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1 Overview

In this supplementary material, we provide more details of SCAT as follows:
In Section 2, we provide detailed proof of the depth estimation error bound

determined by the scaling coefficient k in the Scaling Depth Network (SDN),
corresponding to Eq.11 in Section 4.2 of the main body.

In Section 3, we offer a exposition about the constant scaling coefficient k
and the learnable scaling coefficient k, corresponding to the choice of coefficients
discussed in Section 4.2 of the main body.

In Section 4, we present the experimental implementation details, parameter
settings, and network architecture, aligning with Section 5 of the main text.

In Section 5, we present ablation studies and analyses on the size of the per-
turbations and the number of parameters within the adversarial noise generator.

In Section 6, we showcase qualitative experimental results in more corrupted
scenarios within the complex out-of-distribution (OOD) dataset KITTI-C.

2 Proof of the Scaling Depth Network

Eq.11: Given the UNet-based depth network function defined:

DepthNet(x) = f0(x), fi(x) = bi+1 ◦ [κi+1 · ai+1 ◦ x+ fi+1(ai+1 ◦ x)],

Assume M0 = max{||bi ◦ ai||2, 1 ≤ i ≤ N} and fN is L0-Lipschitz continuous,
where c0 is a constant related to M0 and L0. Suppose Iϵt is an input perturbed
by ϵ = ||Iϵt − It||2, then we have:

||fθ(Iϵt )− fθ(It)||2 ≤ ϵ

[
N∑
i=1

κiM
i
0 + c0

]
Proof: Let Iϵt and It be the perturbed and vanilla inputs to the network, re-
spectively. Consider the output difference caused by the perturbation:

||fθ(Iϵt )− fθ(It)||2
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where fθ represents the process of image reprojection through DepthNet Dt and
PoseNet Pt. For simplicity, we temporarily disregard the error introduced by the
reprojection process. Using the recursive definition of fi, and expanding for fθ,
the difference is:

||f0(Iϵt )− f0(It)||2,
using the recursive definition of fi, we express the difference as:

||b1 ◦ [κ1 · a1 ◦ Iϵt + f1(a1 ◦ Iϵt )]− b1 ◦ [κ1 · a1 ◦ It + f1(a1 ◦ It)]||2

Applying the triangle inequality and the norm properties:

≤ ||b1 ◦ a1 ◦ (Iϵt − It)||2 + ||f1(a1 ◦ Iϵt )− f1(a1 ◦ It)||2

Given ||bi ◦ ai||2 ≤ M0, and considering fN to be L0-Lipschitz continuous, the
above can be bounded by:

≤ M0 · ϵ+ L0 · ||a1 ◦ (Iϵt − It)||2

≤ M0 · ϵ+ L0 ·M0 · ϵ
≤ (M0 + L0 ·M0) · ϵ

By iteratively applying this bound through all N layers of the network, we
accumulate the factors of M0 and κi, leading to the final inequality:

||fθ(Iϵt )− fθ(It)||2 ≤ ϵ

[
N∑
i=1

κi ·M i
0 + c0

]
,

which completes the proof.

3 Why Constant κ Works for SCAT

In this section, we propose the use of a constant scaling factor κ = 0.7 across all
layers of the UNet-based depth network, a decision that, upon empirical evalu-
ation, demonstrated superior performance compared to the use of layer-specific
learnable scaling factors κi. This section delves into the theoretical analysis that
might explain the observed efficacy of a constant scaling coefficient over learnable
scaling coefficients {κi}Ni=1.

3.1 Heuristic Constant Scaling Coefficients

To determine the most effective value for the scaling parameter κ within the
UNet-based depth network, we considered a range of values within the interval
[0, 1]. Through a heuristic binary search approach, we found that values greater
than 0.5 were able to greatest retain the model’s depth estimation performance
on clean dataset while enhancing cross-domain generalizability. Subsequently,
binary searching within the range [0.5, 1] led us to adopt a constant κ = 0.7,
which offered an optimal balance between performance on clean training dataset
and generalizable to challenging scenarios.
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3.2 Learnable Scaling Coefficients

Here, we introduce learnable scaling coefficients {κi}Ni=1, each directly embedded
within the respective decoding stage of our network. This integration of κi allows
for a direct and adaptive adjustment of scaling factors during the network’s
training, fine-tuning the scaling to the distinctive feature map requirements at
different layers.

3.3 Efficacy of Constant Scaling Coefficients

Simplification and Regularization. Employing a fixed scaling factor effec-
tively simplifies the model’s parameter space, acting as an implicit form of reg-
ularization. This simplification can help in preventing over-fitting, especially in
scenarios with limited data availability, by restricting the model’s complexity
and thus enhancing its generalization capability.
Optimization Complexity. The introduction of learnable scaling factors κi

increases the complexity of model tuning and the instability of the training pro-
cess. Achieving optimal values for κi requires additional computational resources
and time, potentially leading to sub-optimal local minima. In contrast, a fixed
constant scaling factor streamlines the training process, possibly facilitating a
more stable convergence to a global optimum.
Generalization and Universality. Empirical evidence suggests that a well-
chosen constant scaling factor is sufficiently generalizable across different tasks
and datasets, offering a simple yet effective solution. This approach reduces the
necessity for over-tuning to specific tasks or datasets, thus increasing the model’s
versatility and adaptability.
In conclusion, while layer-specific learnable scaling factors introduce flexibility,
our findings advocate for the simplicity, regularization benefits, and reduced
training complexity offered by a fixed scaling factor, which collectively contribute
to enhanced the generalization capability and stability of the UNet architecture.

4 Implementation Details

4.1 Experimental setup

To verify the generalization capability of the self-supervised MDE model to out-
of-distribution scenarios, we use the KITTI dataset split of Eigen et al. [2] as
our only training dataset, which results in 39,810 monocular triplets for training
and 4,424 for validation. Following [3, 5–8], We use the same intrinsics for all
images, setting the principal point of the camera to the image center and the
focal length to the average of all the focal lengths in KITTI. During KITTI eigen
split evaluation, we cap depth to 80m per standard practice. Moreover, We train
the model starting with pretrained ImageNet weights [1] on RTX 3090 GPU.
We use the Adam optimizer [4] for 30 epochs, with an input size of 640 × 192
and set a starting learning rate of 10−4. Progressively reducing the learning rate
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using multi-step learning rate decay at epoch [10, 20] by 0.1. We set the hyper-
parameters ω, β and λ to 0.01, 0.01 and 0.001, respectively. The adversarial noise
generator was trained with the Adam optimizer with a learning rate of 0.0001.
We set ϵm to control the size of the perturbation to 135.0.

4.2 Architectures of Adversarial Noise Generator

Our adversarial noise generator gϕ consists of four layers. The first three layers
are convolutional layers each with 20 filters of size 1x1, followed by ReLU activa-
tion function. The fourth and final layer is a convolutional layer with a channel
depth of C, using a 1x1 filter. This setup maintains the spatial dimensions of
the input throughout the layers, given the use of a stride of one and no padding,
allowing for the generation of noise that is spatially uncorrelated.

5 Ablation Study

5.1 Effect of Parameter Counts within Adv Generator

In this section, we explore how varying the number of parameters in the ad-
versarial noise generator affects the performance of self-supervised monocular
depth estimation (MDE). The results of this investigation are detailed in Ta-
ble 1. For clarity, we use subscripts to denote the depth of the noise generator
used in each experiment. Except for this particular ablation study, all other
experiments reported in this paper utilized a noise generator with a default set-
ting of four layers. Our results suggest that while the depth of the adversarial
noise generator is a tunable hyper-parameter, it does not significantly impact the
performance outcomes for self-supervised MDE. As shown in Table 1, the most
shallow adversarial noise generator, which consists of only one layer and 12 train-
able parameters, leads to a decrease in mCE by approximately 2% compared to
its deeper alternatives.

Table 1: Qualitative Results for different parameter counts within Adver-
sarial noise generator. We compare the results obtained by 4 layers adversarial noise
generator with its counterparts of different depths. Note that a depth of 4 layers was
used in all experiments in this paper apart from this ablation study.

Model Parameters mCE(%)↓ mRR(%)↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
MonoDepth2 [3] - 101.04 84.08 0.248 1.764 6.852 0.291 0.698 0.874 0.944
+ gϕ for 1 layer 12 88.24 88.67 0.172 1.583 6.231 0.273 0.755 0.891 0.949
+ gϕ for 2 layers 143 87.01 89.93 0.169 1.581 6.179 0.271 0.760 0.892 0.950
+ gϕ for 3 layers 563 86.73 90.05 0.168 1.579 6.162 0.271 0.761 0.893 0.951
+ gϕ for 4 layers 983 86.32 90.13 0.165 1.573 6.157 0.269 0.762 0.893 0.951
+ gϕ for 5 layers 1403 86.41 89.97 0.169 1.587 6.164 0.270 0.760 0.892 0.951
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Fig. 1: Qualitative Results for Weather and Lighting KITTI-C.

6 Qualitative ResultsImpulse Shot Pixel JPEG

M
on
oD
ep
th
2

+	
	S
CA
T

M
on
oD
ep
th
2

M
on
oV
it

+	
	S
CA
T

M
on
oV
it

Fig. 3: Qualitative Results for Data and Processing KITTI-C.
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Defocus Motion Elastic Color
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Fig. 2: Qualitative Results for Sensor and Movement KITTI-C .
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