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Abstract. We introduce a novel non-parametric sensor noise model that
directly constructs probability mass functions per intensity level from
captured images. We show that our noise model provides a more accu-
rate fit to real sensor noise than existing models. We detail the capture
procedure for deriving our non-parametric noise model and introduce an
interpolation method that reduces the number of ISOs levels that need
to be captured. In addition, we propose a method to synthesize noise on
existing noisy images when noise-free images are not available. Our noise
model is straightforward to calibrate and provides notable improvements
over competing noise models on downstream tasks.
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1 Introduction

Modern cameras have improved significantly, but smaller device sizes and higher
pixel densities make raw sensor readings more susceptible to noise. Accurate sen-
sor noise models are essential for synthesizing noise on training images for deep
neural networks (DNNs) targeting low-level vision tasks (e.g ., [3, 26, 36]). Ex-
isting noise modeling methods can be categorized into physics-based and DNN-
based noise models.

Physics-based methods utilize statistical modeling to represent the distribu-
tion of different noise sources. These methods take into account the fact that
sensor noise is linked to the physics of light and therefore employ Gaussian-
Poisson models [12, 13, 15, 16, 33]. However, it is difficult to precisely model all
noise sources that stem from variations in circuit design and signal process-
ing techniques. More recently, DNN-based generative models have been used to
learn noise synthesis from real captured data [1,6,8,19]. Such models offer pow-
erful representation capabilities. However, their performance often depends on
extensive image capturing of a wide variety of scenes. This inspires combining
DNN-based noise models with physics-based ones [11,37].

We introduce a non-parametric method to model raw sensor noise. Our noise
model is based on statistics derived from the image formation process, similar
to physics-based models. However, unlike traditional models, our approach does
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Fig. 1: (a) Our calibration setup and associated image capture. Our approach con-
structs probability mass functions for discrete intensity levels. (b) An ISO 6400 noise
synthesis comparison is shown for a Pixel 6 camera. (c) We demonstrate improved raw
denoising-demosaicking [7] using our non-parametric noise model over competing ones.

not rely on the typical assumptions about different noise components introduced
during the process. Instead, we base our method on the observed distribution of
noise at each pixel intensity level. We propose a systematic calibration technique
to collect a large sample set of noise. This is achieved by capturing a burst of
images of a chart with uniform patches under controlled illumination at a fixed
ISO with various exposure values (Fig. 1). The collected noise samples are used
to build a probability mass function (PMF) per intensity level, which is then
used in an inversion sampling process to synthesize noise.

In real-world applications, noise synthesis needs to cover a wide range of ISO
levels. To address such a dense noise calibration more efficiently, we introduce an
interpolation procedure that approximates noise PMFs for an arbitrary uncali-
brated ISO, given a set of calibrated ISO levels. We show that the high accuracy
achieved for the proposed noise model interpolation method is attributed to the
accuracy of the underlying proposed non-parametric noise model.

We also examine the impact of a common assumption that is used in existing
noise augmentation methods. This assumption presupposes that the original
image that noise is added to is noiseless. However, in reality, most images are
already contaminated with noise, which can create a domain gap when used for
noise synthesis. Obtaining clean raw data may not always be feasible for further
training image augmentation due to the difficulty of acquiring it or because the
ground-truth training data is produced using black-box and often irreversible
image rendering processes [4,17,27]. In such cases, clean raw images may not be
available. To address this, we propose a solution to transform a pair of source and
target noise models into a single model that allows us to accurately synthesize
the target noise on existing noisy image (source) data for further training.
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Contribution We describe our non-parametric sensor noise model and out-
line a straightforward calibration procedure to build noise PMFs directly from
observations. The noise model is the result of sufficiently collected noise samples
to build such PMFs without assumptions regarding the distributions of signal-
dependent and signal-independent noise. We later show that obtaining noise
models in terms of accurate PMFs helps in resolving two main issues regard-
ing noise modeling: (1) how to infer noise models for uncalibrated ISOs, and
(2) how to synthesize noise on already contaminated noisy captures. We show
that these issues are best addressed with our non-parametric models with ex-
plicit noise PMFs, built accurately from sufficiently large noise sample sets. We
demonstrate the effectiveness of our non-parametric noise model by synthesizing
training data for a joint denoising-demosaicking network, resulting in significant
improvements in PSNR and SSIM evaluated for Samsung S22+ and Google Pixel
6 cameras. We also investigate the approach of synthesizing noise on noisy cap-
tures for data augmentation for a raw to sRGB rendering network evaluated for
a Samsung S20FE mobile camera.

2 Related Work

Physics-based noise models. The additive white Gaussian noise (AWGN)
model is the simplest and arguably the most commonly used physics-based noise
model [38]. However, raw sensor noise is signal dependent, and a significant per-
formance drop occurs when AWGN is considered in image reconstruction so-
lutions [2, 25]. The Poisson-Gaussian (PG) noise model [13, 22] was proposed
to account for the signal-dependent noise by modeling the shot and read noise
components separately using Poisson and Gaussian distributions, respectively.
However, replacing the Poisson distribution with a Gaussian distribution hav-
ing a signal-dependent variance, known as the heteroscedastic Gaussian (HG)
model [13, 21, 34], is more widely utilized in practice [3]. A major deviation of
the HG model from real noise arises from clipped image intensities, and there
have been attempts to account for this effect using a clipped HG model [12]. Re-
cently, more complex noise models have been proposed that carefully examine
the sensor processing pipeline and different noise sources [31, 33]. For example,
the approach in [33] models shot noise using a Poisson distribution, read noise
using a Tukey lambda distribution, row noise using a Gaussian distribution, and
quantization noise using a uniform distribution. Note that all these methods
are parametric, making them simple and interpretable, whose parameters can
be estimated with relatively less amount of data. These models are also typ-
ically easy to interpolate to unknown settings (e.g ., different ISOs). However,
the underlying noise distribution is unknown, and in many cases, complex and
simple parametric models both have obvious shortcomings. To address such lim-
itations, the approach presented in [39] employs a Poisson distribution to model
signal-dependent noise, while the signal-independent noise is directly sampled
from a database of dark frames. Our proposed non-parametric model takes a
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different approach and samples from the observed noise distributions for both
signal-dependent and signal-independent noise components in a joint manner.
DNN-based noise models. Early work in this area used generative adversarial
networks (GANs) to model the noise distribution [6, 8, 18, 19, 30, 35]. However,
GANs do not have tractable likelihoods, making the quality of the synthesized
noise difficult to assess [23]. More recent methods are based on normalizing
flows [1, 23]. Noise Flow [1] employs a conditional normalizing flow for differ-
ent noise components in the sensor pipeline and synthesizes realistic noisy raw
images. Noise2NoiseFlow [23] further extends Noise Flow to relax the require-
ment of noise-free images for training. However, recent studies [24, 39] indicate
that calibrated physics-based models still outperform DNN-based noise models.
A few recent works have attempted to combine the strengths of physics-based
approaches with DNN methods. A physics-inspired GAN noise model was in-
troduced in [24]. After initial noise is added to a clean image using the physics-
inspired parameters, the intermediate noisy image is passed through a convo-
lutional neural network (CNN) that adds a residual noise layer to account for
any effects that were not captured by the physics-inspired noise model. The
low-light raw denoising (LRD) model in [37] uses a physics-based model to gen-
erate signal-dependent noise while signal-independent noise is synthesized using
a GAN. A physics-guided noise model is employed by [5], where different noise
components are handled by separate normalizing flow models. While DNN-based
models demonstrate excellent performance, we show that our non-parametric
model synthesizes noise that is statistically more similar to real sensor noise.

3 Image Formation

Image formation in cameras follows the typical processes shown in Fig. 2. The
scene radiance modulated by the camera optics appears on the image sensor
(e.g ., CCD or CMOS), where photons go through a microlens array to improve
light collection. Next, the incident light passes through a color filter array (CFA),
forming a mosaic of the three RGB stimuli. Finally, photodiodes of the sensor
collect the color-filtered light and output a digital single-channel raw image. At
this photodiodes layer, a potential well counts photons arriving at the sensor
area A during the exposure time t and converts the accumulated photons into
electrons. This conversion is affected by the quantum efficiency of the CFA and
the detector–that is, η. Then, the electrons are amplified by a gain factor g,
controllable by the ISO level of the camera. Finally, an analog-to-digital converter
(ADC) converts the modulated electrons to digits.

During the process, electron noise is generated from different sources. Since
the gain factor affects the noise distribution, it is crucial to divide the accumu-
lated noise into gained noise as ng, and read-out noise as nr. The gained noise
ng mostly includes dark noise, dark current, and fixed pattern noise, while the
read-out noise nr is dominated by thermal noise. Quantization errors nq of the
ADC are also added at the stage before saving the raw image. The quantum na-
ture of light also affects the uncertainty in the collected photons. The number of
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Fig. 2: From the modulation of the scene radiance on the surface of the sensor to
the final digital storage, different types of noise are introduced. Some additive noise is
photon-related, and some is independent of the incident light. The assumptions regard-
ing different noise components and their distributions can vary for different sensors.

incident photons and the relevant photon noise follow a Poisson distribution with
an expected value of µp. Thus, the image formation process can be expressed as

Ĩ = g
(
ηµp + ηnp(µp) + ng

)
+ nr + nq, (1)

where Ĩ is the observed raw pixel intensity, and np(µp) denotes the photon noise
which depends on the expected number of incident photons µp. Considering
photo-electrons I=gηµp as the clean underlying intensity transforms (1) to

Ĩ = I +N(I), N(I) = gηnp(I/gη) + gng + nr + nq, (2)

where N(I) denotes the overall signal-dependent noise.

4 Non-parametric Noise Modeling

The image formation model in (1) holds for a variety of different sensor architec-
tures. However, underlying assumptions for the sensor-specific parameters and
the distributions of noise components can vary significantly from one sensor to
another [10,14,20,29]. Thus, we propose a non-parametric sensor noise model by
collecting a sufficiently large number of noise samples and calibrating the over-
all signal-dependent noise N(I) introduced in (2) rather than modeling noise
components individually. Since noise varies for different CFA channels, and is
affected by the gain factor, we model it per color channel and per ISO level.

Sensor noise calibration. We make use of raw images captured at specialized con-
trollable settings–namely, capturing innumerous photon flux densities for scenes
that contain uniform patches illuminated by a DC-light (Fig. 1a). We first col-
lect a burst of M images of a color checker at a low ISO level denoted by κ̄ as
{Ĩ1κ̄, . . . , ĨMκ̄ }. Assuming that noise follows a zero mean distribution in low ISO
captures, the underlying clean signal can be defined as the expected value of
the noisy observations. Thus, the low ISO captures are averaged to form a clean
image as I = Mean

(
{Ĩ1κ̄, . . . , ĨMκ̄ }

)
. Of note, capturing uniform patches rather

than natural scenes resolves the slight misalignment issues caused by vibrations
during long-exposure photography to generate clean images. We then collect
another burst of color checker images denoted by {Ĩ1κ, . . . , ĨMκ } at an ISO level
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κ which we intend to calibrate. These noisy bursts are captured so that they
are spatially aligned with the clean image. Fig. 1a shows examples of clean and
noisy bursts extracted from the uniform patches of a color checker. We inspect
I for each intensity level and collect corresponding pixels from the noisy bursts.
Hence, a noise sample set per intensity level l per ISO level κ is formed as

ξlκ =
{
Ĩjκ(i)− l

∣∣∣ i ∈ {1, . . . ,H ×W}, I(i) = l, j ∈ {1, . . . ,M}
}
,

where H ×W denotes image size, i denotes pixel index, and l denotes sensor
intensity level ranging from zero to sensor’s white-level L i.e., l ∈ {0, . . . , L}. In
order to collect a reasonably large sample set for each intensity level representing
various photon flux densities ( ∝ At as in Fig. 2), we collect burst images from a
sweep of various exposure times. This results in extremely dark pixels to almost
fully saturated intensities, as shown in Fig. 1a. Our controlled imaging procedure
helps automate the process of capturing thousands of images straightforwardly.

The histogram of each noise set ξlκ is used to form a PMF pξlκ(n) where n ∈ R
denotes noise value. The PMFs obtained for all the intensity levels of the sensor
make our ISO-specific non-parametric noise model as {pξ0κ(n), . . . , pξLκ (n)}. Since
color-filtered channels of sensors have different sensitivities to the incident light,
noise modeling is performed per color channel of the sensor.

Sensor noise synthesis. Given a clean image and calibrated noise models, noise
is synthesized via inversion sampling [9]. An inversion sampling function de-
noted by RandomSampling(·) generates random samples from a noise distribu-
tion through inverting its cumulative distribution functions (CDFs). For every
pixel i in the given clean image I, we synthesize the noisy pixel Ĩ(i) as

Ĩ(i)=I(i)+N
(
I(i)

)
, N

(
I(i)

)
←RandomSampling

(
p
ξ
I(i)
κ

(n)
)
. (3)

Despite its contribution to a more generalized inference and a better task per-
formance, synthesizing realistic noise as an augmentation strategy for developing
camera/sensor-specific application models has two main limitations:

1. Sensor noise modeling is often performed for a few ISO settings–for ex-
ample, a small set of nominal ISOs as {2m100|m ∈ N, 0 ≤ m ≤ 6}. However, in
ubiquitous cameras, the additive system of photographic exposure (APEX) uses
a wide range of ISOs to calculate exposure. Thus, realistic applications require
noise models for a much larger number of ISO settings. This poses a significant
challenge as an accurate noise model per ISO level requires numerous captures,
regardless of whether we are using DNN-based or physics-based approaches.

2. Existing noise synthesis methods for generating training data need noise-
free raw images to apply Eq. (2). However, in many image restoration appli-
cations, ground-truth (clean) data is generated using approaches other than
long-exposure photography. For instance, using a secondary high-end DSLR ge-
ometrically aligned with the main camera to capture ground-truth data is a
common approach [17], especially if the task has to deal with blur effects [27].
Or, for full raw-sRGB rendering applications, using black-box rendering tools like
Adobe Photoshop [4] is one approach to obtain ground-truth data. In such cases,
we do not have access to clean raw data for noise synthesis. On the other hand,
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Fig. 3: Plots of noise variance per sensor intensity level for various ISOs of Pixel 6.
(a) Variance of noise generated using our calibrated non-parametric models and HG
noise models. The calibrated ISOs in (a) are used to interpolate noise models for ISOs
shown in (b). The solid-line, dashed-line, and dotted-line plots in (b) correspond to the
variance of real noise, noise generated using our interpolated models, and parametric
interpolation [34] for the HG noise models, respectively.

such ground-truth data are the results of many non-linear operations. Thus, ap-
proximating raw through an inversion process like [3, 36] poses an unavoidable
domain gap in the synthesized data. All being said, using a noise model that al-
lows augmenting some calibrated noise on top of existing noisy raw images such
that the augmented noise follows sensor characterizations would be valuable.

As follows, we address the aforementioned challenges. We first develop an
interpolation method to infer noise distributions for uncalibrated ISOs. Next, we
discuss how to carefully apply calibrated noise models to existing noisy captures
to augment training datasets with new ISOs.

4.1 Noise Model Interpolation

Under certain conditions and using some calibration data, it is possible to ap-
proximate the variance of read-out noise and gained noise in (1) for uncalibrated
ISOs. Such a parameterized approach was adopted in [34] for the HG model via
solving a system of linear equations to estimate noise parameters. We observe a
large discrepancy between synthesized noise using such parametric interpolations
and actual noise, arguably since some parameters, like g and η in (1), have to be
accurately calibrated prior to noise modeling. It is shown using noise variance
plots in Fig. 3b obtained via an implementation of the parametric approach [34]
for uncalibrated ISOs. Note the gap between the dotted and the solid-line plots.

Our noise modeling approach discussed in Sec. 4 is based on the actual sensor
noise measurements. We benefit from the calibrated noise statistics and propose
an interpolation approach to estimate uncalibrated PMFs as follows.

We assume that noise distributions per intensity among different ISO levels
have similar-shaped PMFs but differ significantly in their scales and means. This
assumption allows us to approximate noise distributions for uncalibrated ISO
levels through interpolating among calibrated noise variances and means. Let κ
denote a calibrated ISO from the set of calibrated ISO levels; {κmin, . . . , κmax},
for each κ, per intensity level l, we have the following statistics

σ2
ξlκ

= Var
(
ξlκ
)
, µξlκ

= Mean
(
ξlκ
)
, pξlκ(n), (4)
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where Var (·) and Mean(·) denote the variance and mean of the sample set,
respectively. The normalized noise distribution, whose mean and variance are 0
and 1, respectively, can follow a PMF as

pξ́lκ
(n) = σξlκ

pξlκ(nσξlκ
+ µξlκ

). (5)

We assume that this normalized PMF has a similar characteristic func-
tion among calibrated ISO levels for each l, i.e., pξ́lκmin

(n) ≈ · · · ≈ pξ́lκmax
(n).

Hence, for each set of calibrated noise distributions, we fit curves to the mea-
sured variances {σ2

ξlκmin
, . . . , σ2

ξlκmax
} and means {µξlκmin

, . . . , µξlκmax
} and use

them to approximate the variance and mean of noise for an uncalibrated ISO
level j ∈ {j|j ∈ N, κmin ≤ j ≤ κmax} as σ2

ξlj
and µξlj

, respectively. For each
unseen ISO j, the noise PMF is approximated as

pξlj (n)=
1

σξlj

pξ́lκ

(n−µξlj

σξlj

)
, (6)

where pξ́lκ
is a normalized noise distribution from the set of calibrated ISO levels.

The approximated PMF is then used in (3) to synthesize noise for the uncali-
brated ISO level j. A use case of such a non-parametric model interpolation is
illustrated for a Pixel 6 mobile camera in Fig. 3b, where noise models for some
random ISOs are obtained from the set of calibrated ISO levels shown in Fig. 3a.
Note the minimal gap between the dashed and the solid-line plots in Fig. 3b.

4.2 Applying Noise on Noisy Images

Given the calibrated noise models in the form of PMFs pξl1(n1), pξl2(n2) for two
different ISO settings and Ĩ1 as an observed image captured at the first ISO level,
we need to simulate Ĩ2 as an image at the second ISO level. To the best of our
knowledge, current practice is directly sampling noise from pξl2(n2) and applying
it on Ĩ1. However, we cannot ignore that Ĩ1 is already contaminated with noise
and hope that the image reconstruction network will learn to compensate for the
additional non-sensor-specific noise without impacting the task performance.

Hence, we propose to model the noise to be added to the existing noisy image
through accounting for the probability of the additive noise on top of existing
noise denoted by n2−n1 whose distribution characteristic function per intensity
level l can be pξl2(n2 − n1). However, for building pξl2(n2 − n1), we need some
approximation of the clean intensity image, denoted by Î. This is needed to pick
the right PMFs corresponding to l, i.e., l ≈ Î(i), and also to approximate n1

as n1 ≈ Ĩ1(i) − Î(i). Therefore, a denoiser is applied on the observation Ĩ1 to
obtain Î. Thus, we propose to simulate Ĩ2 via

Ĩ2(i)=Ĩ1(i)+RandomSampling
(
pξl2(n2−n1)

)
. (7)

In Sec. 5.3 and in Supplemental Material, we show that this approach results
in a more accurate noise augmentation compared to naively applying the ISO
setting 2 noise models on ISO setting 1 captures—namely, Ĩ2(i) = Ĩ1(i) +
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RandomSampling
(
pξl2(n2)

)
, or applying the ISO setting 2 noise models on ap-

proximated clean images as Ĩ2(i) = Î(i) + RandomSampling
(
pξl2(n2)

)
.

5 Experiments

We analyze our noise models through statistics and training data synthesis for
image reconstruction applications. Our method requires calibration captures at
specialized controllable settings. Since we do not have access to the cameras used
to build SIDD [2] and ELD [32], we cannot use these datasets to evaluate our
noise modeling. Instead, we calibrate three different mobile cameras–Samsung’s
S22+ and S20FE, and Google’s Pixel 6–and collect evaluation data using these
cameras for noise synthesis analyses.

Noise calibration details. Following the steps in Sec. 4, we first calibrate S22+
and Pixel 6 cameras for a set of seven different ISO levels as {2m100|m ∈ N, 0 ≤
m ≤ 6}. Since S20FE is used for a set of experiments which require only ISO
1600 and ISO 3200 noise models, we calibrate S20FE for these two ISOs only. For
noise sampling, per ISO level, we collect a burst of M = 100 raw captures with
nine different exposure values–namely, EV -4 to EV 4. At each EV, we capture
a burst of (M = 100) raw images at ISO 50 (κ̄ = 50) to generate a clean raw
image. All of the camera sensors use Bayer CFAs. Thus, we model noise for each
of the four Bayer color channels separately. Noise modeling is done for intensity
levels ranging from the black level to the white level of the sensor. However, to
prevent under-sampling, we assign one noise model to every bin of four intensity
levels. For instance, for 10-bit sensors with a black level 64 and white level 1023,
we end up with 240 noise PMFs per ISO, per CFA channel. To automate the
raw capture sequence, we use the Android Camera2API.

Baseline noise modeling methods. Our comparative evaluations include the fol-
lowing noise modeling methods:
HG [34] as the most typical noise model for raw image denoising. HG models
are traditionally calibrated following the procedure described in [13]. We instead
calibrate the HG noise model for each camera following the recommendations
in [34] that demonstrated improved performance using burst captures with tem-
poral averaging to obtain the expected value for the underlying intensity.
RS-DP [39] as another physics-based method. This model is based on ran-
dom sampling from dark frames for signal-independent noise and sampling from
a Poisson distribution fit to the sensor’s signal-dependent noise (RS-DP for
brevity). We perform the gain calibration step using flat-field images and the
mean and variance of their pixel values, and capture 10 dark frames per ISO as
a signal-independent noise database for this method, as suggested in [39].
Noise Flow [1] as the representative DNN-based method. We train a separate
Noise Flow model for each camera to handle all seven ISO levels. Following the
setup in [1], we train Noise Flow on real scenes rather than calibration images.
We use the evaluation data described in Sec. 5.1 as our training data.
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Fig. 4: Statistical analyses of per ISO sensor noise modeling for both S22+ and Pixel
6 cameras. JSD is measured relative to the real noise distribution obtained from ho-
mogeneous patches of the color checker chart captures (See Fig. 1b).

LRD [37] is the most recent noise modeling approach that combines physics-
based and DNN-based methods. We train LRD on the data described in Sec. 5.1.
The work in [37] did not provide source code for noise modelling. We imple-
mented their method according to their descriptions, but with a slight modifi-
cation to base the noise generator on our calibrated HG model, which provided
better performance than the suggested Poisson model used in [37].

We assess our non-parametric noise model and its extensions to noise model
interpolation and noise synthesis on top of noisy images separately as follows.

5.1 Analyses of Non-parametric Noise Modeling

Statistical Evaluations Our noise modeling method is evaluated by synthe-
sizing noise on clean images and measuring the difference between the synthetic
noise and the noise in real captures. To do so, we capture a sequence of 100
images of the color checker at ISO 50 and average them to generate a clean
raw image. We then simulate ISO captures by applying the corresponding noise
models on the clean raw image. This is shown in Fig. 1b, where the ISO 6400
calibrated noise model is applied on the clean raw image for the Pixel 6 camera.

We extract the histogram of the subtraction of the clean image from the cor-
responding noisy image at the homogeneous patches and consider it as the noise
distribution. We then quantify the accuracy of noise models by measuring the
entropy of the synthetic noise distribution relative to real noise, similarly to [1].
However, we use Jensen-Shannon divergence (JSD) rather than Kullback–Leibler
divergence (KLD) since it always has a finite value and is more stable numeri-
cally. Fig. 4 shows JSD plots for our non-parametric noise models for different
ISO levels for both S22+ and Pixel 6 cameras. The lower JSD indicates more
similarity with the actual noise. To account for the randomness, each entry on
the plots is the mean JSD of 100 synthetically generated images per ISO.

We also obtain JSD plots for the baseline noise models. As Fig. 4 shows,
except for Pixel 6 for ISO 800, where HG has a lower JSD, and ISO 200 where
LRD has a lower JSD, in all other cases, the proposed non-parametric method
results in more realistic noise compared to other methods. See Supplemental
Material for details about JSD and corresponding analyses using classic KLD.
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Table 1: The performance of the raw denoising-demosaicking model [7] trained on
synthetically generated noisy raw images for S22+ and Pixel 6 cameras. Average PSNR
and SSIM are measured on S22+ and Pixel 6 evaluation sets.

S22+ Pixel 6
Noise-synthesis Method PSNR SSIM PSNR SSIM

Non-parametric 39.74 0.954 38.49 0.950
HG [34] 39.62 0.942 38.00 0.949
RS-DP [39] 39.58 0.947 37.99 0.944
Noise Flow [1] 39.45 0.951 37.17 0.948
LRD [37] 39.63 0.949 38.11 0.945

Non-parametric ISO 1600 Interpolation 39.73 0.960 38.38 0.949
Non-parametric ISO 400 Interpolation 39.72 0.955 38.42 0.951

Ground-truth Visualized Raw
Input

Non-parametric
(Ours) HG [34] RS-DP [39] Noise Flow [1] LRD [37]

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Fig. 5: Qualitative results on S22+ real raw captures. We apply different noise synthesis
methods on EXR images [28] to create training images for the denoising-demosaicking
model [7]. Our non-parametric noise models help the image reconstruction model re-
move more noise whilst preserving more details. Raw inputs are bilinearly demosaicked
and all images are white-balanced and gamma-corrected for better visualization.

Evaluation via Image Reconstruction We also evaluate our non-parametric
noise models by using them to synthesize training data for the raw denoising-
demosaicking model introduced in [7] and evaluate it on real captures.

Synthesizing training data. For generating synthetic raw data, we use the graph-
ics dataset introduced in [28] that contains 292 high-dynamic-range images in
EXR format. We treat EXR data as photo-electrons and first convert them into
the same bit format of the corresponding sensor, considering the sensor’s black
and white levels. We then sub-sample the images according to the CFA pattern
of the sensor and apply noise models per color channel per ISO level to simulate
sensor raw measurements. We also account for the unbalanced color channels in
the sensor. Prior to noise synthesis, we apply an inversion of the white-balance
factors obtained during the calibration on the images. The ground-truth data in
this training setup are the EXR images converted to 16-bit RGB format.

Evaluation data. For each camera, we collect a set of evaluation images using
the Camera2API application. For each image pair in the evaluation set, we first
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capture a burst of 50 frames at ISO 50, followed by 1 frame per calibrated ISO.
For any given ISO, the exposure time is fixed such that the image’s EV is metered
at 0. The images at ISO 50 are averaged to generate a clean raw image, followed
by DCRaw’s demosaicker to generate an RGB image. The corresponding raw
captures at higher ISO levels are used as noisy input images. After removing the
misaligned captures, we end up with 64 test image pairs for S22+ and 72 pairs
for Pixel 6, a mix of indoor and outdoor scenes.

Fig. 5 shows qualitative results of image reconstruction model [7] to handle
S22+ raw images. The model is trained with synthetically generated data using
our proposed noise models and the baseline noise models for S22+. These images
show that using a more accurate noise model such as ours leads to a significant
noise reduction along with much better detail preservation compared to using
the other noise modeling methods. We list the peak-signal-to-noise ratio (PSNR)
and structural similarity index (SSIM) measured on the entire evaluation sets
for all the denoising-demosaicking [7] experiments in Table 1 for both cameras.
Table 1 suggests that using the proposed non-parametric noise models for noise
synthesis results in a higher quality compared to the other models. This is evident
from the higher PSNR and SSIM metrics for the proposed method. A qualitative
result is shown in Fig. 1c for Pixel 6. See Supplemental Material for more.

5.2 Analyses of Noise Model Interpolation

Noise modeling has to be done for a large number of ISO levels for realistic
applications. This needs many captures per ISO calibration, e.g ., 2× 100× 9 =
1800, as in our experiments. Fig. 3b shows the noise variance measured per
intensity level of Pixel 6 sensor for some random ISO levels. Using the calibrated
noise models obtained in the previous subsection, whose plots are shown in
Fig. 3a, we obtain noise models for the random ISO levels using the approach
proposed in Sec. 4.1. As Fig. 3b shows, our interpolated noise models result in
synthetic noise quite similar to real noise in terms of measured variance per
intensity level. We still go through a systematic analysis similar to Sec. 5.1 to
validate the accuracy of the interpolated noise models.

We mask out the calibrated models obtained for ISO 200 to ISO 3200, one at
a time, and approximate them through the proposed interpolation method given
the rest of the calibrated models. We run the JSD analyses for each interpolated
model and show the results in Fig. 4 for S22+ and Pixel 6 cameras, respectively.
These plots indicate that the distributions of the synthetic noise generated using
these interpolated models are quite similar to those of the calibrated models. In
all cases except ISO 800 for Pixel 6, the approximated noise models show lower
JSD compared to all the baselines calibrated or modelled on actual data.

We also evaluate the noise model interpolation method by using the inter-
polated models to synthesize training data for the raw denoising-demosaicking
task [7]. We pick ISO 400 and ISO 1600 as relatively low ISO and high ISO,
respectively, and use their corresponding interpolated noise models in the train-
ing experiment explained in Sec. 5.1. We replace the calibrated models with the
interpolated ones and retrain the raw denoising-demosaicking model. As Table 1
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shows, the performance of the raw denoising-demosaicking model trained using
the interpolated noise models is similar to that of using the original calibrated
noise models for both S22+ and Pixel 6. This validates the accuracy of the pro-
posed noise model interpolation method that allows for a large set of ISOs in
synthesizing data without going through the full calibration.

5.3 Validating Our Noise-on-noise Synthesis

We choose the night-time raw to sRGB image rendering task discussed in [26]
for this set of experiments. The authors published a set of low-light raw images
captured at ISO 1600 and ISO 3200 with a Samsung S20FE mobile camera
along with their corresponding photo-finished clean sRGB images for training a
neural image signal processor (ISP). This is an example of applications where the
ground-truth data is the result of a cascade of black-box image processing steps,
including non-linear processes such as contrast stretching and tone mapping,
which cannot be truly inverted. Thus, the actual raw image is not accessible for
further data augmentation through noise synthesis.

We choose this baseline over other popular datasets (e.g . [2]) since the S20FE
camera is relatively more recent, and we can access the device to perform our non-
parametric noise modeling. We train the neural ISP with the ISO 3200 sub-set
of the training data as in [26]. The average PSNR of 39.38 dB and SSIM of 0.948
measured on the S20FE evaluation data set an upper bound for comparisons.

We remove ISO 3200 images from training data and need to synthesize ISO
3200 raw images for neural ISP training, assuming that ISO 1600 captures are
the only available data. Typical noise synthesis is not an option here as clean raw
captures are not available, and the target (clean) images are in sRGB. A naive
solution to this data augmentation problem would be to use the ISO 3200 noise
models directly on ISO 1600 images. Despite the fact that the underlying image
is already noise-contaminated, this type of augmentation for training is very
common in image reconstruction [36]. Table 2 shows that such an application of
noise models on existing noisy captures leads to 1 dB lower PSNR, implying a
low performance for this approach. The high JSD also shows that the synthetic
noise is very different from the actual noise in this experiment.

We thus carefully account for the underlying noise using the approach dis-
cussed in Sec. 4.2; The calibrated noise models for the two ISO settings are used
to build a single noise model to synthesize noise on top of ISO 1600 raw captures
using Eq. (7). To obtain an estimate of a clean intensity raw image (i.e., Î) for
determining an appropriate noise model per sensor intensity level, we train a
raw-to-raw denoising model for ISO 1600 captures. We use the same approach
of using graphics data discussed in Sec. 5.1 along with the calibrated ISO 1600
noise models to synthesize data and train a raw-to-raw UNet network. This de-
noiser is then used to obtain an estimate of the clean intensity. Table 2 reports a
relatively low JSD for this experiment. It also shows the raw-to-sRGB rendering
performance of the neural ISP trained using the data generated through our
proposed noise synthesis approach given ISO 1600 noisy captures. The average
PSNR and SSIM on the S20FE evaluation set are very close to those of the model
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Table 2: JSD analysis for the proposed noise-on-noise model, and evaluation via syn-
thesizing S20FE ISO 3200 raw images for neural ISP. Different data sets; ISO 3200 real
captures, naively applying ISO 3200 noise model on ISO 1600 raw images, and ISO
3200 noise synthesis using the proposed noise-on-noise model.

Training Data for Neural ISP [26] PSNR SSIM JSD
Real Captures (Upper Bound) 39.38 0.948 -
Naive Noise-on-Noise Synthesis 38.03 0.929 0.049
Proposed Noise-on-Noise Synthesis 39.05 0.939 0.008

Upper Bound Naive Noise-on-Noise (Ours)

Fig. 6: Neural ISP qualitative results on S20FE real raw captures at ISO 3200. The
upper bound corresponds to training with real captures at ISO 3200. We use different
noise synthesis methods applied to ISO 1600 images to create ISO 3200 training images
for raw to sRGB rendering. Our noise-on-noise model to synthesize training data helps
the neural ISP preserve more details compared to naively applying calibrated ISO 3200
noise models to ISO 1600 images. (See Supplemental Material for more results.)

trained using real captures. For ablation studies on different choices of denoiser,
underlying calibrated noise model, and directly applying the calibrated ISO 3200
noise model on the denoised ISO 1600 images, see Supplemental Material.

6 Limitation and Conclusion

We have presented a novel non-parametric sensor noise model consisting of prob-
ability mass functions per intensity level that are constructed directly from cap-
tured images. We show that this straightforward noise model provides state-of-
the-art performance in fitting real sensor noise compared to existing noise mod-
els. We also outline an image capture procedure to derive our non-parametric
noise model with an interpolation technique that effectively reduces the necessary
number of capturing ISOs. Moreover, we have proposed a method for synthesiz-
ing noise on pre-existing noised images in the absence of noise-free counterparts.

We do acknowledge that fixed-pattern noise and random band-pattern noise
are not addressed explicitly in our work. Such signal-independent noise compo-
nents, however, can be modeled as efficiently as in [33, 39] before obtaining our
non-parametric noise PMFs. Moreover, the need for a probability mass function
at dense intensity levels results in an inherently larger footprint over conventional
parametric models. Future work that targets a mixture of parametric and non-
parametric modeling over the sensor’s intensity range could help reduce capture
and memory size while maintaining accuracy.
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