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Abstract. Structural re-parameterization (SRP) is a novel technique se-
ries that boosts neural networks without introducing any computational
costs in inference stage. The existing SRP methods have successfully
considered many architectures, such as normalizations, convolutions, etc.
However, the widely used but computationally expensive attention mod-
ules cannot be directly implemented by SRP due to the inherent mul-
tiplicative manner and the modules’ output is input-dependent dur-
ing inference. In this paper, we statistically discover a counter-intuitive
phenomenon Stripe Observation in various settings, which reveals that
channel attention values consistently approach some constant vectors
during training. It inspires us to propose a novel attention-alike SRP,
called ASR, that allows us to achieve SRP for a given network while
enjoying the effectiveness of the attention mechanism. Extensive exper-
iments conducted on several standard benchmarks show the effective-
ness of ASR in generally improving the performance of various scenarios
without any elaborated model crafting. We also provide experimental
evidence for how the proposed ASR can enhance model performance.
https://github.com/zhongshsh/ASR.
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Table 1: The significant decrease in inference speed (Frames Per Second) by using
attention modules. "#P." denotes the number of parameters.

CIFAR100 STL10 CIFAR100 STL10

Model #P. (M) Speed #P. (M) Speed Model #P. (M) Speed #P. (M) Speed

ResNet164 1.73 1944 1.70 255 ResNet164 1.73 1944 1.70 255
+IE [31,39] 1.74 1505 (↓ 22.56%) 1.72 170 (↓ 33.26%) +SRM [29] 1.76 1387 (↓ 28.64%) 1.74 162 (↓ 36.40%)
+CBAM [41] 1.93 793 (↓ 59.21%) 1.90 127 (↓ 50.23%) +DIA [25] 1.95 1092 (↓ 43.82%) 1.92 154 (↓ 39.61%)
+SE [19] 1.93 1469 (↓ 24.42%) 1.91 173 (↓ 32.08%) +SPA [13] 3.86 1080 (↓ 44.45%) 3.83 180 (↓ 29.36%)
+ASR (SE) 1.73 1942 (∼ 0.00%) 1.70 255 (∼ 0.00%) +ASR (SPA) 1.73 1946 (∼ 0.00%) 1.70 253 (∼ 0.00%)
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A ASR for different network layers in inference phase

In the main text, we find that the “attention values" vψ,θ generated by ASR are
some constant vector, for the various common-used modules Bθ̂ in the backbone,
we can seamlessly find the corresponding transformation g such that

Bθ̂ ⊙ vψ,θ = Bg[θ̂,ψ,θ], (1)

(1) For the convolutional layer, if Bθ̂ is a convolutional layer C with kernels
K and bias b, then we have

C(x;K,b)⊙ vψ,θ = (x ∗K)⊙ vψ,θ + b⊙ vψ,θ

= x ∗ (K⊙ vψ,θ) + b⊙ vψ,θ

= C(x;K⊙ vψ,θ,b⊙ vψ,θ),

≡ C(x;K′,b′)

(2)

where ∗ denote convolution and K ⊙ vψ,θ means that the the product of i-th
elements of vψ,θ and i-th kernel of K. Since the existing SRP methods mainly
merge various neural network layers into a convolutional layer, therefore ASR is
compatible with most of these SRP methods.

(2) For the normalization layer κ, like batch normalization [37], instance nor-
malization [28], group normalization [42], etc., they generally can be formulated
as

κ(x;µ, σ, γ, β) =
x− µ

σ
⊙ γ + β, (3)

where µ, σ, γ, β are the parameters of each kind of normalization method. For
ASR, the Eq.(1) can be rewrittern as

κ(x;µ, σ, γ, β)⊙ vψ,θ =
(x− µ)⊙ γ ⊙ vψ,θ

σ
+ β ⊙ vψ,θ

= κ(x; γ ⊙ vψ,θ, β ⊙ vψ,θ),

≡ κ(x;µ, σ, γ′, β′)

(4)

(3) For the fully connected layer f(x) =Wx, we have

f(x)⊙ vψ,θ =Wx⊙ vψ,θ

= (W ⊙ vψ,θ)x ≡W ′x
(5)

(4) For the transformer-based attention layer T , we have

T (x;WQ,WK ,WV )⊙ vψ,θ =
WQx(WKx)

T

√
dk

WV x⊙ vψ,θ

=
WQx(WKx)

T

√
dk

(WV ⊙ vψ,θ)x

≡ WQx(WKx)
T

√
dk

W ′
V x Since Eq.(5)

= T (x;WQ,WK ,W
′
V )
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B Introdcution of implementation details

In Section B.1, we present the experimental details, followed by an explanation
in Section B.2 on how ASR is incorporated into various backbones.

B.1 Experiment details

Unless otherwise specified, we follow the settings of [4,8,15,18,33,35]. Specifically,
all models using STL10, CIFAR10, and CIFAR100 datasets with epoch set to
164. During training, we apply standard data augmentation techniques such
as normalization, random cropping, and horizontal flipping. The batch size of
CIFAR10, CIFAR100, and STL10 is 128, 128, 16, respectively. The other hyper-
parameter settings of CIFAR10, CIFAR100, STL10 and ImageNet are shown in
Table 2 and Table 3 respectively. The patch size of ViT is 16.

ResNet83 ResNet164 VGG19 ShuffleNetV2 MobileNet RepVGG ResNet-ACNet

optimizer SGD (0.9) SGD (0.9) SGD (0.9) SGD (0.9) SGD (0.9) SGD (0.9) SGD (0.9)
schedule 81/122 81/122 60/120/160 60/120/160 60/120/160 130 cosine annealing
weight decay 1.00E-04 1.00E-04 5.00E-04 5.00E-04 5.00E-04 1.00E-04 1.00E-04
gamma 0.1 0.1 0.2 0.2 0.2 0.1 0.333
lr 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 2: Implementation details for CIFAR10/100, STL10 image classification.
Normalization and standard data augmentation (random cropping and horizontal flip-
ping) are applied to the training data.

ResNet34 ResNet50 ResNet101 ViT-S ViT-B ViT-B ↑ 384

optimizer SGD (0.9) SGD (0.9) SGD (0.9) AdamW AdamW AdamW
schedule 30/60/90 30/60/90 30/60/90 cosine annealing cosine annealing cosine annealing
weight decay 1.00E-04 1.00E-04 1.00E-04 5.00E-02 5.00E-02 1.00E-08
gamma 0.1 0.1 0.1 - - -
lr 0.1 0.1 0.1 5.00E-04 5.00E-04 5.00E-06
epoch 100 100 100 300 300 30
batch size 128 128 128 256 256 64

Table 3: Implementation details for ImageNet 2012 image classification. Normal-
ization and standard data augmentation (random cropping and horizontal flipping) are
applied to the training data. The random cropping of size 224 by 224 is used in these
experiments.

B.2 Application details

In this section, we provide detailed information on how we apply ASR to different
architectures during the training phase. We focus on ResNet and ResNet-ACNet,
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Fig. 1: ASR in the blocks of ResNet during the training phase.
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Fig. 2: ASR in the block of VGG during the training phase.
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Fig. 3: ASR in the block of ShuffleNetV2 during the training phase.

C
on
v

B
N

R
EL

U

C
on
v

B
N

R
EL

U

Depthwise Pointwise

A
SRA
SR

Fig. 4: ASR in the block of MobileNet during the training phase.
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Name Explanation

optimizer Optimizer
depth The depth of the network
schedule Decrease learning rate at these epochs
wd Weight decay
gamma The multiplicative factor of learning rate decay
lr Initial learning rate

Table 4: The additional explanation.
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Fig. 5: ASR in the transformer encoder of ViT during the training phase.

VGG and RepVGG, ShuffleNetV2, MobileNet, and ViT. For each architecture,
we specify the location of ASR within the block and provide a visualization
to facilitate understanding. Normally, the placement of ASR is typically situ-
ated post the individual layers within the model architecture. Specifically, it is
conventionally positioned subsequent to batch normalization and prior to the
integration of residual connections and ReLU. In essence, ASR plays the role of
calibration for the outputs of each stratum within the model architecture.
ResNet and ResNet-ACNet are popular convolutional neural network ar-
chitectures that use basic blocks or bottlenecks. In our experiments, we insert
ASR after the last batch normalization layer and before the residual addition
operation, as shown in Fig. 1. We use Sigmoid as the activation function σ(·) of
ASR, and we set the initial value of the learnable vector ψ to 0.1.
VGG and RepVGG are two VGG-type convolutional neural network architec-
tures that are widely used in computer vision applications. In our experiments,
we insert ASR between the batch normalization layer and ReLU activation func-
tion, as shown in Fig. 2. This location allows ASR to process the feature maps
before they are passed to the next convolutional layer, which helps to reduce the
batch noise [31] and distortion caused by the convolution. We use Sigmoid as
the activation function σ(·) of ASR, and we set the initial value of the learnable
vector ψ to 0.1.
ShuffleNetV2 is a lightweight convolutional neural network architecture that
uses a dual-branch structure for its block. In our experiments, we insert ASR
between the last batch normalization layer and ReLU activation function in the
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residual branch, as shown in Fig. 3. We use Sigmoid as the activation function
σ(·) of ASR, and we set the initial value of the learnable vector ψ to 0.1.
MobileNet is another lightweight convolutional neural network architecture
that uses depthwise and pointwise convolutional layers in each block. In our
experiments, we insert ASR between BN and ReLU in both layers, as demon-
strated in Fig. 4. This placement allows ASR to capture the non-linearity of both
convolutional layers. We use Sigmoid as the activation function σ(·) of ASR, and
we set the initial value of the learnable vector ψ to 0.1.
ViT. For ViT, we apply ASR to the transformer encoder, as illustrated in
Fig. 5. ASR is inserted after multi-head attention and MLP. Moreover, dis-
tinct from other backbones, the transformer-based model ViT diverges from the
conventional notion of channels. Instead, tokens and their associated features
constitute the vectors from ViT. Therefore, we apply ASR to the dimension of
the features. The activation function σ(·) employed within ASR is Tanh, and the
initial value of the learnable vector ψ is set to 1e-3. Correspondingly, the initial
values of the network layers within ASR are also configured to 1e-3.

C The initialization of ASR

In this section, we analyze the initialization of the input ψ ∈ RC×1×1 in ASR.
We conduct experiments by initializing ψ with values ranging from 0.1 to 0.6
and evaluate the performance of ASR on the CIFAR100 dataset as shown in
Table 5. Our findings suggest that an appropriate initialization value is crucial
for the performance of ASR. Specifically, we find that ASR initialized with a
value of 0.1 achieves the highest accuracy of 74.83% and 74.77% on the test set,
while the accuracy of ASR with other initialization values varies from 74.03% to
74.73%. These results indicate that choosing an appropriate initialization value
can significantly impact the performance of ASR, and initializing ASR with a
value of 0.1 leads to the best performance on the CIFAR100 dataset.

Initialization 0.1 0.2 0.3 0.4 0.5 0.6

ASR (SE) 74.83 74.56 74.15 74.17 74.03 74.15
ASR (IE) 74.77 74.55 74.73 74.25 74.45 74.24

Table 5: Top-1 accuracy (%) of different initialization values on ASR’s performance.
The backbone is ResNet83, and the dataset is CIFAR100. Bold and underline indicate
the best results and the second best results, respectively.

D Different numbers of ASR inserted at the same
position

In this section, we provide additional experimental results on the impact of
inserting different numbers of ASR at the same position in ResNet164 and ViT.
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Specifically, we evaluate the performance of ResNet164 with 1, 2, 3, and 4 ASR
modules inserted at the positions shown in Fig. 1. We report the top-1 and top-5
accuracy on the CIFAR100 validation set.

As shown in Table 6, for ResNet164, the performance generally improves as
the number of ASR modules increases when δ < 3. These results suggest that
inserting multiple ASR modules at the same position in ResNet164 may further
enhance the performance.

Module
δ = 1 δ = 2 δ = 3 δ = 4

Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc.

ASR (SE) 75.36 93.53 75.87 93.99 75.72 94.15 75.22 93.56
ASR (IE) 75.58 93.84 75.71 93.81 75.45 94.07 74.56 93.73
ASR (SRM) 75.23 93.68 75.45 94.06 75.61 94.21 75.11 93.78
ASR (SPA) 75.12 93.44 75.43 93.66 75.81 94.03 75.62 93.46

Table 6: The accuracy (%) of ResNet164 with different numbers of ASR inserted at
the same position on CIFAR100.

E Related works

Attention mechanism selectively focuses on the most informative components
of a network via self-information processing and has gained a promising per-
formance on vision tasks [31]. For example, SENet [19] proposes the channel
attention mechanism, which adjusts the feature map with channel view, and
CBAM [41] considers both channel and spatial attention for adaptive feature re-
finement. Recently, more works [2,10,12,17,23,27,30,34,44,49,51] are proposed
to optimize spatial attention and channel attention. Most of the above works
regard attention mechanism as an additional module, and with the development
of the transformer [38], a large number of works [9, 22, 36, 43, 47, 48] regard the
attention as important parts of the backbone network.
Structural re-parameterization enables different architectures to be mutu-
ally converted through the equivalent transformation of parameters [20]. For
instance, a branch of 1×1 convolution and a branch of 3×3 convolution can be
transferred into a single branch of 3×3 convolution [8]. In the training phase,
multi-branch [7, 8] and multi-layer [1, 14] topologies are designed to replace the
vanilla layers for augmenting models. Afterward, during inference, the training-
time complex models are transferred to simple ones for faster inference. Cao et
al [1] have discussed how to merge a depthwise separable convolution kernel dur-
ing training. Thanks to the efficiency of structural re-parameterization, it has
gained great importance and has been utilized in various tasks [21,32,46,50] such
as compact model design [9], architecture search [3, 24, 45], pruning [5, 16, 26],
image recognition [6], and super-resolution [11,40].
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F The visualizations of the first-order difference (absolute
value) for attention value over epoch

To provide further evidence for the claim made in our paper that most of the
attention values almost converge at the first learning rate decay (30 epochs), we
present additional visualizations of the first-order difference (absolute value) in
attention value over epoch for different structures, attention modules, datasets,
and training settings (including learning rate and weight decay). Each figure
includes four subplots that show the evolution of attention value for different
images. The horizontal axis indicates the number of epochs, while the verti-
cal axis represents the order of random channel ID. Unless otherwise specified,
we adopt ResNet83-SE as our baseline, CIFAR100 as the default dataset, and
schedule learning rate as the default learning rate, with weight decay set to 1e-4.
Different backbones. Fig. 6 and Fig. 7 show the first-order difference (absolute
value) in attention value over epoch for ResNet83 and ResNet164, respectively.
Both backbones exhibit the same trend, indicating that most of the attention
values almost converge at the first learning rate decay (30 epochs).
Different attention modules. Fig. 6 and Fig. 8 present the first-order differ-
ence (absolute value) in attention value over epoch for two attention modules SE
and IE, respectively. Although IE has some cchannel that converge more slowly
than others, most of the channel attention values almost converge at 30 epochs.
Different datasets. Fig. 6 and Fig. 9 compare the attention values of ResNet83-
SE on CIFAR100 and STL10 during the training process. Although ResNet83-SE
exhibits greater attention value fluctuations in the initial stages on the STL10,
our results still align with the findings presented in our paper.
Different training setting. We also compare the first-order difference (abso-
lute value) in attention value over epoch for ResNet83-SE under different training
settings. Fig. 6 and Fig. 10 show the results of using schedule learning rate and
cosine learning rate, respectively. Fig. 11, Fig. 12, and Fig. 13 correspond to
weight decay values of 2e-4, 3e-4, and 4e-4, respectively. In all cases, we obtain
results consistent with our paper’s findings. We also observe that larger weight
decay values lead to faster attention value convergence.

G The results about the batch noise attack

We conduct experiments on three types of noise attacks to empirically verify the
ability of ASR in regulating noise to improve model robustness, including batch
noise, constant noise, and random noise. We consider the style transfer task,
which generally adopts the instance normalization (IN) without batch noise,
rather than BN, as adding batch noise would significantly reduce the quality of
generated images due to noise interference.

In this section, we present additional results on the batch noise attack to
support the conclusions of our paper. As shown in Fig. 14, Fig. 15, and Fig. 16,
with batch noise (BN), there are more blurriness compared to without batch
noise (IN). However, when ASR is applied to BN, the aforementioned issues
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Fig. 6: The visualization of the first-order difference (absolute value) for attention
value of ResNet83-SE (weight decay: 1e-4) over epoch on CIFAR100. Zoom in for best
view.

are significantly reduced. This suggests that ASR can effectively alleviate the
adverse effects of noise introduced by batch normalization, resulting in image
quality comparable to that of IN without batch noise.

H More examples of Stripe Observation

In this section, we present additional examples to support the conclusions of our
paper that after passing through the attention module, the channel attention val-
ues of different images tend to approach a certain value within the same channel,
resulting in a “stripe structure". We present in Fig. 17, Fig. 18, Fig. 19, Fig. 20,
Fig. 21, Fig. 22, and Fig. 23 the visualization of attention values for different
structures, attention modules, datasets, and training settings (including learn-
ing rate and weight decay values). The horizontal axis represents the order of
random channels, while the vertical axis represents the order of random images.
Corresponding to Appendix F, we use ResNet83-SE as the baseline, with the
default dataset being CIFAR100, learning rate being schedule learning rate, and
weight decay being 1e-4. All figures show an obvious "stripe structure," which is
consistent with our conclusion in the paper that the attention values of different
images tend to converge to a certain value within the same channel.
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Fig. 7: The visualization of the first-order difference (absolute value) for attention
value of ResNet164-SE (weight decay: 1e-4) over epoch on CIFAR100. Zoom in for
best view.

0 20 40 60 80 100 120 140 160

0

10

C
ha

nn
el

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120 140 160

0

10

C
ha

nn
el

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120 140 160

0

10

C
ha

nn
el

0.00

0.05

0.10

0.15

0.20

0 20 40 60 80 100 120 140 160
Epoch

0

10

C
ha

nn
el

0.00

0.05

0.10

0.15

0.20

Fig. 8: The visualization of the first-order difference (absolute value) for attention
value of ResNet83-IE (weight decay: 1e-4) over epoch on CIFAR100. Zoom in for best
view.
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Fig. 9: The visualization of the first-order difference (absolute value) for attention
value of ResNet83-SE (weight decay: 1e-4) over epoch on STL10. Zoom in for best
view.
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Fig. 10: The visualization of the first-order difference (absolute value) for attention
value of ResNet83-SE (weight decay: 1e-4) based on cosine learning rate over epoch on
CIFAR100. Zoom in for best view.
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Fig. 11: The visualization of the first-order difference (absolute value) for attention
value of ResNet83-SE (weight decay: 2e-4) over epoch on CIFAR100. Zoom in for best
view.
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Fig. 12: The visualization of the first-order difference (absolute value) for attention
value of ResNet83-SE (weight decay: 3e-4) over epoch on CIFAR100. Zoom in for best
view.
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Fig. 13: The visualization of the first-order difference (absolute value) for attention
value of ResNet83-SE (weight decay: 4e-4) over epoch on CIFAR100. Zoom in for best
view.
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Fig. 14: The results about the batch noise attack. Zoom in for best view.
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Fig. 15: The results about the batch noise attack. Zoom in for best view.
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Fig. 16: The results about the batch noise attack. Zoom in for best view.
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Fig. 17: The attention values of different images from ResNet83-SE on CIFAR100.
Zoom in for best view.

0 50 100 150 200 250 300 350
Channel

0

20

40

60

80

Im
ag

e

Fig. 18: The attention values of different images from ResNet164-SE on CIFAR100.
Zoom in for best view.
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Fig. 19: The attention values of different images from ResNet83-SE based on cosine
learning rate on CIFAR100. Zoom in for best view.
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Fig. 20: The attention values of different images from ResNet83-SE on STL10. Zoom
in for best view.
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Fig. 21: The attention values of different images from ResNet83-SE (weight decay:
2e-4) on CIFAR100. Zoom in for best view.
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Fig. 22: The attention values of different images from ResNet83-SE (weight decay:
3e-4) on CIFAR100. Zoom in for best view.



Stripe Observation Guided Attention Mechanism 19

0 50 100 150 200 250 300 350
Channel

0

20

40

60

80

Im
ag

e

Fig. 23: The attention values of different images from ResNet83-SE (weight decay:
4e-4) on CIFAR100. Zoom in for best view.
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Fig. 24: The visualization about the spatial attention from CBAM. We randomly
select six images from STL10 and extract the spatial attention values of five blocks
from ResNet83-CBAM. Each row in the visualization represents the spatial attention
values of different blocks for the same image, while each column represents the spatial
attention values of different images for the same block. Zoom in for best view.
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