. V >2), the 3DFG-PIFu can incre-
mentally update and improve the current mesh without the need for additional
training. We simply replace the base mesh with the current mesh and re-run the
2nd stage again. Results are shown in Fig 14.

Evaluation of SDF-based SMPL-X features In order to evaluate the effectiveness
of our SDF-based SMPL-X features (GX), we train and compare a single-view
PIFu that is given either (i) S-PIFu features, (ii) PaMIR’s voxel-aligned features,
(iii) our GX , or (iv) PaMIR’s voxel-aligned features + our GX .

left view

wavy artifacts

(a) Groundtruth (b) Without GV (c) With GV 
Fig. 13: Partial refined meshes obtained w and w/o GV
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A quantitative comparison is shown in Tab. 5. The table shows our GX

outperformed S-PIFu features. Whether our GX is combined with voxel-aligned
features or not, it clearly improves the performance of a model when in use.
Qualitatively, Fig. 15 shows that combining PaMIR’s voxel-aligned features with
our GX yields the most robust results.

5 Limitations and Conclusion

In our Supp. Mat., we address concerns on 3DFG-PIFu’s efficiency. In short, via
a series of implementation tricks, we show 3DFG-PIFu is actually more efficient
than roughly half of the existing SOTA methods.

We have introduced 3DFG-PIFu, a multi-view pixel-aligned implicit model
that uses 3D Feature Grids to fuse multi-view information. 3DFG-PIFu also
proposed an iterative pipeline that combines appearance details from multiple
views into a single mesh. Lastly, 3DFG-PIFu introduced SDF-based SMPL-X
features, which is a new way of incorporating a SMPL-X mesh into a pixel-
aligned implicit model.

Table 4: Quantitative evaluation of 3DFG-PIFu’s 2nd Stage
THuman2.0 BUFF

Methods CD (10-5) P2S (10-5) CD (102) P2S (102)
Base meshes (1st Stage) 6.007 6.634 2.386 2.999
Final meshes (2nd Stage) 5.796 5.811 2.509 2.286

Table 5: Quantitative evaluation of GX

THuman2.0 BUFF
Methods CD (10-5) P2S (10-5) CD (102) P2S (102)
S-PIFu Features 4.488 4.030 6.812 6.880
Voxel-aligned Features 4.104 3.740 8.037 9.225
GX (Ours) 4.352 3.734 6.351 6.641
Voxel-aligned Features + GX (Ours) 3.970 3.483 8.012 8.827

left view

wavy artifacts

(a) Groundtruth (b) With 2 Views (c) With 3 Views

(i) Frontal 
View

(ii) Right 
View

(ii) Left 
View

(ii) Rear 
View

(d) With 4 Views
Fig. 14: Effect of using more views in 3DFG-PIFu.

Fig. 15: Qualitative evaluation of GX
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