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A Appendix Overview

In this appendix, we provide more details on our experimental setting and addi-
tional evaluation results. In Section [B] we discuss the computation cost caused
by data parameterization. In Section [C| we introduce the detailed setup of our
experiment to improve the reproducibility of our paper. In Section|[D] we conduct
additional studies on how the pruning rate influences the model performance. In
addition, we visualize images generated by HMNs in Section [D.5]

B Discussion

While data parameterization methods demonstrate effective performance in data
condensation, we show that generated images per class (GIPC) play an impor-
tant role in data parameterization. The payoff is that HMNs, along with other
SOTA data parameterization methods [2,[3}/5] invariably generate a higher quan-
tity of images than those condensed and stored in pixel space with a specific
storage budget, which may potentially escalate the cost of data condensation.
A limitation of HMNs and other data parameterization methods is that deter-
mining the parameters of the data container to achieve high-quality data con-
densation can be computationally demanding. Besides, more generated images
can lead to longer training time with condensed datasets. In Section we
show that, even though HMNs generate more training images, training on con-
densed datasets generated by HMNs achieves better test accuracy within the
same training time.

Another difference between data parameterization and conventional DC meth-
ods using images as data containers is that data parameterization methods need
to generate images before training with condensed datasets. It is important to
note that this additional step incurs only a minimal overhead, as it merely re-
quires a single forward pass of HMNs. For example, on a 2080T1, the generation
time for a 1 IPC, 10 IPC, and 50 IPC CIFAR10 HMN is 0.036s, 0.11s, and 0.52s,
respectively (average number through 100 repeats).
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C Experiment Setting and Implementation Details

C.1 HMN architecture design.

In this section, we introduce more details on the designs of the Hierarchical Mem-
ory Network (HMN) architecture, specifically tailored for various datasets and
storage budgets. We first introduce the three-tier hierarchical memories incorpo-
rated within the network. Subsequently, we present the neural network designed
to convert memory and decode memories into images utilized for training.

Table 1: The detailed three-tier memory settings. We use the same setting for CI-
FARI10 and SVHN. #Instance-level memory is the number of memory fitting the stor-
age budget. #Instance-level memory (Over-budget) indicates the actual number of
instance-level memory that we use for condensation, and we prune this number to
#Instance-level memory after condensation. I-10 stands for ImageNet-10.

Dataset SVHN & CIFAR10 CIFAR100 Tiny I-10
IPC 1 10 50 1 10 50 1 10 1
Dataset-level memory channels 5 50 50 5 50 50 30 50 30
Class-level memory channels 3 30 30 3 30 30 20 30 25
Instance-level memory channels 2 6 8 2 8 14 4 10 8
##Instance-level memory 85 278 1168 93 219 673 42 185 125

#Instance-level memory (Over-budget) 93 306 1284 102 243 740 46 203 138

Hierarchical memories. HMNs consist of three-tier memories: dataset-
level memory m(P) | class-level memory m,(;C)7 and instance-level memory mé?,
which are supposed to store different levels of features of datasets. Memories of
HMNs for SVHN, CIFARI10, and CIFAR100 have a shape of (4, 4, Channels),
and memories for Tiny ImageNet have a shape of (8, 8, Channels). Memories for
ImageNet-10 have a shape of (12, 12, Channels). The number of channels is a
hyper-parameter for different settings.

We present, the detailed setting for the number of channels and the number
of memories under different data condensation scenarios in Table [Tl Besides the
channels of memories, we also present the number of instance-level memories.
Since each instance-level memory corresponds to a generated image, the number
of instance-level of memories is the GPIC for an HMN. Every HMN has only
one dataset-level memory, and the number of class-level memory is equal to
the number of classes in the dataset. The number of instance-level memory for
the over-budget class leads to an extra 10% storage budget cost, which will be
pruned by post-condensation pruning.

Decoders. In addition to three-tier memories, each HMN has two types of
networks: 1) A dataset-level memory feature extractor for each class; 2) A uni-
form decoder to convert memories to images for model training. Dataset-level
memory feature extractors f. are used to extract features from the dataset-level
memory for each class. For 1 IPC storage budget setting, we use the identity
function as the feature extractor to save the storage budget. For 10 IPC and 50
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IPC storage budget settings, the feature extractors consist of a single deconvo-
lutional layer with the kernel with 1 kernel size and 40 output channels. The
uniform decoder D is used to generate images for training. For ImageNet-10, the
size of the generated image is (3, 96, 96). We use the bilinear interpolation to
resize the generated images to (3, 224, 224). In this paper, we adopt a classic de-
sign of decoder for image generation, which consist of a series of deconvolutional
layers and batch normalization layers: ConvTranspose(Channels of memory, 10,
4, 1, 2) — Batch Normalization — ConvTranspose(10, 6, 4, 1, 2) — Batch Nor-
malization — ConvTranspose(6, 3, 4, 1, 2). The arguments for ConvTranspose
is input-channels, output-channels, kernel size, padding, and stride, respectively.
The “Channels of memory” is equal to the addition of the channels of the output
of f., the class-level memory channels, and the instance-level memory channels.
When we design the HMN architecture, we also tried the design with different
decoders for different classes. However, we find that it experiences an overfitting
issue and leads to worse empirical performance.

C.2 Training settings

Baseline Settings In this paper, we evaluate HMN on the same model and
architecture and with the same IPC setting as the baselines for a fair comparison.
For various baselines, we directly report the numbers represented in their papers.
In general, as far as we can tell, the authors of various baselines chose reasonable
hyperparameter settings, such as learning rate, learning rate schedule, batch
size, etc. for their scheme. Sometimes the chosen settings differ. For instance,
LinBa [2] uses 0.1 as the learning rate, but HaBa [5] uses 0.01 as the learning
rate. In keeping with past work in this area, we accept such differences, since the
goal of each scheme is to achieve the best accuracy for a given IPC setting. The
settings that we found to be reasonable choices for HMN are described below.
The metrics on which all schemes are being evaluated are the same: accuracy
that the scheme is able to achieve for a given IPC setting.

Data condensation. We generally follow the guidance and settings from
past work for the data condensation component of HMN. Following previous
works [2L[5|8], we select ConvNet, which contains three convolutional layers fol-
lowed by a pooling layer, as the network architecture for data condensation
and classifier training for all three datasets. For ImageNet-10, following previ-
ous work, we choose ResNet-AP (a four-layer ResNet) to condense HMNs. We
employ gradient matching [3}5], a batch-based loss with low GPU memory con-
sumption, to condense information into HMNs. More specifically, our code is
implemented based on IDC [5]. For all datasets, we set the number of inner iter-
ations to 200 for gradient matching loss. The total number of training epochs for
data condensation is 1000. We use the Adam optimizer (8; = 0.9 and 82 = 0.99)
with a 0.01 initial learning rate (0.02 initial learning rate for CIFAR100) for data
condensation. The learning rate scheduler is the step learning rate scheduler, and
the learning rate will time a factor of 0.1 at 600 and 800 epochs. We use the
mean squared error loss for calculating the distance of gradients for CIFAR10
and SVHN, and use L1 loss for the CIFAR100 and Tiny ImageNet. To find the
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best hard pruning rate 8 in Algorithm 1, we perform a grid search from 0 to
0.9 with a 0.1 step. All experiments are run on a combination of RTX2080T1,
RTX3090, A40, and A100, depending on memory usage and availability.

Model training with HMNs. For CIFARI10, we train the model with
datasets generated by HMNs for 2000, 2000, and 1000 epochs for 1 IPC, 10 IPC,
and 50 IPC, respectively. We use the SGD optimizer (0.9 momentum and 0.0002
weight decay) with a 0.01 initial learning rate.

For CIFAR100, we train the model with datasets generated by HMNs for 500
epochs. We use the SGD optimizer (0.9 momentum and 0.0002 weight decay)
with a 0.01 initial learning rate.

For SVHN, we train the model with datasets generated by HMNs for 1500,
1500, 700 epochs for 1 IPC, 10 IPC, and 50 IPC, respectively. We use the SGD
optimizer (0.9 momentum and 0.0002 weight decay) with a 0.01 initial learning
rate.

For both Tiny-ImageNet and ImageNet-10, we train the model with datasets
generated by HMNs for 300 epochs for both 1 IPC and 10 IPC settings. We use
the SGD optimizer (0.9 momentum and 0.0002 weight decay) with a 0.02 initial
learning rate.

Similar to 5], we use the DSA augmentation [8] and CutMix as data augmen-
tation for data condensation and model training on HMNs. For HMN, for the
learning rate scheduler, we use the cosine annealing learning rate scheduler [6]
with a 0.0001 minimum learning rate. We preferred it over the multi-step learn-
ing rate scheduler primarily because the cosine annealing learning rate scheduler
has fewer hyperparameters to choose. We also did an ablation study on the learn-
ing rate scheduler choice (see Appendix and did not find the choice of the
learning rate scheduler to have a significant impact on the performance results.

Continual learning. Following the class incremental setting of [3], we adopt
distillation loss [4] and train the model constantly by loading weights of the
previous stage and expanding the output dimension of the last fully-connected
layer |7]. Specifically, we use a ConvNet-3 model trained for 1000 epochs at each
stage, using SGD with a momentum of 0.9 and a weight decay of 5e — 4. The
learning rate is set to 0.01, and decays at epoch 600 and 800, with a decaying
factor of 0.2.

D Additional Evaluation Results

In this section, we present additional evaluation results to further demonstrate
the efficacy of HMNs. We study the relationship between pruning rate and ac-
curacy in Section We then compare the training time with the condensed
datasets in Section [D.2] Subsequently, we conduct an ablation study on how
different learning rate scheduler influences the training on condensed datasets in
Section [D.3] Additionally, we do data profiling and study the data redundancy
on the condensed datasets synthesized by different DC methods in Section
Lastly, we visualize the condensed training data generated by HMNs for different
datasets in Section [D.5]
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D.1 Pruning Rate v.s. Accuracy

In this section, we examine the correlation between accuracy and pruning rates
on HMNs. The evaluation results are presented in Figure 2] We observe that the
accuracy drops more as the pruning rates increase, and our double-end pruning
algorithm consistently outperforms random pruning. Furthermore, we observe
that an increasing pruning rate results in a greater reduction in accuracy for
HMNSs with smaller storage budgets. For instance, when the pruning rate in-
creases from 0 to 30%, models trained on the 1 IPC HMN experience a signifi-
cant drop in accuracy, plunging from 66.2% to 62.2%. Conversely, models trained
on the 50 IPC HMN exhibit a mere marginal decrease in accuracy, descending
from 76.7% to 76.5% with the same increase in pruning rate. This discrepancy
may be attributed to the fact that HMNs with larger storage budgets generate
considerably more redundant data. Consequently, pruning such data does not
significantly impair the training performance.

D.2 Training Time Comparison with Condensed Datasets
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Fig. 1: Test accuracy over training iterations of training with condensed datasets gen-
erated by HMN and IDC. Given the same storage budget, although training with HMN
needs more training iterations to converge, we find that HMNs achieve better accuracy
within the same training time compared to IDC.

One potential limitation of HMNs is that, given the same storage budget,
HMNs generate more images than other DC methods, which can potentially
increase the cost of training with condensed datasets generated by HMNs. In
this section, we conduct a study to study how test accuracy changes with respect
to training iterations. We use the same batch size for both methods and follow
the training setting suggested in the IDC paper. The comparison results are
illustrated in Figure[I] Although condensed datasets generated by HMNs contain
more training images, training with HMNs achieves better accuracy within the
same training time across different training budgets. For instance, for 1 TPC
at the 900th iteration, HMN achieves an accuracy of 60.1% while IDC only
achieves 50.4% (at this point, IDC has converged, while HMN’s accuracy can
still be boosted further with more training iterations).
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D.3 Ablation Study on Learning Rate Scheduler

We also train the model with a multi-
step learning rate scheduler on CI-
FARI10 datasets generated by HMNs
and found the following hyperparam-
eter settings for a multi-step learning
rate scheduler to work well: (a) an ini-
tial learning rate of 0.1; (b) The learn-
ing rate is multiplied with a 0.1 learn-
ing rate decay at 0.3 * total epochs /
0.6 * total epochs / 0.9 * total epochs.
As shown in Table 2] we find the dif-
ference due to the LR scheduler choice

Table 2: Accuracy (%) performance com-
parison on different LR scheduler on CI-
FAR10. The evaluation results show that
the difference due to the LR scheduler
choice is overall marginal.

Data Container |1 IPC 10 IPC 50 IPC

Multi-step 65.7 734 768
Cosine Annealing| 65.7 73.7  76.9

to be overall marginal, and the results with the multistep LR scheduler do not
change the findings of our evaluation. Our primary reason for choosing the cosine
annealing LR scheduler in our evaluation is that it has fewer hyperparameters
to choose from compared to the multistep LR scheduler. The cosine annealing
LR scheduler only requires selection of an initial learning rate and a minimum
learning rate. Those settings are described in Appendix [C:2}

D.4 Data Profiling on SOTA Methods
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Fig.2: Relationship between pruning
rates and accuracy on HMNs for CI-
FAR10. All HMNs are over-budget HMNs
(10% extra). Different colors stand for dif-
ferent storage budgets. Solid lines stand
for random pruning and dashed lines
stand for double-end pruning.
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Fig. 3: The distribution of AUM of CI-
FARI10 training images synthesized by
different approaches. Different colors de-
note different data condensation ap-
proaches. Data parameterization based
methods have more redundant images.

Figure[J|illustrates the distribution of AUM of images synthesized by different
data condensation approaches, as well as the original data, denoted as “Original".
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Fig. 4: AUM distribution of images gen-
erated by HMNs for CIFAR10 with differ-
ent storage budgets, denoted by different
colors.
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Fig. 5: Visualization of the lowest and
highest AUM examples generated by a 10
IPC HMN of CIFAR10. Each row repre-
sents a class.

We calculate the AUM by training a ConvNet for 200 epochs. We observe that
approaches (IDC-I , DM @ﬂ, and DSA ) that condense data into pixel space
typically synthesize fewer images with a high AUM value. In contrast, methods
that rely on data parameterization, such as HaBa , IDC , and HMNEI, tend
to produce a higher number of high-aum images. Notably, a large portion of
images generated by HaBa exhibit an AUM value approaching 200, indicating a
significant amount of redundancy that could potentially be pruned for enhanced
performance. However, due to its factorization-based design, HaBa precludes the
pruning of individual images from its data containers, which limits the potential
for efficiency improvements.

Moreover, we conduct a more detailed study on the images generated by
HMNs. We calculate the AUM by training a ConvNet for 200 epochs. As shown
in Figure [} many examples possess negative AUM values, indicating that they
are likely hard-to-learn, low-quality images that may negatively impact training.
Moreover, a considerable number of examples demonstrate AUM values approx-
imating 200, representing easy-to-learn examples that may contribute little to
the training process. We also observe that an increased storage budget results
in a higher proportion of easier examples. This could be a potential reason why
data condensation performance degrades to random selection when the storage
budget keeps increasing, which is observed in : more storage budgets add more
easy examples which only provide redundant information and do not contribute
much to training. From Figure 4} we can derive two key insights: 1) condensed
datasets contain easy examples (AUM close to 200) as well as hard examples
(AUM with negative values), and 2) the proportion of easy examples varies de-
pending on the storage budget.

4 We did not evaluate LinBa due to its substantial time requirements.
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Additionally, in Figure [5] we offer a visualization of images associated with
the highest and lowest AUM values generated by an HMN. It is observable that
images with low AUM values exhibit poor alignment with their corresponding
labels, which may detrimentally impact the training process. Conversely, images
corresponding to high AUM values depict a markedly improved alignment with
their classes. However, these images may be overly similar, providing limited
information to training.

D.5 Visualization

To provide a better understanding of the images generated by HMNs, we vi-
sualize generated images with different AUM values on CIFAR10, CIFAR100,
and SVHN with 1.1 IPC/11 IPC/55 IPC storage budgets in this section The
visualization results are presented in the following images.

Similar to what we observe in Section 3.2 in the main paper, images with a
high AUM value are better aligned with their respective labels. Conversely, im-
ages with a low AUM value typically exhibit low image quality or inconsistencies
between their content and associated labels. For instance, in the visualizations of
SVHNSs (depicted in Figures[12][13][14), the numbers in the generated images with
a high AUM value are readily identifiable, but content in the generated images
with a low AUM value is hard to recognize. Those images are misaligned with
their corresponding labels and can be detrimental to training. Pruning on those
images can potentially improve training performance. Furthermore, we notice an
enhancement in the quality of images generated by HMNs when more storage
budgets are allocated. This improvement could be attributable to the fact that
images generated by HMNs possess an enlarged instance-level memory, as indi-
cated in Table [} A larger instance-level memory stores additional information,
thereby contributing to better image generation quality.

From the visualization, we also find that, unlike images generated by gen-
erative models, like GAN or diffusion models, images generated by HMNs do
not exhibit comparably high quality. We would like to clarify that the goal of
data condensation is not to generate high-quality images, but to generate images
representing the training behavior of the original dataset. The training loss of
data condensation can not guarantee the quality of the generated images.
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High AUM (Easy) data Randomly selected data

Fig. 6: Images generated by a CIFAR10 HMN with 1.1IPC storage budget. Images in
each row are from the same class.

High AUM (Easy) data Low AUM (Hard) data Randomly selected data

Fig. 7: Images generated by a CIFAR10 HMN with 11IPC storage budget. Images in
each row are from the same class.
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Fig. 8: Images generated by a CIFAR10 HMN with 55IPC storage budget. Images in
each row are from the same class.
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Fig. 9: Images generated by a CIFAR100 HMN with 1.1IPC storage budget. Images in
each row are from the same class. We only visualize 10 classes with the smallest class
number in the dataset.
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Fig. 10: Images generated by a CIFAR100 HMN with 11IPC storage budget. Images
in each row are from the same class. We only visualize 10 classes with the smallest
class number in the dataset.
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Fig. 11: Images generated by a CIFAR100 HMN with 55IPC storage budget. Images
in each row are from the same class. We only visualize 10 classes with the smallest
class number in the dataset.
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High AUM (Easy) data Low AUM (Hard) data Randomly selected data

Fig. 12: Images generated by an SVHN HMN with 1.1IPC storage budget. Images in
each row are from the same class. Images with a low aum value are not well-aligned
with its label and can be harmful for the training.

Ii U0

High AUM (Easy) data Low AUM (Hard) data Randomly selected data

Fig. 13: Images generated by an SVHN HMN with 11IPC storage budget. Images in
each row are from the same class.
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Fig. 14: Images generated by an SVHN HMN with 55IPC storage budget. Images in
each row are from the same class.
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