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In this supplementary document, we provide further details regarding our
proposed method and qualitative results. We describe our implementation details
for NeRF in Appendix A, and for NeRFMatch in Appendix B. Then, we present
additional analysis and discussion of our method in Appendix C.

Fig. 1: Example of masking on Kings College scene. Top images - original images,
bottom - semantic segmentation using [4].

A NeRF Implementation Details

Handling challenges in outdoor scenes. Outdoor reconstruction in the wild
has a lot of challenges including illumination changes, transient objects, and
distant regions. For the task of localization, we are interested in reconstructing
only the static scene elements, e.g ., roads, buildings, and signs.

To properly train NeRF in such a scenario, we use a pre-trained semantic
segmentation model [4] and mask out the sky and transient objects: pedestrians,
bicycles, and vehicles. These objects occupy only a minor part of the captured
images and are excluded from the loss computation during the training process.
Analogous methods for masking in sky regions and/or dynamic object areas
have been implemented in other works focused on the reconstruction of urban
scenes [10,14,16]. We show examples of semantic segmentation in Fig. 1 and its
effect on synthesized views in Fig. 2.



2

Fig. 2: Example of masking on the King’s College scene of Cambridge Landmarks [5].
The bottom row are rendered with NeRF, and the top row - ground truth images.

Table 1: NeRF PSNR scores. We present the PSNR scores for our trained MipNeRF
models on each scene of Cambridge Landmarks [5] and 7-Scenes [13].

Cambridge Landmarks - Outdoor 7-Scenes - indoor
Kings Hospital Shop StMary Court Average Chess Fire Heads Office Pump. Kitchen Stairs Average

22.9 22.1 24.0 23.0 23.2 23.1 29.6 30.0 32.5 30.2 31.4 27.9 34.7 30.9

To account for illumination changes, we use an appearance vector that we
concatenate together with the view direction as input, similar to [8]. The ap-
pearance vector changes across sequences but stays the same for all frames in
one sequence since appearance does not drastically change inside a sequence.
NeRF architecture. Our NeRF model consists of a MipNeRF [2] architecture
with both coarse and fine networks. We utilize the final outputs from the fine
network to render RGB, depth maps, and 3D features.
NeRF training. For each scene, we load a subset of 900 training images and 8
validation images and train each model for 15 epochs. From the set of all pixels
in all training samples, we randomly sample a batch of 9216 rays. Subsequently,
for each ray, we sample 128 points for the coarse network and an additional
128 for the fine network. We use the Adam optimizer [6] with a learning rate
1.6×10−3 and cosine annealing schedule [7]. In Tab. 1, we present the per-scene
PSNR scores for our trained models on the training images.

B NeRFMatch Implementation Details

We summarize average runtime performance for NeRF and both matching mod-
els in Tab. 2.
Training pairs. We use the same training pairs1 generated by PixLoc [12]
which were computed based on image covisibility within the training split. Dur-
ing training, for each train image we load its top-20 covisible pairs. For each
1 Image pairs are available from https://cvg-data.inf.ethz.ch/pixloc_CVPR2021/

https://cvg-data.inf.ethz.ch/pixloc_CVPR2021/
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Table 2: Runtime. We show runtime of NeRFMatch-Mini and NeRFMatch. For pose
refinement we are using optimization refinement for NeRFMatch-Mini and iterative
refinement for NeRFMatch.

NeRF type NeRFMatch-Mini NeRFMatch

NeRF render 141ms 141ms
Image-to-NeRF matching 37ms 157ms
Pose refinement 398ms 141ms

training epoch, we then randomly sample 10000 training pairs from those co-
visible pairs for each scene. In the case, we train multiple scenes, we merge
those pairs across scenes which allows us to balance the training samples across
different scenes.
Image retrieval. We adopt the retrieval pairs pre-computed by PixLoc [12]
using NetVLAD [1] for Cambridge Landmarks [5] and DenseVLAD [15] for 7
Scenes [13] during inference. We use those retrieval pairs for all experiments
by default except for the NeRF-only localization experiment in Sec. 5.1. That
experiment is to confirm the feasibility of NeRF-only localization, therefore we
run NetVLAD [1] to extract retrieval pairs at image resolution 480×480 between
the real query images and the training images synthesized by NeRF.

During inference, we noticed applying top−k retrieval pairs with k > 1 show
evident improvement for NeRFMatch on Cambridge Landmarks. Thus, we set
k = 10 following the common localization practice [11, 12]. For NeRFMatch-
Mini, setting k > 1 did not change much the performance. We suspect this is
due to its less accurate matches, which makes the outlier rejection harder when
merging noisy correspondences from more pairs. For the indoor 7 Scenes dataset,
we use k = 1 which is sufficient for relatively small-size scenes.
Optimization refinement. Similar to iNeRF [17], we are doing a forward
pass through frozen NeRF MLP layers using an estimated pose as the initial
camera pose. Instead of rendering the entire image, we sample and render 3600
rays, which are equally spread in a grid structure across the image plane. The
we apply a regular photometric loss between the query image and the rendered
image and backpropagate to update the initial camera pose. Instead of using the
raw updated camera pose, we render the NeRF features and match them with
the NeRFMatch to obtain the final camera pose.

C Additional Details

NeRF backbones. In this section, we evaluate additional NeRF type - Instant
NGP [9] in comparison to MipNeRF [2]. We use MipNeRF for our experiments in
the main paper . As shown in Tab. 3, Instant NGP performs significantly worse.
We hypothesize that this is due to noisy depth reconstruction that is typical for
Instant NGP.
Impact of scene sizes. Scene size affects both NeRF and localization perfor-
mance, often coupled with scene content and camera pose distribution. Ranking



4

Table 3: NeRF backbone ablation on Cambridge Landmarks. We compare
NeRFMatch-Mini and NeRFMatch performances using Instant NGP.

NeRF type Avg. Med (cm/◦) ↓/Recall (%) ↑
NeRFMatch-Mini NeRFMatch

Instant NGP 41.1/0.7/44.4 28.1/0.5/61.3
MipNeRF 20.0/0.4/69.7 13.3/0.3/80.8

scenes by localization errors (lower is better) leads to OldHospital (50× 40m2)
> KingsCollege (140× 40m2) > ShopFacade (35× 25m2) for outdoor and stairs
(2.5 × 2 × 1.5m3) > pumpkin (2.5 × 2 × 1m3) > redkitchen (4 × 4 × 1.5m3) >
chess (3× 2× 1m3) for indoor. This suggests that smaller scenes (OldHospital,
stairs) can be more challenging than larger scenes (KingsCollege, redkitchen)
due to challenging contents like repetitive structures and texture-less regions.
Image retrieval on synthesized views. The goal of NeRF-only experiment is
to verify the possibility to use NeRF as the only scene representation removing
the need to maintain the original image collection. Our experiments show a
slight performance decrease due to the domain gap between rendered and real
images. Yet, we did not claim an efficient solution for online image retrieval
and NeRF rendering. Future research is needed to improve its runtime efficiency
either via caching scene reference poses in a hierarchical tree structure to fasten
the searching process or leveraging any available prior information such as GPS
coordinates to quickly find a subset of poses.
Indoor performance bottleneck. NeRF predicted depth maps are used to
compute pseudo ground-truth for matching supervision. Incorrect depth predic-
tions can lead to misaligned feature correspondences. In contrast, image match-
ing, SCR, and APR methods use more accurate labels like Colmap camera poses
or 3D maps. For small-scale indoor scenes, precise supervision is essential to
achieve centimeter-level errors. Our method based on feature matching, how-
ever, scales better than regression-based approaches in larger outdoor scenes.
Introducing uncertainty measures to ignore inaccurate matches, as in [3], and im-
proved NeRF reconstructions with accurate depth maps will benefit our method.
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