
Lazy Diffusion Transformer for Interactive Image
Editing

Yotam Nitzan1,2 , Zongze Wu1 , Richard Zhang1 , Eli Shechtman1 , Daniel
Cohen-Or2 , Taesung Park1 , and Michaël Gharbi1

1 Adobe Research
2 Tel-Aviv University

2.65s

“blue sky with clouds” “distant mountain range” “brown grass field” “gazelle” “lion cub”

mask: 26%

1.50s

mask: 38%

2.26s

mask: 7%

0.96s

mask: 7%

0.89s

mask: 46%

Fig. 1: Incremental image generation at 1024×1024 using LazyDiffusion with 20 diffu-
sion steps. The model generates content according to a text prompt in an area specified
by a mask. Each update generates only the masked pixels, with a runtime that depends
chiefly on the size of the mask, rather than that of the image.

Abstract. We introduce a novel diffusion transformer, LazyDiffusion,
that generates partial image updates efficiently. Our approach targets
interactive image editing applications in which, starting from a blank
canvas or an image, a user specifies a sequence of localized image mod-
ifications using binary masks and text prompts. Our generator operates
in two phases. First, a context encoder processes the current canvas and
user mask to produce a compact global context tailored to the region to
generate. Second, conditioned on this context, a diffusion-based trans-
former decoder synthesizes the masked pixels in a “lazy” fashion, i.e., it
only generates the masked region. This contrasts with previous works
that either regenerate the full canvas, wasting time and computation, or
confine processing to a tight rectangular crop around the mask, ignoring
the global image context altogether. Our decoder’s runtime scales with
the mask size, which is typically small, while our encoder introduces neg-
ligible overhead. We demonstrate that our approach is competitive with
state-of-the-art inpainting methods in terms of quality and fidelity while
providing a 10× speedup for typical user interactions, where the editing
mask represents 10% of the image.

https://orcid.org/0000-0001-8851-6279
https://orcid.org/0000-0001-9190-1717
https://orcid.org/0000-0003-2507-4674
https://orcid.org/0000-0002-6783-1795
https://orcid.org/0000-0001-6777-7445
https://orcid.org/0009-0005-9534-6868
https://orcid.org/0000-0002-4190-6955

2 Y. Nitzan et al.

1 Introduction

Diffusion models have had remarkable successes in generating high-quality and
diverse images. They are the powerful engine behind exciting local image editing
applications based on inpainting, where a user provides a mask and a text prompt
describing a region to modify and the content to generate, respectively [33, 44,
54]. While current approaches yield impressive results, they are also slow and
wasteful. Invisible to the end user, the inpainting pipeline generates an entire
image and then selectively utilizes only the few pixels located within the mask,
discarding all others. Although this approach is generally common in inpainting
pipelines [59,60], its inefficiency is particularly pronounced with diffusion models,
due to their iterative sampling procedure, precluding their usage in interactive
workflows. Practitioners [38,55] save time and computation by cropping a small
rectangular region around the mask, possibly downsampling for processing with
the diffusion, then upsampling and blending the result to fill the hole. In doing
so they compromise image quality and sacrifice the global image context, which
often leads to spatially inconsistent outputs (Compare Figs. 2(a) and 2(b)).

We propose a new generative model architecture, which we call LazyDif-
fusion. Our approach, illustrated in Fig. 1, generates partial image updates,
strictly limited to the masked region, and does so efficiently, with a cost com-
mensurate to the mask size. Yet, its output respects the global context given by
the observed canvas (Fig. 2(c)). To achieve this, our key idea is to decouple the
generative process into two distinct steps. First, an encoder processes the visible
canvas and mask, summarizing them into a global context code. This encoder
processes the entire canvas, but it only runs once per mask. Second, conditioned
on the global context and the user’s text prompt, a diffusion decoder generates
the next partial canvas update. This model runs many times during the diffusion
process, but unlike previous works, it only operates on the masked region. Since,
in practice, most updates cover small areas (10–20% of the image), this yields
significant computation savings, making the editing experience more interactive.

Our encoder and diffusion decoder operate in a latent space [44], for efficiency.
Both use the transformer architecture [13, 36, 53]. The transformer architecture
is particularly appealing because splitting the image into small enough patches
(tokens) enables generating arbitrarily-shaped regions with minimal waste. The
encoder processes the entire image and mask and produces a mask-dependent
context. We keep only the context tokens corresponding to the location of the
masked patches. This ensures the downstream computation only scales with the
size of the masked region, and encourages the compressed context to represent
the relationship of the masked region to the rest of the image. At each denoising
step, the decoder only processes tokens corresponding to masked patches. While
the decoder generates only the masked region, it “sees” the entire image, through
the compressed context, ensuring strong coherence. The conditioning on context
is efficient and adds negligible computational overhead. In contrast, previous
methods [1,44,54] achieve spatial consistency by uniformly processing all image
regions, masked or not. Figure 3 illustrates the conceptual difference between
our approach and a baseline diffusion transformer.

LazyDiffusion 3

19.48s

Generate entire image
with full context

(a)

2.93s

Generate missing
with crop context

(b)

1.90s

Ours - Generate missing
with full context

(c)

“Healthy homemade
candies with nuts and

dry fruits”

Input

Fig. 2: Comparing inpainting approaches. (a) Most works [39,44] generate the entire
image, utilizing the full image context and fill the hole by discarding the non-masked
regions. While the outcome aligns well with the image, the process is time-consuming.
(b) generating only a lower resolution crop around the mask is more efficient and
still seamlessly blends with nearby pixels [38, 55]. However, the inpainted content is
semantically inconsistent with the overall image context. (c) our approach ensures
both global consistency and efficient execution.

Our approach reduces computational cost significantly for small masks, typ-
ical in interactive editing. We achieve a speedup up to ×10 over methods pro-
cessing the entire image, for mask covering 10% of the image. Additionally, our
model produces results of comparable quality, indicating that the compressed
context is rich and expressive. In an interactive image generation context, our
method amortizes the overall synthesis cost over multiple user interactions, im-
proving interaction latency. It also amortizes the encoder cost when generating
multiple updates for a given mask, using different input noise or text prompt
(Fig. 1, rightmost panel).

2 Related Work

Speeding up diffusion models and inpainting. Diffusion models [21, 48, 51] are
a significant breakthrough in generative modeling [2, 11, 42, 44, 45] and edit-
ing [1, 31], producing images with unparalleled quality and diversity. But they
remain costly to evaluate, due to the iterative nature of their sampling process.
Numerous methods have been developed to speed up their inference time by
performing less denoising steps. Prominent approaches include better samplers
and ODE solvers [22, 28, 29, 49], and distillation techniques [26, 30, 46, 50]. Con-
sequently, the gap between recent one-step diffusion models [32,39,58] and their
expensive multi-step counterparts is closing. Our approach also seeks to speed up
the image synthesis process for diffusion-based models, but our contribution is
largely orthogonal and can be combined with existing methods: we speed up the
atomic denoising iteration, rather than performing less iterations. We achieve
our speedup by generating only a subset of pixels, supporting applications per-

4 Y. Nitzan et al.

full-image input all tokens interactincremental noise
ours baseline

only masked tokens interact

incremental

generation full generation

decoder decoder

compressed context

Fig. 3: Our diffusion transformer decoder (left) reduces synthesis computation using
two strategies. First, we compress the image context using a separate encoder (not
shown) outside the diffusion loop. Second, we only generate tokens corresponding to
the masked region to generate. In contrast, typical diffusion transformers (right) [7,36]
maintain tokens for the entire image throughout the diffusion process, to preserve global
context. When performing inpainting, such model generates a full-size image, most of
which is discarded in order to in-fill the hole region only. Existing convolutional diffusion
models for inpainting [44] suffer from the same drawbacks.

forming partial image generation, such as inpainting. Previous works following
this approach have proposed vastly different methods. Li et al. [24] reuse cached
activation maps from previous generations and process only edited regions – a
versatile concept that can be integrated with many existing architectures. How-
ever, the per layer and denoising step cache consumes additional GPU memory
and must be recomputed when changing the text prompt. Additionally, pro-
cessing only edited regions prevent high-context and long-range dependencies.
CoordFill [25] do not consider diffusion models or text-based generation, but
propose a pixel-wise generator architecture that uses a downsampled version of
the full image for context, resulting in inferior generation quality.

Transformer-based generative models. Early transformers for image generation
generate image autoregressively [8, 15, 43] in scanline order. CogView2 [12] pro-
poses a hierarchical transformer to improve generation speed and shows ap-
plication to text-guided image inpainting with rectangular masks. Later non-
autoregressive models like MaskGIT [6] generate images gradually, a few tokens
at a time, but they do so iteratively, generating all tokens at every iteration
and discarding the unmasked ones, which is inefficient. They focus on sequential
generation to improve image quality.

Our transformer-based model design is inspired by Masked Autoencoders
(MAEs) [17], but we reverse their asymmetric design. Our encoder processes all
the tokens to produce context at the masked locations, and our decoder operates
on the masked tokens. Our decoder is a powerful diffusion transformer, recently
proposed as an alternative to the popular UNet design [36, 52]. Most relevant
to this work, DiT [36] was proposed for class-conditioned image generation and
was improved in PixArt-α [7] to support text-conditioning. Our diffusion de-
coder is an adaptation of PixArt-α that additionally conditions on the global
context produced by the encoder. Masked diffusion transformers were previously
explored for representation learning [16,56] or for minimizing training cost [61].
Our focus is on speeding inference to improve interactivity. Recent trends in-
dicate that the transformer architecture becoming central to state-of-the-start
image [14] and video generators [3], for which our method would enable faster
inference and interactive applications.

LazyDiffusion 5

Text-guided diffusion-based image editing. Text-to-image diffusion models have
become the de-facto foundation for generative image editing methods. With user
edits typically spatially localized, significant effort has gone into developing tech-
niques that allow precise modifications [4,18,35] by selectively manipulating in-
ternal representations, e.g . attention maps, during the denoising process to affect
only certain local regions without undesirable side-effects. Another line of work
adopts the formulation of inpainting, where a mask is provided to localize the
edit. Blended diffusion [1] and DiffEdit [9] use pre-trained generation models and
spatially blend noised versions of the input into the gradual denoising process to
enforce the preservation of unmasked regions. This indirect approach often re-
sult in artifacts, leading more recent approaches to fine-tune text-to-image mod-
els specifically for inpainting. Starting from an image generation architecture,
GLIDE [33] and Stable Diffusion Inpaint [44] add mechanisms to additionally
condition on the mask and masked image and fine-tune the models to predict the
masked pixels. Recent advancements in this domain involve training inpainting
models with object-level masks [54] rather than random ones and possibly also
object-level text captions [57], mirroring real-world usage more closely. These
works retrofit image generation architectures for local editing, but these models
produce the full image, including regions that should not be changed. This is
inefficient in time and computing resources. Our architecture efficiently performs
local edits by generating only the masked region.

3 Method

Our goal is to develop an efficient diffusion generator for text-guided image
editing, whose generation cost scales with the size of the region to generate, and
which can incorporate the context of the entire image for a fixed, small fraction
of its total cost. Starting from an image I ∈ Rh×w×3, the user specifies the region
to be edited with a binary mask M ∈ {0, 1}h×w and text prompt c, indicating
where and what content to generate. A mask value 1 specifies a hole to inpaint,
and 0 for context pixels to not touch. Unless stated otherwise, we use images of
h = w = 1024 resolution.

Following standard practice, we operate in latent space [44], a compressed
version of the RGB domain (§ 3.1). Observing that the iterative diffusion process
is the computational bottleneck in state-of-the-art generators, our generator has
a novel asymmetric encoder-decoder transformer architecture, as illustrated in
Fig. 4. The encoder (§ 3.2) compresses and summarizes the whole image context
and is only run once. The decoder (§ 3.3) is a transformer-based diffusion denoiser
that is iteratively run, but only on the masked area. As such, computation cost
and latency are proportional to the number of pixels to synthesize, rather than
the entire canvas [1, 54, 57]. This significantly reduces computation since, for
most edits, the masks are small.

3.1 Latent space processing

Following previous works of Latent Diffusion Models (LDM) [44], our model
operates in an intermediate latent space of 8× lower resolution with c = 4 chan-

6 Y. Nitzan et al.

masked input & mask

input noise

input patches

noise patches

output

tokenize

encoded patches global context

context encoder

drop tokens

global context conditioning

output patches

blend

tokenize

text prompt
“jalapeño pepper”

decoder decoder decoder

Fig. 4: Overview. To generate an incremental image update, our algorithm takes as
input a user mask and a text prompt. (top) We start by transforming the visible pixels
and binary mask into patches, and pass them to a vision transformer (ViT) encoder.
We then drop all tokens, except those corresponding to the hole region; this is our
global context. (bottom) To generate the missing pixels, we initialize a set of noise
patches corresponding to the masked region and pass them through a diffusion trans-
former model for several denoising iterations, until we obtain denoised patches. Unlike
previous works [7, 36], which process the entire image, our diffusion transformer only
processes the patches required to cover the missing region. We train our encoder and
diffusion decoder jointly using a diffusion denoising objective on the missing patches.
The generated patches are then blended back into the missing region to produce the
final output. Our model operates in a pretrained latent image space [44], but we illus-
trate our pipeline with RGB images for simplicity.

nels, which reduces computation without significantly impacting visual quality.
We use the pretrained latent VAE of Stable Diffusion [44], denoting the encoder
and decoder E and D, respectively. We encode the masked image as our latent
input [54]:

Z = E (I ⊙ (1−M)) ∈ R
h
8 ×

w
8 ×c, (1)

where ⊙ represents element-wise multiplication across the spatial dimensions.

3.2 Global context encoder

Encoder E processes the whole image, with the goal of efficiently encoding the
information given by the visible region, so that a downstream decoder can syn-
thesize a visually consistent output with the context. Our encoder E is a Vision
Transformers (ViT) [13]. To produce tokens, we first downsample the mask M
using a learned convolution layer to match the latent spatial dimensions, as done
by Wang et al. [54]. Then, we concatenate the downsampled mask and latent
code Z along the channel dimensions and and divide them into 4 × 4 patches,
with an overlap of 1 on each side. This yields N = 64 × 64 = 4096 patches.
Then, following standard practice, we linearly embed each patch and add posi-
tional embedding [53]. Finally, the tokens are passed through the transformers
and produce a new set of N tokens. In summary, the encoder transforms the
input Z and M into a set of N tokens of dimension d = 1152.

LazyDiffusion 7

Tall = {τ1, τ2, . . . , τN} = E(Z,M), τi ∈ Rd. (2)

Token dropping. The set of output tokens contain information regarding the
whole image, but using them all would cause downstream computation to scale
with respect to the input size. Can we instead keep only a subset of tokens, that
would hold the information needed for generation?

As the self-attention layers in the encoder transformer enable all the tokens to
interact, each individual token has the potential to encode the relevant context
of the whole image. As such, we discard the tokens corresponding to the visible
region, keeping the ones corresponding to the hole. Dropping tokens outside the
mask creates an information bottleneck that encourages E to summarize the in-
put context in a compact set of tokens and ensures the downstream computation
only scales with the size of the masked area, since the decoder will thus only
process tokens covering the hole. The tokens should also represent the relevant
information for the given location; previous works visualizing transformers [5]
suggest that this location information can be preserved. Patches with partial
holes are also included, and the visible pixels in those patches are blended in at
the output step. Formally, we maxpool mask M to a 64× 64 map and vectorize
into a set {mi}4096i=1 , where mi ∈ {0, 1}.

Thole = {τi | mi = 1} ⊆ Tall. (3)

The remaining set of Nhole ≤ N tokens form our compressed global context. This
design, along other architectural choices, are evaluated in the supplemental.

3.3 Incremental diffusion decoder

We synthesize the missing pixels, using a transformer-based diffusion decoder
D [7, 36]. Rather than keeping a set of N tokens representing the whole image,
we start with Nhole tokens corresponding to the hole, Xhole = {xi}. The diffu-
sion process creates time-conditioned tokens X t

hole = {xt
i}, where t ∈ [0, ..., T],

starting at time T with features drawn from a unit Gaussian. The decoder pro-
gressively denoises these tokens, conditioned on the T5-encoded text prompt
c [41] and the global context produced by the encoder Thole:

X t−1
hole = D

(
X t

hole ⊕ Thole; t, c
)
, (4)

where ⊕ denotes concatenation along the hidden dimension of corresponding
elements in each set. We find this conditioning mechanism superior to several
alternatives analyzed in Appendix B.

Blending. The final tokens X 0
hole are mapped back into the latent image domain

using a linear layer, and the inverse of the patch-splitting procedure to obtain
a partial latent image Ẑhole ∈ Rh

8 ×
w
8 ×c. The missing tokens, corresponding to

visible pixels, are left uninitialized with zeros. We combine this output with the
visible latent, using pointwise masking, to obtain the final latent composite:

Ẑ = (1−M)⊙ Z +M ⊙ Ẑhole. (5)

8 Y. Nitzan et al.

Finally, this is decoded by the latent decoder to produce the final RGB image
Î = D(Ẑ).

These decoded results occasionally contains faintly visible seams. Previous
works performing inpainting with latent diffusion models observed this phe-
nomenon and addressed it with a dedicated latent decoder [62]. As their decoder
is computationally intensive, we opt to use a simple Poisson blending postpro-
cessing step [37] in RGB space. We discuss this challenge in greater length in
the supplemental.

Training and implementation details. The encoder and decoder models are trained
jointly, end-to-end, to reconstruct masked (latent) pixels, using the Improved
DDPM objective [34]. For the decoder, we adopt the PixArt-α [7] architecture,
and add a single layer to support our conditioning on context. We initialize all
shared layers from the public PixArt-α checkpoint to benefit from their pre-
training. The encoder on the other hand, is trained from scratch. We train our
model for 100,000 iterations on 56 NVIDIA A100 GPUs, using the AdamW op-
timizer [27], with a constant learning rate 2×10−5, weight decay set to 3×10−2

and global batch size of 224. We use T = 1000 diffusion steps during training.
We generate our results using the Improved DDPM sampler [34] with 50 steps,
unless specified otherwise, and set the classifier-free guidance scale to 4.5. All
running times are measured on a single A100 GPU. We provide further details
in Appendix D.

4 Experiments

4.1 Experimental setup

The main paper primarily focuses on a text-conditioned setting, as do the ex-
periments that follow. However, our approach is versatile and can be applied
in other use cases as well. In the early stages of this research, we primarily ex-
plored unconditional inpainting on the ImageNet dataset [10], which are detailed
in Appendix B.

Dataset. We train our model at 1024 × 1024 resolution on an internal dataset
containing 220 million high-quality images, covering a wide variety of objects
and scenes. We produce masks and text prompts in a process similar to that
proposed by Xie et al. [57]. Specifically, we use an entity segmentation model [40]
to segment all objects in an image and then caption each entity with BLIP-2 [23].
To simulate the rough and inaccurate masks created by users, we randomly dilate
the entity mask (see Appendix D for details). During training, we randomly
sample triplets of image, mask, and caption.

Baselines. We compare LazyDiffusion with two inpainting baselines (already
shown in Fig. 2), which we refer to as RegenerateImage and RegenerateCrop.
RegenerateImage, is the approach found in most academic works [39,44,54, 57],
and operates on the entire image. RegenerateCrop, used in popular software
frameworks [38, 55], operates on a tight square crop around the masked region.
The crop is first resized to a fixed low-resolution before processing and is upsam-
pled back afterwards. Both approaches generate as many pixels as their input

LazyDiffusion 9

0.2 0.4 0.6 0.8 1.0
Mask ratio

5

10

15

20

R
un

tim
e

[s
ec

]
LazyDiffusion
RegenerateImage
RegenerateCrop

Fig. 5: Comparing LazyDiffusion’s runtime to that of baselines regenerating the en-
tire 1024 × 1024 image or a smaller 512 × 512 crop around the mask. LazyDiffusion
is consistently faster than RegenerateImage, especially for small mask ratios typical
to interactive edits, reaching a speedup of 10×. Similarly, LazyDiffusion is faster than
RegenerateCrop for mask ratios < 25%. For masks greater than that (dashed), Regen-
erateCrop is technically faster but generates in low-resolution and naively upsamples
to match the desired resolution, harming image quality.

contains (whether full-canvas or local crop), unlike LazyDiffusion that generates
only masked patches.

To ensure a fair comparison, we utilize the PixArt-α architecture for both
approaches. Since there is currently no publicly available PixArt-based inpaint-
ing models, we design and train them ourselves. We adapt PixArt for inpainting
using the same procedure employed to transform Stable Diffusion [44] from gen-
eration to inpainting. Specifically, we incorporate the GLIDE [33] conditioning
mechanism, where the generator operates on 9 latent channels: four channels for
the latent being denoised, four channels representing the latent of the masked
input image, and the last channel containing a downsampled version of the mask.
We train two PixArt models at 1024× 1024 and 512× 512 for RegenerateImage
and RegenerateCrop, respectively.

We also compare with Stable Diffusion variants of these two approaches
for reference: SDXL [39] operates on the entire 1024 × 1024 image, while SD2-
crop [44] operates on a 512×512 crop. It is important to note that these models
utilize different architectures and were trained on different datasets, and hence
are not directly comparable. We include them in this comparison only as refer-
ences for state-of-the-art quality.

4.2 Inference time

We illustrate the overall runtime of all methods in Fig. 5. The baselines run
is constant time, as they operate on fixed size tensors derived from the fixed
input size – full canvas for RegenerateImage and a fixed-size crop for Regener-
ateCrop. In contrast, LazyDiffusion’s runtime scales with the mask size, because
our decoder processes tensors with dimensions proportional to the masked re-
gion. This leads to significant speedups for small masks, typical of interactive
editing applications. For example, with a mask covering 10% of the image our

10 Y. Nitzan et al.

“Cinnamon Roll”“Croissant” “Chocolate fondue” “Churros” “sea turtle”“huge fish” “colorful jellyfish” “red corals”

“Huge waterfall”“Desert cliff” “Lake” “Flooded jungle” “sombrero”“cute smiling cactus” “muscular arms” “spaghetti bowl”

Fig. 6: Progressive image editing (top) and image generation (bottom) using LazyDif-
fusion. Each panel illustrates a generative progression compared to the preceding state
of the canvas to its left. LazyDiffusion markedly accelerates local image edits (approx-
imately ×10), rendering diffusion models more apt for user-in-the-loop applications.

model achieves a ×10 speedup over RegenerateImage. Similarly, LazyDiffusion
is also faster than RegenerateCrop for masks smaller than 25%. At mask ratio
25%, both methods generate the same number of pixels and have comparable
running times. For larger masks, RegenerateCrop is faster but generates low-
resolution crops and naively upsamples to native resolution, reducing sharpness.
Additionally, RegenerateCrop often fails to produce outputs that are consistent
with the region outside the mask, as we discuss below (Sec. 4.4).

While there are additional networks in the pipeline, the diffusion decoder is
the only component running multiple times, and thus dominates the runtime.
Notably, our context encoder adds a 73ms overhead, which is dwarfed by the
cost of the diffusion loop. The latent encoder and decoder take 97ms and 176ms,
respectively, and the T5 text encoder 21ms. These are shared by all methods.

Scaling laws. Our method essentially reduces the cost of each denoising itera-
tion at the price of a small overhead for the context encoder, to balance quality
with context retention. As a result, our performance gains are most striking for
high diffusion step counts (typically correlated with higher image quality), and
smaller mask sizes (most frequent in interactive applications). A single evalua-
tion of our decoder takes 374ms to generate full image, but only 28ms for 10%
masks — a ×13.4 speedup, greater than the encoder’s overhead. So, our method
remains beneficial for few-step [50], or even one-step models [58]. We expect the
performance gains provided by our strategy to be even more striking on costlier
applications like high-resolution image editing, or video synthesis [3].

4.3 Progressive generation

Diffusion models are challenging to integrate into interactive pipelines due to
their high latency. There exists an abundance of research on broadly accelerat-
ing diffusion models [28,50,58], but in the context of this study, we highlight that

LazyDiffusion 11

individuals often tackle tasks incrementally, executing operations progressively
and concentrating on local adjustments one at a time—whether it involves adding
or removing objects, refining, or retrying previous attempts. LazyDiffusion sig-
nificantly accelerates such local operations, making it well-suited for interactive
pipelines with a user-in-the-loop.

In Fig. 6, we showcase a couple of iterations using LazyDiffusion for both im-
age editing and image generation, starting from a blank canvas. Furthermore, we
attach a supplemental video that showcases authentic user interactions with both
LazyDiffusion and our RegenerateImage baseline, highlighting the discernible
difference in running time between the two.

4.4 Inpainting quality

A distinctive feature of LazyDiffusion is its utilization of a compressed global con-
text to aid inpainting. In contrast, RegenerateImage utilizes the complete global
context, while RegenerateCrop relies on the context provided by pixels neigh-
boring the mask. We now compare the results produced by these approaches.

For quantitative evaluation, we report zero-shot FID [20] and CLIPScore [19],
which estimate similarity to real images and text-image alignment, respectively.
Additionally, we include scores for SDXL [39] and SD2-crop [44]. Despite not
being directly comparable, because they use different architectures and training
data, they serve as references for state-of-the-art quality. In Table 1, we report
mean scores over a random sample of 10,000 images drawn from OpenImages [47].
Notably, text-image alignment (CLIP) remains unaffected by the mechanism to
use image context. On the FID metric, LazyDiffusion exhibits only a marginal
increase compared to RegenerateImage (%4) and performs significantly better
than RegenerateCrop (%26).

Table 1: Quantitative comparison of our method with the three baselines. We report
zero-shot FID [20] and CLIPScore [19] on 10k images images from OpenImages [47].
Scores of SD2-crop [44] and SDXL [39] are not directly comparable and provided only
for reference.

Method CLIP Score (↑) FID (↓)
SD2-crop 0.21 6.95
SDXL 0.21 6.88

RegenerateCrop 0.19 9.35
RegenerateImage 0.19 7.38
LazyDiffusion (Ours) 0.19 7.70

We show qualitative comparisons in Fig. 7. Our examination reveals a signifi-
cant discrepancy in the performance of models regenerating a crop – Regenerate-
Crop and SD2-crop. In many instances, inpainting involves generating an object
that is visually independent of other concepts in the image, such as adding a
side of fries next to a burger. Here, models operating on a tight crop can pro-
duce reasonable-looking objects and seamlessly blend them with the surrounding

12 Y. Nitzan et al.

<R
e

d
 f

ro
g

=
<F

re
n

ch
 F

ri
e

s=
<S

n
o

w
b

o
a

rd
e

r=
<B

ir
d

h
o

u
se

s=

LazyDiffusion

 (Ours)
Input PixArt-�

Regenerate Crop

SD2

Regenerate Image

PixArt-�SDXL

� �

<B
u

n
=

<B
a

le
=

<M
u

sh
ro

o
m

=
<S

tr
a

w
b

e
rr

y
=

Fig. 7: Comparing Inpainting Results: (Top) Inpainting most objects requires relatively
little semantic context. In such cases, all methods produce reasonably good results,
even those processing only a tight crop. (Bottom) However, when inpainting an object
closely related to others, such as one bun out of many, the inpainting model requires
robust semantic understanding. Methods processing only a crop produce objects that
may seem reasonable in isolation, but do not fit well within the greater context of the
image. In contrast, LazyDiffusion adeptly leverages the compressed image context to
generate high-fidelity results, comparable in quality to models regenerating the entire
image and running up to ten times slower.

LazyDiffusion 13

pixels available in the crop (Fig. 7 (Top)). However, in numerous scenarios, the
goal is to add an object that is strongly related to the existing context, such
as adding another bun to a tray of buns. Models operating solely on a crop
lack knowledge of the global image and consequently produce objects that may
seem reasonable in isolation but do not fit well within the greater image con-
text (Fig. 7 (Bottom)). In contrast, SDXL and RegenerateImage utilize direct
and full access to all image pixels to consistently yield highly realistic results,
where the generated region fits well with the existing content. Notably, we find
that LazyDiffusion behaves similarly and produces comparable results even in
these challenging edge cases. This suggests that the compressed image context
is highly expressive and encodes meaningful semantic information.

User study. We measure the models’ capability to produce highly-contextual
inpainting through a user study. For this, we curate a specialized test set com-
prising scenarios that necessitate a high level of semantic image context for ef-
fective inpainting. Specifically, we select images featuring several closely related
objects, such as a set of uniform buns on a tray. Subsequently, we evaluate all
models based on their ability to regenerate one of these objects when masked.
In this scenario, the models must rely on visible pixels to produce a high-fidelity
result. Users are presented with the masked input image, a text prompt, and
two results — ours and a baseline. They are then asked to "select the option in
which the inpainted image, as a whole, looks best". We collect a total of 1778
responses from 48 unique users and find that our method is strongly preferred
over methods operating solely on a crop and competitive with those regenerating
the entire image. Specifically, LazyDiffusion is preferred over RegenerateCrop in
81% of cases, over SD2-crop in 82.5% of cases, over RegenerateImage in 46.1%
of cases, and over SDXL in 48.5% of cases. These results indicate that the com-
pressed encoder context retains the core semantic information required even for
challenging use cases. In short, our model demonstrates competitive quality to
our conceptual upper-bound RegenerateImage, but runs up to ten times faster.

input output input output

“rabbit” “butterfly”

Fig. 8: Our model readily supports additional forms of local conditioning. For example,
similar to SDEdit [31], a user can draw a simplistic colored sketch, providing the model
shape and color information.

14 Y. Nitzan et al.

4.5 Sketch-guided inpainting

So far, our emphasis has been on generation guided solely by the mask and
a text prompt. However, in principle, our method is applicable to any local-
ized generation task and can accommodate other forms of conditioning, such as
sketches and edge maps. In Fig. 8, we briefly showcase this versatility by guid-
ing the generation with a coarse color sketch provided by the user. Following
the SDEdit [31] approach, we initiate the generation process from the partially
noised input image instead of Gaussian noise.

5 Conclusions, limitations and future work

We introduced a novel transformer-based encoder-decoder architecture for in-
teractive image generation and editing using a diffusion model. Our approach
reduces the diffusion runtime by only generating the patches corresponding to
the small region to synthesize, rather than the entire image. This is achieved
through a global context encoder that summarizes the entire image once, out-
side the diffusion sampling loop, ensuring globally-consistent outputs.

Our method maintains the generation quality of state-of-the-art models, and
reduces runtime costs proportionally to the size of the region to generate. This
reduction in latency, particularly for small masks, transforms image generation
into an interactive process by spreading the generation cost across multiple user
interactions.

Our architecture does have some weaknesses. Despite operating outside the
diffusion loop, the context encoder processes the entire image, posing a potential
bottleneck for very high-resolution images due to its quadratic scaling in input
size. Addressing this limitation could enhance the scalability and applicability
of our approach to larger and more intricate visual content. We observed that
occasionally, generated results have a subtle color shift compared to the visible
image regions, leading to visible patch boundaries. While the Poisson blend-
ing post-processing methods discussed in Section 3.3 effectively mitigates these
issues, future research is needed to identify a more principled and systematic
solution.

Societal impact. Generative models, including our work, can be used to pro-
duce misleading content that causes societal harm. Nevertheless, our work does
not introduce unique concerns beyond this. We hope that increased public aware-
ness and the development of more automatic tools for detecting generated media
will mitigate these risks.

Acknowledgement. We are grateful to Minguk Kang, Tianwei Yin and Wei-
An Lin for technical suggestions, to Rotem Shalev-Arkushin for proofreading our
draft and offering feedback, and to Yogev Nitzan for his help running the user
study. This work was done while Yotam Nitzan was an intern at Adobe.

LazyDiffusion 15

References

1. Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of
natural images. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 18208–18218 (2022) 2, 3, 5

2. Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L., Ouyang, L., Zhuang, J.,
Lee, J., Guo, Y., et al.: Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf 2, 3 (2023) 3

3. Brooks, T., Peebles, B., Holmes, C., DePue, W., Guo, Y., Jing, L., Schnurr, D.,
Taylor, J., Luhman, T., Luhman, E., Ng, C., Wang, R., Ramesh, A.: Video gener-
ation models as world simulators (2024), https://openai.com/research/video-
generation-models-as-world-simulators 4, 10

4. Cao, M., Wang, X., Qi, Z., Shan, Y., Qie, X., Zheng, Y.: Masactrl: Tuning-free mu-
tual self-attention control for consistent image synthesis and editing. arXiv preprint
arXiv:2304.08465 (2023) 5

5. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: Proceedings of
the IEEE/CVF international conference on computer vision. pp. 9650–9660 (2021)
7

6. Chang, H., Zhang, H., Jiang, L., Liu, C., Freeman, W.T.: Maskgit: Masked genera-
tive image transformer. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 11315–11325 (2022) 4

7. Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang, Z., Kwok, J., Luo, P.,
Lu, H., Li, Z.: Pixart-α: Fast training of diffusion transformer for photorealistic
text-to-image synthesis (2023) 4, 6, 7, 8

8. Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I.: Gen-
erative pretraining from pixels. In: International conference on machine learning.
pp. 1691–1703. PMLR (2020) 4

9. Couairon, G., Verbeek, J., Schwenk, H., Cord, M.: Diffedit: Diffusion-based se-
mantic image editing with mask guidance. arXiv preprint arXiv:2210.11427 (2022)
5

10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009) 8

11. Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Advances
in neural information processing systems 34, 8780–8794 (2021) 3

12. Ding, M., Zheng, W., Hong, W., Tang, J.: Cogview2: Faster and better text-to-
image generation via hierarchical transformers. Advances in Neural Information
Processing Systems 35, 16890–16902 (2022) 4

13. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020) 2, 6

14. Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J., Saini, H., Levi, Y.,
Lorenz, D., Sauer, A., Boesel, F., Podell, D., Dockhorn, T., English, Z., Lacey,
K., Goodwin, A., Marek, Y., Rombach, R.: Scaling rectified flow transformers for
high-resolution image synthesis (2024) 4

15. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image
synthesis. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 12873–12883 (2021) 4

16. Gao, S., Zhou, P., Cheng, M.M., Yan, S.: Masked diffusion transformer is a strong
image synthesizer. arXiv preprint arXiv:2303.14389 (2023) 4

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

16 Y. Nitzan et al.

17. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. pp. 16000–16009 (2022) 4

18. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or,
D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint
arXiv:2208.01626 (2022) 5

19. Hessel, J., Holtzman, A., Forbes, M., Bras, R.L., Choi, Y.: Clipscore: A reference-
free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718 (2021)
11

20. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems 30 (2017) 11

21. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020) 3

22. Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems 35,
26565–26577 (2022) 3

23. Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597 (2023) 8

24. Li, M., Lin, J., Meng, C., Ermon, S., Han, S., Zhu, J.Y.: Efficient spatially sparse
inference for conditional gans and diffusion models. Advances in neural information
processing systems 35, 28858–28873 (2022) 4

25. Liu, W., Cun, X., Pun, C.M., Xia, M., Zhang, Y., Wang, J.: Coordfill: Efficient
high-resolution image inpainting via parameterized coordinate querying. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. vol. 37, pp. 1746–1754
(2023) 4

26. Liu, X., Zhang, X., Ma, J., Peng, J., Liu, Q.: Instaflow: One step is enough for high-
quality diffusion-based text-to-image generation. arXiv preprint arXiv:2309.06380
(2023) 3

27. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017) 8

28. Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver: A fast ode solver
for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems 35, 5775–5787 (2022) 3, 10

29. Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver++: Fast solver for
guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095
(2022) 3

30. Luo, S., Tan, Y., Huang, L., Li, J., Zhao, H.: Latent consistency mod-
els: Synthesizing high-resolution images with few-step inference. arXiv preprint
arXiv:2310.04378 (2023) 3

31. Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit: Guided
image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073 (2021) 3, 13, 14

32. Nguyen, T.H., Tran, A.: Swiftbrush: One-step text-to-image diffusion model with
variational score distillation. arXiv preprint arXiv:2312.05239 (2023) 3

33. Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B.,
Sutskever, I., Chen, M.: Glide: Towards photorealistic image generation and edit-
ing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021) 2,
5, 9

34. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In:
International Conference on Machine Learning. pp. 8162–8171. PMLR (2021) 8

LazyDiffusion 17

35. Patashnik, O., Garibi, D., Azuri, I., Averbuch-Elor, H., Cohen-Or, D.: Localizing
object-level shape variations with text-to-image diffusion models. arXiv preprint
arXiv:2303.11306 (2023) 5

36. Peebles, W., Xie, S.: Scalable diffusion models with transformers. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4195–4205
(2023) 2, 4, 6, 7

37. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH
2003 Papers, pp. 313–318 (2003) 8

38. von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lambert, N., Rasul, K.,
Davaadorj, M., Wolf, T.: Diffusers: State-of-the-art diffusion models. https://
github.com/huggingface/diffusers (2022) 2, 3, 8

39. Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna,
J., Rombach, R.: Sdxl: Improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952 (2023) 3, 8, 9, 11

40. Qi, L., Kuen, J., Wang, Y., Gu, J., Zhao, H., Torr, P., Lin, Z., Jia, J.: Open
world entity segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022) 8

41. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research 21(1), 5485–5551 (2020)
7

42. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125
1(2), 3 (2022) 3

43. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images
with vq-vae-2. Advances in neural information processing systems 32 (2019) 4

44. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 10684–10695 (2022)
2, 3, 4, 5, 6, 8, 9, 11

45. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E.L., Ghasemipour,
K., Gontijo Lopes, R., Karagol Ayan, B., Salimans, T., et al.: Photorealistic text-
to-image diffusion models with deep language understanding. Advances in Neural
Information Processing Systems 35, 36479–36494 (2022) 3

46. Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512 (2022) 3

47. Schuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk, R., Mullis, C., Katta, A.,
Coombes, T., Jitsev, J., Komatsuzaki, A.: Laion-400m: Open dataset of clip-filtered
400 million image-text pairs. arXiv preprint arXiv:2111.02114 (2021) 11

48. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: International conference
on machine learning. pp. 2256–2265. PMLR (2015) 3

49. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502 (2020) 3

50. Song, Y., Dhariwal, P., Chen, M., Sutskever, I.: Consistency models (2023) 3, 10
51. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-

based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456 (2020) 3

52. Tevet, G., Raab, S., Gordon, B., Shafir, Y., Cohen-Or, D., Bermano, A.H.: Human
motion diffusion model. arXiv preprint arXiv:2209.14916 (2022) 4

53. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017) 2, 6

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

18 Y. Nitzan et al.

54. Wang, S., Saharia, C., Montgomery, C., Pont-Tuset, J., Noy, S., Pellegrini, S.,
Onoe, Y., Laszlo, S., Fleet, D.J., Soricut, R., et al.: Imagen editor and editbench:
Advancing and evaluating text-guided image inpainting. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 18359–
18369 (2023) 2, 5, 6, 8

55. stable-diffusion webui: stable-diffusion-webui. https : / / github . com /
AUTOMATIC1111/stable- diffusion- webui (2024), accessed: Jan 2024 2, 3,
8

56. Wei, C., Mangalam, K., Huang, P.Y., Li, Y., Fan, H., Xu, H., Wang, H., Xie,
C., Yuille, A., Feichtenhofer, C.: Diffusion models as masked autoencoders. arXiv
preprint arXiv:2304.03283 (2023) 4

57. Xie, S., Zhang, Z., Lin, Z., Hinz, T., Zhang, K.: Smartbrush: Text and shape
guided object inpainting with diffusion model. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 22428–22437 (2023)
5, 8

58. Yin, T., Gharbi, M., Zhang, R., Shechtman, E., Durand, F., Freeman, W.T.,
Park, T.: One-step diffusion with distribution matching distillation. arXiv preprint
arXiv:2311.18828 (2023) 3, 10

59. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting
with gated convolution. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 4471–4480 (2019) 2

60. Zhao, S., Cui, J., Sheng, Y., Dong, Y., Liang, X., Chang, E.I., Xu, Y.: Large scale
image completion via co-modulated generative adversarial networks. In: Interna-
tional Conference on Learning Representations (ICLR) (2021) 2

61. Zheng, H., Nie, W., Vahdat, A., Anandkumar, A.: Fast training of diffusion models
with masked transformers. arXiv preprint arXiv:2306.09305 (2023) 4

62. Zhu, Z., Feng, X., Chen, D., Bao, J., Wang, L., Chen, Y., Yuan, L., Hua, G.: Design-
ing a better asymmetric vqgan for stablediffusion. arXiv preprint arXiv:2306.04632
(2023) 8

https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui

	Lazy Diffusion Transformer for Interactive Image Editing

