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A Supplementary Overview

Supplementing our main paper, we include two additional files. First, we pro-
vide a video file comparing real-world interactions of users with LazyDiffusion
and our baseline, RegenerateImage. Second, we include this PDF document con-
taining further experiments, results, and details. In Appendix B, we conduct
an ablation study, comparing our chosen architecture with possible alternatives.
Then, in Appendix C, we analyze our blending approach at post-processing and
extend the qualitative evaluation from the main paper. Finally, in Appendix D,
we offer additional implementation details, completing the paper.

B Architecture Design and Ablation

Pivotal to our architectural design is compressing the visible context to fewer
tokens and utilizing it within the diffusion decoder. In the following section, we
describe the experiments leading to our eventual design.

B.1 Setting

While text-based inpainting serves as the primary application demonstrated in
this paper, LazyDiffusion is readily applicable to a range of other local genera-
tion applications. When designing our architecture in early stages of this work,
we applied our method to unconditional inpainting [15, 18] on ImageNet [2] at
256 × 256 resolution, as this setting demands substantially less training time
and resources. We adopt the masking protocol from DeepFillV2 [18]. We use the
same ViT XL/2 [3] backbone for our context encoder and adopt DiT XL/2 [10]
for the diffusion transformer. Note that the PixArt-α [1] architecture, used in
the main paper, is a straight-forward adaptation of DiT to support text con-
ditioning. Consequently, the architectures we describe next can seamlessly use
both as backbones.
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B.2 Chosen design review

Recall that in our proposed architecture, discussed in Sec. 3, we selectively retain
only encoder output tokens corresponding to the masked region, marked Thole.
This ensures that downstream decoder computation scales with the mask size
rather than the image size. At time t, the decoder denoises tokens X t

hole while
conditioning on the retained context tokens. We implement the conditioning by
concatenating the context tokens to the noise tokens at the decoder’s input.
Omitted from the main paper for clarity, we prepend a linear projection layer
to the diffusion transformer backbone, projecting the concatenation of tokens
to the decoder’s hidden dimension d. Other than the first layer, the diffusion
transformer is then used as-is to generate k = |Thole| tokens. Rewriting Eq. (4)
from the main paper with greater detail, a single denoising step reads as

X t−1
hole = DiT

(
linear(X t

hole ⊕ Thole); t, c
)
, (1)

where ⊕ denotes concatenation along the hidden dimension. Transformers run-
time scale quadratically with the number of tokens. Thus, the runtime of this
architecture scales as O(k2). In this section, we refer to this architecture as the
“Concat Hidden” variant.

B.3 Alternative designs

We next describe alternative designs with the goal of ablating the two core
choices – dropping visible tokens to compress context and conditioning through
concatenation

Full context designs, utilizing the full set of N encoder tokens Tall as context:

– RegenerateImage– As described in the paper, we adapt DiT for inpainting
using the GLIDE [8] conditioning approach. This model represents the com-
mon approach in local editing literature – operates on the entire canvas thus
seeing the full context but also re-generating the entire image. The runtime
complexity of this variant scales as O(N2). Note that N >> k.

– Full-Context Cross-Attention – We add a cross-attention layer to the DiT
block, between the self-attention and MLP layers. Other than the upstream
activations, the cross-attention layer gets as input the full encoder context
tokens Tall. Despite “seeing” the full context, the model generates only the k
masked patches. It’s runtime scales as O(Nk).

Compressed context designs. Comparable to our chosen design – the following
models utilize the masked tokens Thole as context, generate only the masked re-
gion and have runtimes that scale with O(k2). They differ in their mechanism
to condition on the context tokens. We experiment with simple conditioning
approaches that are applied near the input level. This prevents designs from be-
ing tightly coupled with the specific backbone architecture, which we anticipate
would facilitate easier adaptation to future diffusion transformers.
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– Concat Length – The sets of tokens are concatenated over the sequence
length, rather than hidden dimension. This requires the two sets of tokens
to have the same hidden dimension. To this end, we first linearly project
the context tokens to the decoder’s hidden dimension d. Formally, a single
denoising step is done by

X t−1
hole = DiT

(
[X t

hole, linear(Thole)]; t, c
)
, (2)

where [·, ·] represents the sequence-length concatenation.
– Weighted Sum – An additional weight w ∈ Rd is learned, and the input to

DiT is a weighted sum of the two sets of tokens, formally

X t−1
hole = DiT

(
X t

hole + w ∗ linear(Thole); t, c
)
. (3)

– Compressed-Context Cross-Attention – We again add a cross-attention layer,
but here it attends only to the reduced set of tokens Thole. To better resemble
other designs in this category, incorporating the conditioning near the input,
we add the cross-attention layer only to the first DiT block.

B.4 Configurations

DiT’s FLOPs are strongly negatively correlated with FID, across different config-
urations [10]. To facilitate direct comparison, we slightly adjust the XL/2 config-
uration for the O(k2) variants so that their FLOP counts are similar. We provide
the exact hyperparameters used with each variant in Tab. 1 and the resulting
FLOP counts as a function of mask size are in Fig. 1a. As can be seen, Con-
cat Hidden, Weighted Sum and the Compressed-Context Cross-Attention have
comparable FLOPs on the entire spectrum ranging from mask ratio of 10% to
100%. For full masks, the Concat Hidden, Weighted Sum variants use 0.4% and
0.6% more FLOPs than RegenerateImage, respectively. This implies that our
conditioning introduces negligible overhead and is well suited for using larger
masks with no apparent downside. The other three variants have strictly greater
FLOP counts.

B.5 Results

We track the FID [5] scores across 500K training iterations for all decoder designs
and present the results in Fig. 1b.

Initially, we observe that “Concat Hidden” and “Weighted Sum” notably out-
perform all other variants. We attribute this superior performance to the explicit
one-to-one context provided by these approaches. In both cases, each noise token
is directly conditioned on the corresponding context token. In contrast, other
methods require the decoder to extract context from a set of encoder tokens,
which appears to be more challenging despite the use of positional embedding
and more expressive mechanisms such as cross-attention.

Furthermore, we note that the more computationally intensive baselines,
which leverage additional context, do not yield better results. Specifically, in
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Fig. 1: Comparing the various architecture designs in terms of (a) FLOPs and (b)
quality, measured via FID [5]. Solid lines represent variants of our approach – the
encoder outputs a compressed context and the decoder generates only the masked
region. Dashed lines represent mechanisms in which the decoder is conditioned on
the full image context and either generates the masked region or the entire image.
The latter is the approach taken by existing inpainting approaches [14]. The runtime
complexities of different approaches is noted in the legend. As can be seen, conditioning
each generated token directly on its corresponding compressed context token, as done
for the “Concat Hidden” and “Weighted Sum” variants, leads to superior performance,
despite using fewer FLOPs than competing approaches.
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Table 1: Hyperparameters configuration for all architecture designs. Starting from
DiT’s XL/2 configuration, we slightly adapt the hyperparameters to ensure FLOP
counts of O(k2) are comparable.

Runtime
Complexity Model Layers Hidden

Dimension

O(k2)

Concat Hidden 28 1152
Weighted Sum 28 1152
Concat Length 24 1024
Cross Attention 26 1152

O(Nk) Cross Attention 28 1152
O(N2) RegenerateImage 28 1152

the two cross-attention variants, the one that uses compressed context is supe-
rior to the one using full context. Our attempts to improve the performance of
the RegenerateImage baseline by using a context encoder and a “Concat Hid-
den” based conditioning were futile; only dropping the visible context tokens
was effective. We speculate that incorporating the full context imposes addi-
tional complexity on the decoder’s task. In comparison, with LazyDiffusion, the
information bottleneck encourages the context to be expressive but selective,
allowing the decoder to “concentrate” on synthesis only.

Interestingly, in the text-conditioned setting, LazyDiffusion is not superior
in terms of quality to RegenerateImage. This disparity might be explained by
the lower level context required for unconditional inpainting, which primarily
involves continuing surrounding textures, compared to the semantic context re-
quired for generating novel objects.

B.6 Implementation details

We train and sample all models with the EDM [6] diffusion formulation. We
use Stable Diffusion’s [14] public latent VAE. We train the encoder and decoder
jointly from scratch, on 8 NVIDIA A100 GPUs, using global batch size of 256,
using the AdamW [7] optimizer with constant learning rate of 10−4. We sample
using 40 denoising steps and classifier-free guidance scale of 4.0. Other details
are the same as in the text-conditioned setting and are detailed in the main
paper or in Appendix D.

C Additional Experiments and Results

C.1 Blending

LazyDiffusion generates only the masked regions of the latent image. To achieve
the final desired results, these regions must be composited with the visible im-
age regions and decoded into an image. Initially, we naively blend the generated
latent with the latent of the input image, as described in Eq. (5) in the main
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paper. However, we observe that passing the blended latent through the latent
decoder D occasionally results in poorly harmonized images, characterized by
faintly visible seams between the generated and visible regions. This phenomenon
was previously noted by Zhu et al. [19] when performing local editing with Sta-
ble Diffusion [14]. It is conjectured that the latent encoding loses subtle color
information, hindering image harmonization. In response, Zhu et al. proposed
an alternative latent decoder that additionally conditions on the masked input
image I⊙(1−M) itself and is also significantly larger. Specifically, their decoder
runs for 800ms, 4.5× longer than the “vanilla” Stable Diffusion latent decoder.

In our experiments, we find that simply performing Poisson blending [11] in
pixel space achieves comparable results, while running only for 35ms on average.
Therefore, we introduce a Poisson blending post-processing step to our pipeline.
We demonstrate the harmonization issue and compare the two approaches in
Fig. 2.

C.2 Additional Results

In Figs. 3 and 4, we extend Fig. 7 of the main paper and provide more qualita-
tive samples comparing LazyDiffusion with the four baselines – RegenerateCrop,
SD2-crop, RegenerateImage and SDXL. We find that LazyDiffusion is mostly
comparable to RegenerateImage and SDXL even when inpainting objects that
require high semantic context, despite using a compressed context and running
up to 10× faster.

Finally, in Figs. 5 and 6 we provide a non-curated set of results, with masks
and text prompts produced automatically by the segmentation and captioning
models. The main challenge we observe from these results is that the model
partially ignores the text when it conflicts with the shape of the mask. For
example, the hamburger in Fig. 5 is generated without a hat.

D Additional Details

Evaluation. We compute FID [5] using clean-fid [9]. For CLIPScore [4], we report
the “local” version that takes as input a crop around the generated object and
the local text, describing the object. This approach was previously advocated
by Wang et al. [16] and is more suitable for image inpainting than using the full
image and text caption for the entire image.

Architecture. As described in the main paper, we initialize our decoder with
PixArt-α’s publicly released weights. Our decoder has an additional linear layer,
introduced in Appendix B.2, that projects the concatenation of context and noise
tokens to the decoder’s hidden dimension d. We initialize this layer such that it
outputs the noise tokens in its input and ignores the context. This ensures that
at initialization, if given a full mask and thus operates on all tokens, our results
are exactly equivalent to PixArt-α’s.



LazyDiffusion 7

Input Zero-pad 
Decoding

Vanilla 
Decoder

Zhu et al. 
Decoder

Poisson 
Blending

“H
an

ds
om

e 
bo

y”
“le

tt
uc

e”
“C

ity
 a

t n
ig

ht
”

“G
ira

ffe
”

“P
op

py
 fl

ow
er

”

Fig. 2: From partial latent generation to inpainted image. The “zero-pad decoding”
column is produced by decoding the incremental generation with zero padding, demon-
strating the object in isolation. To produce the desired composited image, we blend the
incremental generation with the latent input. This occasionally leads to visible seams
and lack of color harmonization as seen in the “vanilla decoder” column. This issue
can be solved using the latent decoder proposed by Zhu et al. [20] or with Poisson
blending [11]. We recommend zooming in to better view the seams or lack thereof.
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Fig. 3: Comparing inpainting results on objects that require modest context, simi-
lar to Fig. 7(Top). All models usually produce reasonably good results. Occasionally,
SDXL [12] and SD2 [14] do not generate anything – a result of their usage of random
masks rather than object-level masks [16,17].
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Fig. 4: Comparing inpainting results on objects that have close semantic relationship
with the observed canvas, similar to Fig. 7(Bottom). Approaches that only process a
crop may generate objects that appear reasonable on their own but lack coherence
within the broader context of the image. In contrast, LazyDiffusion produces results
comparable to those produces by methods regenerating the entire image. Occasionally,
LazyDiffusion does not fully utilize the visible context. For instance, our “sushi” result
accurately depicts the orange wrap and sesame seeds on top, consistent with other
sushi in the roll, but it features a different filling.
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Fig. 5: A random set of results produced by LazyDiffusion. For each input we produce
three outputs from different random seeds.
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Fig. 6: A random set of results produced by LazyDiffusion. For each input we produce
three outputs from different random seeds.
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Data. As discussed in the paper, we adopt a data processing pipeline similar
to that of SmartBrush [17]. Specifically, our masks are originally produced by
an entity segmentation model [13] and are dilated to simulate the rough and
inaccurate masks created by users. First, with probability of 20% we replace
the segmentation mask with a rectangular mask corresponding to a bounding
box. Regardless, we dilate the mask by first performing Gaussian Blurring and
thresholding the output. The size of the Gaussian kernel is sampled uniformly
from [image size/15, image size/5] and its standard deviation along X and Y
is sampled uniformly and independently from [3, 17]. The threshold is sampled
uniformly from {10−1, 10−2, 10−3, 10−4}.
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