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This supplementary material contains additional details regarding the pro-
posed non-parametric sensor noise modeling method and experimental assess-
ments we presented in the main document.

S1 Additional Details of Image Capturing Process

As explained in Sec. 4, our calibration process is performed in a controlled envi-
ronment. Noise samples are collected from imaging of a single target scene rather
than extensive captures of a wide variety of scenes. This allows us to automate
collecting noise samples. Various pixel intensities are obtained via varying the
exposure value (EV) of the camera with no need to change the target scene.
We modified the Camera2API software (Fig. S1 shows its user interface) to take
a list of ISOs (including ISO 50 to serve in preparing noise-free captures), the
total number of EVs per ISO (e.g., 9 indicating a list of integers with step size 1
centred at 0 corresponding to EVs -4, -3,...,3, and 4), and the number of captures
(e.g. 100) per ISO-EV setting. The capture process begins with a single click and
iterates over these settings automatically. This results in sufficient noise samples
(over 200K samples per intensity in our experiments) to generate noise PMFs
with negligible labour cost.

Number of 
captures 
per burst

Number of EVs 
(9 corresponds 
to -4, -3,…, 4)
List of ISOs

Fig. S1: Capture of calibration data is a single click. This particular phone screenshot
shows that the setup is ready to capture images with 6 different ISOs (separated by
comma), 9 different exposure values (EVs) as -4, -3, ..., 3, 4 and bursts of 100 images
per ISO-EV combination through a click on “PICTURE”.
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S2 Details of Inversion Sampling

Although random variable generation through inversion sampling is quite pop-
ular and straightforward [9], we discuss more details about RandomSampling(.)
introduced in Eq. 3 to allow our work to be reproduced.

Inverse transform sampling, or inversion sampling, is a method for generating
random numbers from any probability distribution by using its inverse cumula-
tive distribution (CDF). Let X 2 R denote a random variable whose distribution
can be characterized as fX(x) with a CDF as FX(x). In order to randomly sam-
ple from the original distribution fX(x), we first form the inverse of the CDF
denoted by F

�1
X (x). Since the range of FX(x) is determined by probabilities

(i.e., FX(x) 2 [0, 1]), the domain of F�1
X (x) is defined uniformly on [0, 1]. Thus,

assuming that U ⇠ Unif[0, 1] is a random variable from a uniform distribution
on [0, 1], we can generate a random variable X as X = F

�1
X (U).

The following Python code shows the inversion sampling process to synthesize
one noise sample for a given noise probability mass function (PMF) computed
from around 200000 noise samples:

Listing S1: Simplified illustrative Python code for noise synthesis through inversion
sampling.

import numpy as np
from scipy.interpolate import interp1d

num_bins = 240

# X: around 200000 noise samples
noise_histogram , bin_edges = np.histogram(X, bins=num_bins , density=True)
pmf_X = noise_histogram * np.diff(bin_edges)

# RandomSampling(pmf_X)
cdf_X = np.zeros(bin_edges.shape)
cdf_X [1:] = np.cumsum(pmf_X)
inv_cdf_X = interp1d(cdf_X , bin_edges)

n_samples = 1
U = np.random.uniform (0,1, n_samples)
X_prime = inv_cdf_X(U) # random noise

Fig. S2 shows the noise distribution obtained through our noise calibration
setup for an instance of ISO/intensity level of S22+ sensor. The actual noise sam-
ples are used to build an inverse CDF of the noise distribution. Next, we use the
inversion process to generate 10000 noise samples using the code in Listing S1.
The distribution plot of the synthetic noise obtained through inversion sampling
is quite similar to that of the actual sensor noise. See the plot corresponding X

0.
In this figure, we use a general form of notations for random variables, PMFs,
etc. X and fX(·), however, correspond to any arbitrary calibrated noise sample
set and PMF, i.e., ⇠l and p⇠l

(·), respectively.

S3 Noise Synthesis Evaluation using Traditional KLD

To maintain consistency with traditional statistical evaluations for noise model-
ing, we also report the Kullback-Leibler Divergence (KLD) for our noise synthesis
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Fig. S2: The inversion sampling process to generate synthetic noise from a calibrated
noise model.
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Fig. S3: Statistical analyses per ISO sensor noise modeling for both S22+ and Pixel 6
cameras using traditional KLD. KLD is measured relative to the real noise distribution
obtained from homogeneous patches of the color checker chart images. (Examples of
such images are shown in Fig. S4 and S5 for ISOs 1600, 3200, and 6400.)

experiments, as shown in Fig. S3. KLD has been traditionally used to quantify
the similarity between the synthesized noise and real noise [1]. This is done by
obtaining noise distributions in terms of PMFs, P and Q, for real and synthetic
noise, respectively and finding the relative entropy of the two probability func-
tions. Noise distributions P and Q are obtained as pixel values extracted from
the 24 homogeneous patches of the color checker in the clean image subtracted
from the corresponding pixels in the real and the synthetic images shown in
Fig. S4. Therefore, KLD can be computed as

DKL(Q||P ) = �
X

n

Q(n) ln
P (n)

Q(n)
, (1)

where DKL(Q||P ) � 0 denotes KLD between the two probability distribu-
tions measured in nats. When the score is zero, it suggests that both P and
Q are identical. A major drawback of KLD is that it is not symmetrical, i.e.
DKL(Q||P ) 6= DKL(P ||Q), which is counterintuitive considering the nature of
noise distributions. Also, it does not have an upper bound. Thus, a more practi-
cal way of computing how the synthetic noise diverges from the real noise is the
Jensen-Shannon divergence (JSD). JSD uses the KLD to compute a normalized
and symmetrical score as

DJS(Q||P ) = 0.5DKL(Q||M) + 0.5DKL(P ||M), (2)

where M = 0.5(P + Q) and 0  DJS(Q||P )  1. In our experiments, we usep
DJS(Q||P ) as a metric of the distance between two distributions as reported

in Fig. 4.
The plots in Fig. S3 follow a similar trend compared to the plots of JSD in

Fig. 4, except for the results obtained using Noise Flow for ISOs 100, 200, 400
in Pixel 6 experiments, where KLD values show a larger divergence compared
to the JSD values.
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1Fig. S4: Noise synthesis examples using different methods for S22+ camera. Noise
distribution is computed as pixel values extracted from the 24 homogeneous patches
of the color checker in the clean image subtracted from the corresponding pixels in the
real and synthesized noisy images. The plots of JSD in Fig. 4 and KLD in Fig. S3 are
computed relative to real ISO noise distribution.

S4 More Details on Training Setup for Denoising-
demosaicking

In Sec. 5.1, we explained how we generate synthetic training data using EXR
graphics data and noise models. To further detail the training setup for the model
in [7] to perform joint denoising-demosaicking for all experiments, including as-
sessing the baseline noise models, per training iteration, we randomly pick and
flip a batch of 16 EXR images and crop them to 512⇥512. We then perform raw
simulations by applying randomly selected noise models calibrated for the seven
ISO levels {2m100|m 2 N, 0  m  6}. Fig. S6 shows an example of such data
synthesis for one of the EXR images where Fig. S6a and Fig. S6c correspond to
our ground-truth and input raw images, respectively.

In all experiments, we minimize the distance between the ground-truth RGB
data and the output of the denoising-demosaicking model measured with the `1-
norm. Our code-base is in Pytorch, and we use Adam optimizer, initiated with
a learning rate of 5⇥10�4, scheduled to decay by half after every 300 epochs.
The training runs for a total of 2000 epochs for each experiment.

The only exception is the noise synthesis experiment using Noise Flow. Noise
Flow was originally implemented in TensorFlow [1]. As a result, it is not straight-
forward to use Noise Flow directly in our Pytorch setup in the aforementioned
noise synthesis process during training runs. Thus, we process all of the 292 EXR
images directly using the Noise Flow model at seven ISO levels and save all the
resulting 2044 simulated raw images paired with their corresponding ground-
truth RGB images as our training set. To be consistent with the other training
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1Fig. S5: Noise synthesis examples using different methods for Pixel 6 camera. Noise
distribution is computed as pixel values extracted from the 24 homogeneous patches
of the color checker in the clean image subtracted from the corresponding pixels in the
real and synthesized noisy images. The plots of JSD in Fig. 4 and KLD in Fig. S3 are
computed relative to real ISO noise distribution.

experiments, we run 285 epochs over the 2044 raw images. All other training
parameters such as batch size, crop size, learning rate, etc., are similar to other
experiments. To account for the randomness, we run this experiment three times,
and the best result is reported in Table 1.

S5 Additional Qualitative Results for Denoising-
demosaicking Experiments

In Sec. 5.1 of the main paper, we showed three S22+ raw captures processed with
the denoising-demosaicking model trained using different synthesized training
sets (Fig. 5). In this section, we show a few more qualitative results from real
evaluation sets for S22+ in Fig. S7 and Pixel 6 in Fig. S8.

S6 Additional Details of Applying Noise on Noisy Images

The steps of the process explained in Sec. 4.2 are listed in Alg. S1. For ISO 

our noise model is a set of PMFs per l, i.e., {p⇠0(n), . . . , p⇠L (n)}. The inputs
to Alg. S1 are non-parametric noise models for two different ISOs ( = 1 and
 = 2), the ISO 1 capture Ĩ1, and thus no clean image is needed. Since an
underlying/clean image I is not available, we need some approximation to infer
the noise level from Ĩ1. As a result, we train a raw-to-raw denoiser D(·) specific to
ISO 1 using simulated ISO 1 images and {p⇠01 (n1), . . . , p⇠L1 (n1)}. In step 2, a clean
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Fig. S6: Synthesizing raw training data for denoising-demosaicking [7] using EXR
graphics images and calibrated sensor noise models. (The synthesized raw image is
processed by a bi-linear demosaicker followed by white-balancing for visualization.)
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1Fig. S7: Denoising-demosaicking qualitative results on S22+ raw captures. We use
different noise synthesis methods applied on EXR images [28] to create training images
for the denoising-demosaicking model [7]. Our non-parametric noise models help the
image reconstruction model remove more noise while preserving more details. Raw
inputs are converted to RGB using bi-linear demosaicking for visualization here. Images
in each row are white-balanced and gamma-corrected for better visualization.

estimate (Î ⇡ I) is obtained for inferring noise level and clean intensity (step 4).
To synthesize noise per intensity l, the noise PMF of ISO 2 (p⇠l2(n2)) is shifted
by the inferred noise level from ISO 1, a random sample is drawn from this new
PMF (step 5). See Sec. S8, for experiments of different ways of obtaining Î. Note
that We do not have access to the clean image I (unlike Eq. (3)), but an estimate
Î. We showed that we cannot simply use ISO 2 models on denoised ISO 1 to
synthesize ISO 2 images—i.e., Ĩ2(i) = Î(i) + RandomSampling(p⇠l2(n2)) is not
equivalent to Ĩ2(i) = I(i) + RandomSampling(p⇠l2(n2)) since D(·) may remove
some details in Î. But, Î can be used to infer the noise level and modify noise
models as Eq. (7) and step 5 of Alg. S1.
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1Fig. S8: Denoising-demosaicking qualitative results on Pixel 6 real raw captures. We
use different noise synthesis methods applied on EXR images [28] to create training
images for the denoising-demosaicking model [7]. Our non-parametric noise models
help the image reconstruction model remove more noise while preserving more details.
Raw inputs are converted to RGB using bi-linear demosaicking for visualization here.
Images in each row are white-balanced and gamma-corrected for better visualization.

S6.1 Details on Training Setup for Noise-on-noise Assessments

As mentioned in Sec. 5.3, we train a UNet to perform raw denoising for S20FE
ISO 1600 raw images–i.e., D(·). This denoiser is trained using simulated raw
images using the EXR graphics data with ISO 1600 non-parametric noise mod-
els. Thus, a pair of ground-truth and raw data from the training set would be
the images shown in Fig. S6b and Fig. S6c. Hence, the denoiser network takes
a single-channel noisy raw input and outputs a single-channel raw. The other
training parameters are similar to the ones described in Sec. S4.

For training the neural ISP, we once again use a UNet architecture. The UNet
takes a noisy raw image as input and outputs an sRGB image. We trained the
model for 4000 epochs with a learning rate of 0.0001 and a batch size of 8 on
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Algorithm S1 Synthesizing noise on noisy raw images
Require: Ĩ1, {p⇠01

(n1),...,p⇠L1
(n1)}, {p⇠02

(n2),...,p⇠L2
(n2)}

1: Î=D(Ĩ1) . Learning D(·) is done with simulated data only.
2: for all pixels indexed by i do
3: l=Î(i) , n1=Ĩ1(i)� Î(i)
4: Ĩ2(i)=Ĩ1(i)+RandomSampling(p

⇠l2
(n2�n1))

5: end for
6: return Ĩ2

patches of size 256⇥256 pixels. We used the Adam optimizer with �1 = 0.9 and
�2 = 0.999.

S7 Additional Qualitative Results for Neural ISP

In this section, we provide more qualitative results regarding the experiment
presented in Sec. 5.3. The qualitative results obtained for the neural ISP trained
using different datasets are shown in Fig. S9. The inputs to the trained models
are S20FE raw images captured at ISO 3200.

S8 Ablation Studies for our Noise-on-noise Method

In this section, we present different experiments to support the details discussed
in Sec. 4.2 and Sec. 5.3 regarding our noise-on-noise augmentation approach.

We first replace the data-driven UNet denoiser with the local block-matching-
based BM3D denoiser to evaluate the effects of the choice of denoiser to approx-
imate clean intensity for this noise synthesis solution. As Table S1 (the second
row) shows, using BM3D lowers the task performance, indicating that the pro-
posed noise-on-noise model relies on accurate denoisers to approximate Î. How-
ever, these experiments also suggest that such accurate raw denoisers can be
obtained without real captures, almost at no cost, using only graphics data and
calibrated ISO 1600 noise models.

Since our approach employs a denoiser to approximate clean intensities, one
may argue why we do not apply the calibrated ISO 3200 noise model directly
on the approximated clean intensity images. Table S1 (the third row) shows
the performance of the neural ISP once trained using such a synthetic dataset.
The training set is generated using the calibrated ISO 3200 noise model applied
on denoised ISO 1600 images. Not surprisingly, the performance is much lower
than correctly applying the noise-on-noise model on ISO 1600 images. This low
performance can be attributed to the loss of details and other perturbations
imposed on the underlying image due to denoising.

Lastly, we highlight that the proposed solution to applying noise on top of
noisy raw captures can be employed with any noise modeling approach that
provides noise model PMFs, such as the HG model. However, the accuracy of
noise synthesis using this approach depends on the accuracy of the calibrated
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Upper Bound Naive Noise-on-noise (ours)

1Fig. S9: Neural ISP applied on S20FE raw captures at ISO 3200. The upper bound
corresponds to training with real captures at ISO 3200. We use different noise synthesis
methods applied to ISO 1600 images to create ISO 3200 training images for raw to
sRGB rendering. Our noise-on-noise model helps the neural ISP preserve more details
compared to naively applying calibrated ISO 3200 noise models to ISO 1600 images.
Note the over-smoothing effects and the loss of details in the experiment with directly
applying ISO 3200 noise model on ISO 1600 raw images (Naive).

noise model. See the task performance metrics obtained for the neural ISP once
trained with the images synthesized using the proposed noise-on-noise approach
with HG noise PMFs (the last row in Table S1). These numbers and the JSD
computed for this method show how the synthetic noise distribution diverges
from the real captured noise compared to using our calibrated noise models.
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