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Abstract. Human motion sensing plays a crucial role in smart systems
for decision-making, user interaction, and personalized services. Exten-
sive research that has been conducted is predominantly based on cam-
eras, whose intrusive nature limits their use in smart home applications.
To address this, mmWave radars have gained popularity due to their
privacy-friendly features. In this work, we propose milliFlow, a novel
deep learning approach to estimate scene flow as complementary mo-
tion information for mmWave point cloud, serving as an intermediate
level of features and directly benefiting downstream human motion sens-
ing tasks. Experimental results demonstrate the superior performance of
our method when compared with the competing approaches. Further-
more, by incorporating scene flow information, we achieve remarkable
improvements in human activity recognition and human parsing and
support human body part tracking. Code and dataset are available at
https://github.com/Toytiny/milliFlow.

Keywords: Scene Flow Estimation · Radar Point Cloud · mmWave Hu-
man Motion Sensing.

1 Introduction

Perceiving and understanding human behaviours play a pivotal role in human-
centred applications such as disaster response [56, 70], surveillance [8, 61] and
health monitoring [21, 26, 58]. Conventional methods rely on cameras [32, 68] or
wearables [9,47,76], which are prone to visual deterioration (such as low lighting
conditions, smoke, and fog) and raise privacy concerns, potentially compromising
user experience with measurements that are psychologically intrusive. To address
these concerns, researchers, on the other side, also propose to use wireless radio
frequency (RF) signals bounced off the human body for human sensing [44,73,88–
90] which is robust against poor lighting, privacy-preserving and non-intrusive to
users. Among many RF techniques, single-chip millimetre wave (mmWave) radar
emerges as a low-cost sensor that can provide more trustworthy point clouds of
a scene under environment dynamics due to its MIMO transceiver design. For
these reasons, there has been a significant increase in the production of single-
chip radars [2] and wide deployment in real-world scenarios, ranging from smart
buildings [5, 74] to vehicle cabins [16,67], and to first-responder toolkits [3].
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Fig. 1: We propose milliFlow, a scene flow estimation module to provide an additional
layer of point-wise motion information on top of the original mmWave radar point
cloud in the conventional mmWave-based human motion sensing pipeline.

As motion is naturally continuous and human bodies are non-rigid, point-
wise velocity per radar frame is intuitively a strong cue for improving the motion
estimation robustness and has been widely used in prior arts [46,69,79,86]. How-
ever, fine-grained velocity is difficult to obtain when it comes to mmWave radars.
First, while some radars provide the Doppler velocity of a point, the velocity res-
olution is rather low [38] and thus cannot accurately capture the subtle human
body movement, which is usually slower than 0.5m/s in domestic life. Moreover,
mmWave radar only senses radial Doppler information but fails to capture the
tangential one. For some radars designed for human sensing, e.g., the Vayyar
radar [4] used in this work, the Doppler information is even absent in their sen-
sor outputs. Second, extracting motion information from consecutive mmWave
radar point clouds is also highly error-prone due to the limitations inherent in
low-cost single-chip mmWave radar. These limitations include extremely sparse
point clouds due to the target detector, e.g., constant false alarm rate (CFAR) al-
gorithm [66] used on-chip and the presence of ghost points caused by multi-path
effect [27]. More recently, it has been found that in a single radar frame, only
a subset of body parts reflecting the signal towards the radar can be observed,
while other parts deflecting the signal away from the radar are missing from the
capture [13]. As a result, some human body parts detected in one frame may
disappear in the next frame. For the above reasons, conventional radar point
tracking methods [28, 65, 87] struggle to track human motion across frames or
give fine-grained velocity in between.

In this work, we propose to estimate and use scene flow as intermediate fea-
tures to better support radar-based human sensing. Scene flow refers to a set of
displacement vectors between two consecutive point-cloud frames describing the
motion field of a 3D scene. We hypothesise that scene flow, if estimated accu-
rately, is able to drastically facilitate cross-frame movement analysis by directly
exposing per-point motion features, thereby addressing the aforementioned chal-
lenges in previous research. Scene flow has long been proven very effective by
the computer vision community in image-based human motion sensing applica-
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tions [39, 53, 78]. However, estimating scene flow on mmWave radar point cloud
is non-trivial because of the inherent sparsity and noise of radar point cloud. Di-
rectly applying conventional scene flow estimation methods designed for LiDAR
or RGB-D cameras [17, 45, 83, 84] on radar point clouds has been found inad-
equate and generalises poorly. On the other side, recent mmWave radar scene
flow estimation works [23, 24] generally focus on autonomous driving scenarios
and rely on deep learning-based pipelines. However, these existing methods can-
not be readily applied to our human sensing scenarios because the rigid-body
assumption used for autonomous driving scenarios cannot stand in our cases
where human subjects have non-rigid motion.

To cope with the above problems, we propose milliFlow, as exhibited in
Fig. 1, a novel mmWave radar-based scene flow estimation approach for human
motion sensing scenarios. Our contributions include:

• To the best of our knowledge, milliFlow is the first-of-its-kind work that aims
to estimate mmWave radar-based scene flow for human motion sensing.

• We address the challenges, e.g., sparsity, and lack of temporal cues, for scene
flow learning in our cases with a bespoken end-to-end learning network.

• We propose a cross-modal automatic scene flow labelling scheme specific for
human motion sensing, avoiding labour-intensive manual labelling.

• We collect a large-scale human motion sensing dataset for evaluation, and
perform a comprehensive evaluation of scene flow estimation accuracy as well
as the performance on three downstream tasks.

2 Related Work

mmWave Radar-based Human Sensing. The feasibility and versatility of
mmWave radar have been extensively demonstrated in various human sensing ap-
plications, including vital sign monitoring [7,55,80], signature verification [33,49],
fall detection [40,75], human tracking and identification [15,20,31,91,92], gesture
recognition [34,51,52,59], activity recognition [6,69,81] and pose estimation, re-
construction [46, 85, 86]. Compared with these applications, our work is unique
in that we aim to estimate point-level scene flow vectors instead of providing a
holistic output for the whole point cloud. In this way, we can either explicitly
augment each radar target with scene flow vectors or implicitly learn robust
latent features, which can further benefit many downstream tasks (cf . Sec. 4.4).
Scene Flow Estimation on Point Clouds. Recent scene flow works are
mostly towards autonomous driving applications and attempt to estimate scene
flow on LiDAR point clouds captured from autonomous vehicles. To this goal,
different approaches are proposed, including classical methods [19,22,50,62] and
deep learning-based ones [10, 54, 83, 84]. Recently, with the advances in point
cloud feature learning, deep learning-based methods become more prevalent.
According to their learning paradigm, prior works in this thread can be divided
into fully-supervised [11, 35, 60, 63, 77, 82, 83], self-supervised [10, 45, 48, 57, 84]
and weakly-supervised [25, 29] learning approaches. Apart from the aforemen-
tioned works, our work aims to estimate scene flow for human sensing using
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mmWave radar. Moreover, our method does not demand any manual annotation
efforts, instead, we automatically generate noisy pseudo scene flow labels from
corresponding RGB-D images captured by the co-located camera.
Scene Flow Estimation with mmWave Radar. As far as we know, there
are limited works that estimate scene flow using mmWave radar. A pioneering
work [24] introduced a self-supervised learning method tailored for automotive
radar, utilizing unique loss functions and a two-stage network. To improve scene
flow performance and enable more downstream applications, a later work [23]
exploits cross-modal supervision from co-located sensors (e.g. IMU, LiDAR) on
modern autonomous vehicles for radar scene flow learning. However, these meth-
ods cannot be transferred to human sensing scenarios due to two reasons. First,
the radar used for human-centric applications is different from the automotive
radar in many aspects. For example, automotive radar has a lower range but
higher angular resolution, making scene flow models bespoken for them hard to
generalize to human sensing. More importantly, the human object is a non-rigid
body, while in autonomous driving, scene dynamics are usually attributed to
rigid body motion (e.g. cars and motorcycles) [22, 25, 29]. Such discrepancy in
objective indicates different label and supervision generation schemes.

3 Methodology

3.1 Overview

We formally formulate our scene flow estimation problem in Sec. 3.2. Then we
elaborate on the technical challenges of using mmWave radar for scene flow
estimation under human motion sensing scenarios in Sec. 3.3. Sec. 3.4 details the
design of our neural network, which comprises five sequential modules, tackling
the sparsity and noise challenges and compensating for the lack of temporal cues.
In Sec. 3.5, we propose a cross-modal automatic scene flow labelling scheme, to
efficiently label scene flow for point clouds captured in human sensing scenarios.
Sec. 3.6 further introduces our loss function used for training scene flow network.

3.2 Problem Formulation

Here, we consider the problem of scene flow estimation for dynamic 3D point
clouds collected by an mmWave radar sensor used in human sensing scenarios. As
a general problem setting, the input to point cloud-based scene flow estimation
is two consecutive 3D point clouds P = {pi}Ni=1 and Q = {qi}Mi=1 captured
by the same device and the output is a set of 3D vectors F = {fi}Ni=1 that
align each point pi in P to its associated position pai = pi + fi in the frame of
Q. Different from the task that finds real correspondences between two frames,
scene flow estimation only derives per-point 3D displacement for P and the
associate position pai does not essentially overlap with any points in Q. Besides
3D coordinates information, each point may also have additional properties given
mmWave radar point clouds as input, such as Doppler velocity or intensity value.



milliFlow 5

Without loss of generality, here we concatenate the per-point incident properties
and 3D point coordinates into the 2D matrix and use X = {xi}Ni=1, Y = {yi}Mi=1

to denote the data from the source and target frame, respectively.

3.3 Technical Challenges

Sparsity and Noise. Due to bandwidth and hardware limitations, the radar
raw data has low resolution in both range and angular dimensions from which
only outstanding peaks are selected as valid targets. As a result, the point cloud
generated by mmWave radar is quite sparse with an average of only around 100
points (in our case) related to the human body, often missing data for specific
body parts. Furthermore, the multi-path effect introduces ghost points, adding
noise to the already sparse data. This sparsity and noise significantly challenge
mmWave radar’s ability for scene flow estimation, as the lack of sufficient local
geometric cues and the presence of noisy points make it difficult to extract robust
local features, essential for accurately tracking movements within the scene.
Lack of Temporal Cues. The radar Doppler velocity measurement, repre-
senting the radial velocity of points, could enhance radar scene flow estimation.
However, its resolution is limited by hardware and often too low to accurately
capture small-scale movements typical in human sensing scenarios. Additionally,
some radars, like the Vayyar radar [4] used here, do not measure Doppler veloc-
ity due to their specific signal transmitting design, further complicating accurate
motion estimation. This limitation, coupled with the absence of consistent radar
point data for certain body parts across frames, presents non-trivial challenges
for reliable scene flow estimation as they result in the lack of temporal cues.
Scene Flow Annotation. Learning accurate scene flow estimation with deep
networks requires point-level scene flow labels for training. However, manual an-
notation is prohibitively expensive and lacks real-world correspondence. Recent
approaches [23,37,41] annotate object bounding boxes to generate pseudo scene
flow labels, effective in autonomous driving with rigid bodies like cars. Neverthe-
less, this method is still labour-intensive and less applicable to human sensing
due to the non-rigid nature of human movement, posing a challenge in creating
accurate training labels for mmWave radar-based scene flow estimation.

3.4 Scene Flow Network

We employ end-to-end trainable deep neural networks for learning point-based
scene flow estimation, in line with the state-of-the-art [23, 29, 45, 83]. The net-
work architecture is sketched in Fig. 2. Particularly, we overcome the sparsity
and noise challenges by integrating global features with local ones to provide
a comprehensive view of each point cloud. Additionally, we address the lack of
Doppler velocity and capture inconsistencies by leveraging a GRU network [18]
to incorporate temporal information into the scene flow estimation. In subse-
quent sections, we will describe the details of each module in the network.
Local Feature Abstraction. Given mmWave radar point clouds X and Y as
inputs, we encode their local features using four parallel SA layers [64] with
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Fig. 2: mmWave-based scene flow network architecture. The network takes consecutive
radar point clouds as the input and outputs the scene flow in between.

varying grouping radii, enabling multi-scale local feature extraction to account
for radar point clouds’ non-uniform density. Each SA layer generates a local
feature li,s for a given scale s, which is then transformed into a higher-level rep-
resentation ki,s using a shared-weight MLP with scale-specific parameters. For
both point clouds, we concatenate these high-level features across scales to form
multi-scale local feature sets KX and KY (cf . Fig. 2). Additionally, a separate
context extractor, distinct from but structurally similar to the local encoder,
generates context features KX

c for X , enhancing the feature representation.
Global Feature Aggregation. In this module, the local feature vector of each
radar point is first transformed into a scalar attention weight wi using an MLP.
These weights are normalized to sum to 1 for numerical stability. The global
feature vector g is then derived by a weighted sum of all local features, offering
an improvement over max-pooling by dynamically adjusting point-wise weights.
This global vector is concatenated with each local feature to form local-global
representations ZX ,ZY for X and Y. Additionally, a global feature for the con-
text LX

C is obtained through another MLP, resulting in ZX
C , as seen in Fig. 2.

Flow Embedding Generation. Given the local-global features of two radar
point clouds, i.e., ZX ,ZY , we use the cost volume layer [84] to compute the
correlation between them, as seen in Fig. 2. By aggregating the spatial relation-
ship and feature similarities between two frames, the point motions are encoded
into the cost volumes, denoted as O = {oi}Ni=1. Thanks to the global feature
aggregation, the holistic frame information can also be correlated, which yields
more robust and stable costs. To further mix it with the context, we then stack
the cost volumes O, context features LX

C and pass the features into another local
encoder to obtain the flow embedding B = {bi}Ni=1.
Temporal Information Propagation. Directly propagating 2-dimension flow
embedding from previous frames suffers from a) high computation overload, and
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b) the change in the number of points. To overcome these issues, we propose
to temporally update its global vector gB instead of the flow embedding itself
B (cf . Fig. 2). We apply a GRU network [18] to update it as hidden states
temporally and obtain the final global representation ht = GRU(ht−1, gB; θg),
where ht−1 is the global representation from the last frame and θg is the GRU
network parameters. Lastly, we concatenate this updated global representation
to each point in the flow embedding and denote the final features as A = {ai}Ni=1.
Constrained Scene Flow Regression. Given the final features A produced
above, we can use an MLP-based flow regressor to decode per-point scene flow
F = {fi}Ni=1. However, estimating unconstrained scene flow may lead to non-
viable results, e.g ., the magnitude of the flow vector exceeds the normal scale of
human body movement. To constrain our predictions, we propose to clamp the
estimated scene flow before returning it. We set a fixed threshold ϵ and constrain
the scene flow on each axis to be within the range of [−ϵ, ϵ], as shown in Fig. 2.

3.5 Automatic Scene Flow Labelling

To address the human sensing scenarios where non-rigid motion dominates, we
propose a cross-modal automatic scene flow labelling scheme (cf . Fig. 3), where
pseudo scene flow labels are obtained from the 3D human skeletons. Our motiva-
tion is based on the observation that the non-rigid human body can be roughly
segmented into multiple skeletons each of which can be seen as a rigid body, such
as the neck and thigh bone. To simplify the problem of modelling human body
motion, we attribute the human dynamics to the rigid motion of these skeletons
and further assume the scene flow of points in the vicinity is induced by them.
Human Skeleton Annotation. In human sensing applications, the human
skeleton is usually characterised by the 3D position of its two endpoints, aka.
keypoints. To quickly and conveniently annotate such keypoints, we refer to the
RGB-D images recorded by the co-located RGB-D camera in this work. Specifi-
cally, we first utilize an open-source pose estimation library (e.g. OpenPose [14])
to label 2D keypoints on RGB images and then uplift each 2D keypoint to 3D
using its corresponding depth value. Then the human skeleton labels can be
obtained using intrinsically connected 3D keypoints, as shown in Fig. 3.
Pseudo Label Generation. Given the 3D skeletons automatically annotated
above, we can generate pseudo scene flow labels F̄ = {f̄i ∈ R3}Ni=1 for radar
point clouds. For two consecutive point clouds P and Q, we first compute the
inter-frame transformation matrix for all human skeletons in the source frame.
Then we assign each source radar point pi to its closest skeleton and form the
point-skeleton association as exhibited in Fig. 3. In the final, we derive the pseudo
scene flow labels for each selected radar point as f̄i = (Tj ◦ pi)− pi, where Tj ∈
is the transformation matrix for the skeleton that point pi is assigned to. ◦ is
the action that operates homogeneous transformation for 3D points.
Keypoint-Based Label Filtering. To reduce noise from the inaccuracies of
2D keypoint estimation, we filter pseudo scene flow labels using confidence scores
and 3D displacement of keypoints. Keypoints with confidence below 0.5 are first
removed, and those with displacement over 0.5m between frames are further
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Fig. 3: Automatic scene flow labelling pipeline. With the help of the co-located RGB-D
camera, we first label 3D human skeletons and then generate noisy pseudo scene flow
labels with respect to the skeleton-based rigid-motion assumption.

filtered out. This process yields a set of valid keypoints per frame, and skeletons
with both two end keypoints valid are considered valid. We then generate a mask
M, used below to minimise the impact of noise.

3.6 Loss Function

We use the pseudo scene flow labels F̄ to supervise our scene flow network. To
mitigate noise, the valid mask M is used to filter out noisy labels during loss
calculation. Initially, our network tended to converge to local minima, produc-
ing small and uniform scene flow vectors due to the predominance of small-scale
movements in the data. To counteract this, we introduced a weighted loss func-
tion that emphasizes points with large-scale movements more significantly. Our
adjusted loss is:

L = αlLlarge + αsLsmall (1)

where αl and αs are hyperparameters that balance large- (i.e., larger than a
threshold ζ) and small-scale movement impacts, with the L2 distance measuring
prediction errors. This approach aims to prevent the network from settling into
local minima by reducing the influence of static or minor-moving points.

4 Experiment

4.1 Dataset Collection

To facilitate the evaluation of our approach, we collect a large-scale multi-modal
human motion sensing dataset with annotation labels for various tasks.
Platform. As exhibited in Fig. 4 (a), we use a commercial Vayyar vTrigB
imaging mmWave radar [4] and a RealSense D455 depth camera [1] to cap-
ture mmWave radar point clouds and RGB-D images respectively. Both sensors
are fixed on a collection board mounted on a tripod to ensure their relative po-
sition is unchanged once calibrated. We alternately query the data frame from
two sensors and store them in a PC, resulting in synchronized multi-modal data.
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Fig. 4: Collection setup, test environment, subject activities and pseudo pose labels.

Note that the Vayyar radar we used is bespoken designed for fine-grained hu-
man sensing. It provides radar data with a higher resolution than most other
mmWave radars, e.g ., TI radars [72], thus enabling us to estimate fine-grained
scene flow for radar points.
Procedure. 12 participants of various genders, ages and heights are recruited
for data collection in this work1. We choose three sites as our human sensing
experiment scenes, as shown in Fig. 4 (b). Each participant is asked to perform 5
‘in-set’ activities for each scene, and 3 ‘out-of-set’ activities in one scene for the
evaluation of the generalization to unseen activities (cf . Fig. 4 (d)). Every subject
is asked to wear a face mask to protect their identities from being recognised.
The distance between subjects and sensors is 2-4m and randomly selected by
the participant during collection.
Statistics. After data collection, we crop each sequence to 200 frames for uni-
form activity distribution. The whole ‘in-set’ dataset consists of 12×3×5×200 =
36k frames in total. To assess the generalization ability to new subjects, we di-
vide the dataset into three parts by subject following the ratio of train:val:test
= 3:1:2. The ’out-set’ testing set is composed of 12× 3× 200 = 7.2k frames.

4.2 Evaluation Setup

Data Labelling. Our automatic labelling scheme (cf . Sec. 3.5) is used to an-
notate scene flow for the training and validation set by retaining 14 keypoints
from OpenPose [14], leading to 13 connections between keypoints (cf . Fig. 4
(c)). Invalid skeletons are filtered out, and pseudo scene flow labels are assigned
to points on valid skeletons. For the testing set, the same pipeline is used, but all
points are annotated, with manual inspection and correction to 2D keypoints.
For human activity recognition, activities are manually labelled during record-
ing. Human parsing labels are derived from point-skeleton affiliations in scene
1 The study has received the ethical approval from the University of Edinburgh, and

participant consent forms were signed before the collection.
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Table 1: Comparison of scene flow re-
sults between ours and state of the arts.
↑ means bigger values are better while ↓
means smaller values are better.

EPE3D (m) ↓ Acc3D ↑

Method All Moving Static Strict Relax

FlowNet3D [54] 0.293 0.290 0.259 0.016 0.095
PPWC-Net [84] 0.171 0.181 0.128 0.138 0.179
Graph Prior [62] 0.315 0.322 0.283 0.007 0.011
FLOT [63] 0.299 0.307 0.265 0.015 0.094
FlowStep3D [45] 0.243 0.251 0.216 0.062 0.109
NSFP [50] 0.197 0.213 0.167 0.085 0.143
PV-RAFT [83] 0.161 0.170 0.107 0.179 0.292
RaFlow [24] 0.107 0.115 0.094 0.271 0.427
Bi-PFNet [17] 0.159 0.168 0.111 0.153 0.264
milliFlow (ours) 0.046 0.051 0.009 0.406 0.703

Table 2: Breakdown results of our scene
flow network.

EPE3D (m) ↓ Acc3D ↑

Method All Moving Static Strict Relax

(a) Full version 0.046 0.051 0.009 0.406 0.703
(b) (a) w/o TP 0.053 0.062 0.018 0.382 0.676
(c) (b) w/o GA 0.061 0.068 0.025 0.361 0.628
(d) (c) w/o CF 0.071 0.077 0.028 0.315 0.536
(e) (d) w/o CR 0.083 0.090 0.034 0.286 0.490

Table 3: Generalization of our model to
new activities.

EPE3D (m) ↓ Acc3D ↑

Activity All Moving Static Strict Relax

Sitting 0.034 0.038 0.004 0.498 0.771
Squatting 0.040 0.047 0.009 0.416 0.688
Head bobbing 0.027 0.031 0.006 0.664 0.859

Average 0.034 0.039 0.006 0.526 0.773

flow labelling (cf . Fig. 3), with the valid mask M applied to filter invalid points
during training. The human body part tracking labels are directly obtained from
the 3D keypoints identified in the scene flow labelling process.
Evaluation Metric. For scene flow evaluation, we use the EPE3D (m) and
Acc3D metrics following [10,24]. Specifically, we redefined the Acc3D strict and
relax requirements by reducing 0.05/0.1m to 0.025/0.05m to adapt to our human-
centric scenario. The overall accuracy (OA) (%) is reported for both the human
activity recognition and human parsing tasks, while mIoU (%) is used for HP
only. To evaluate the human body part tracking, we compute the mean joint
localization error (mJE) (m).

4.3 Scene Flow Evaluation

Compared to the State of the Arts. We first compare our scene flow net-
work with state-of-the-art methods of point-based scene flow estimation. Our
baselines include 7 deep learning-based methods [17, 24, 45, 54, 63, 83, 84] whose
networks are also supervised with pseudo scene flow labels, and two non-learning-
based method Graph Prior [62] and NSFP [50] that solves scene flow via online
optimization. The evaluation results on the ‘in-set’ testing set can be seen in Ta-
ble 1. The scene flow network of milliFlow achieves a cm-level average EPE3D
(i.e., 4.6cm) and a high relax Acc3D of 70.3%, ranking 1st on all metrics with
a large margin compared to the baselines. This satisfactory performance proves
the efficacy of our method to address the challenges existing in our scene flow
task. Note that our network is trained with pseudo labels automatically gener-
ated using RGB-D images (cf . Sec. 3.5), which does not demand any manual
annotation efforts.
Qualitative Results. Our output examples, illustrated in Fig. 5, effectively
demonstrate our method’s ability to produce reliable scene flow for diverse ac-
tivities and subjects across three environments. Despite the inherent sparsity
and noise in radar point clouds, our network adeptly learns representative fea-
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Fig. 5: Qualitative scene flow results. radar points and scene flow vectors are projected
onto the image and the colour red is used for the ground truth while blue for ours.

tures through global feature aggregation and robust scene flow vector regression.
Notably, even when some body parts are absent in the radar data, our approach
compensates by utilizing historical information, thereby benefiting the current
scene flow estimation and ensuring robust performance across successive frames.
Runtime Efficiency. We test the runtime efficiency of our scene flow network
on a single NVIDIA RTX 3090 GPU. Given sequential testing radar point clouds,
we feed them one by one into our trained model for inference. As a result, our
model has real-time performance with one inference step in 74ms (∼13.5Hz).
Moreover, the maximum allocated GPU memory is only 134 MB during infer-
ence. This minimal memory usage enables our network to operate in parallel with
downstream networks, underscoring its practicality for real-time applications.
Ablation Study. To validate the effectiveness of key components within our
scene flow network, we systematically disabled each, i.e., temporal propagation
(TP), global aggregation (GA), context feature (CF), and constrained regression
(CR), and observed their effects on performance, as presented in Table 2. Overall,
the full version of our network (row (a)) yields the best results and each compo-
nent helps to elevate the performance on each metric (from row (e) to (a)). By
utilizing information from previous frames, temporal propagation significantly
improved scene flow estimation, achieving a 13.2% reduction in EPE3D and a
6.3% increase in strict Acc3D accuracy. Global aggregation, employing an atten-
tion mechanism, bolstered local features with global context, leading to a 13.1%
improvement in EPE3D. The inclusion of context features into our flow embed-
ding, aimed at retaining source frame context, provided a modest but surprising
boost, lowering the overall EPE3D by 0.01m. Lastly, the biggest improvement
(i.e., a 0.012m decrease on EPE3D) is brought by our constrained regression,
in which the scene flow component on each axis is clamped by a fixed threshold
(e.g . 0.1m). This is reasonable as non-viable results, for example, a scene flow
vector with a length of 0.5m, can seriously degrade our results.
Generalization to New Activities. In the above experiments, we evaluate
our method on the testing set whose subjects are unseen during training. The
results demonstrate the generalization ability of our trained model to new users
that perform the same ‘in-set’ activities. To further test its generalization to
new activities, here we evaluate our trained model on the ‘out-of-set’ testing
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Table 4: Evaluation on the benefit of
scene flow for the HAR task.

Method Raw w. S1 Gain w. S2 Gain

Ours 47.32 57.88 +10.56 57.78 +10.46
MMPointGNN [30] 52.46 60.16 +7.70 59.94 +7.48
RadHAR [69] 44.65 49.98 +5.33 50.53 +5.88

Average 48.14 56.01 +7.87 56.08 + 7.94

Table 5: Evaluation on the benefit of
scene flow for the HP task.

Method mIoU (%) Gain (%) oA (%) Gain (%)

Raw 49.09 - 65.75 -
w. S1 52.72 +3.63 69.27 +3.52
w. S2 51.04 +1.95 68.21 +2.46

set in which three performed activities are not included in the training set. We
can see from Tab. 3 that, our trained model can still keep an equally good
performance when encountering unseen activities. This demonstrates the ability
of our model to cope with new activities in human sensing. We also observed that
the performance to new activities is better than the overall performance shown
in Tab. 1. This is because our subjects either keep most of their bodies static
(i.e., heading bobbing) or stay completely static in many frames (i.e., sitting
and squatting) when doing unseen activities. As a result, estimating the scene
flow of points belonging to them is much easier. We believe that our trained
model can also generalize to other daily human activities.

4.4 Downstream Task Evaluation

As a low-level signal in understanding motions, scene flow can directly enhance
low-quality radar point clouds with full per-point displacement information be-
tween two frames. Moreover, the latent spatial-temporal representations can be
implicitly learned by guiding the network to estimate scene flow, which can be
used to support other tasks. Therefore, we envision that learning scene flow es-
timation can benefit a wide range of higher-level downstream tasks in mmWave-
based human sensing. To demonstrate the benefit, here we consider three rep-
resentative downstream tasks, including human activity recognition (HAR), hu-
man parsing (HP) and human body part tracking (HBPT) for evaluation.
HAR Evaluation Setup. HAR plays a significant role in a wide range of
applications, such as elderly healthcare monitoring [71], smart home [12] and
behaviour surveillance [43]. To validate the functionality of scene flow to ben-
efit HAR, we design a HAR base network by combining some key components
from Sec. 3.4 and also utilizing the LSTM network [36] to track the temporal re-
lationship before regressing the classification scores. Besides, two state-of-the-art
methods [30,69] bespoken for mmWave-based HAR are selected for a more per-
suasive comparison. Particularly, we design two strategies to harness the scene
flow network as a plug-and-play module to the HAR network. Strategy 1 (S1)
directly takes the estimated scene flow as point-level raw features and decorates
each radar point with them, while Strategy 2 (S2) leverages the latent represen-
tations encoded by scene flow networks to enhance the low-quality radar data.
HAR Evaluation Results. We evaluate our proposed two strategies for scene
flow application to HAR task on our ‘in-set’ testing set. The length of each input
sequence T for HAR is set as 20. The evaluation results are shown in Table 4. As
we can see, both two proposed strategies can enhance the performance of our base
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Fig. 6: Confusion matrix of HAR.

Table 6: Scene flow-based HBPT eval-
uation results.

Tracking length - mJE (m) ↓

Activity 1 2 3 4

Arm swing 0.028 0.076 0.097 0.124
Leg swing 0.016 0.071 0.105 0.130
Arm & leg swing 0.030 0.108 0.146 0.178

Average 0.025 0.085 0.116 0.144

network and state-of-the-art methods on HAR, demonstrating their usefulness
in helping distinguish between different human activities. It can be also observed
that the average accuracy shown in Tab. 4 is relatively low compared to those
reported in [30, 69]. We credit this to our subject activities being very similar
and inter-included to some extent. For example, the arm & leg swing activity
can be separated into arm swing and leg swing, which are also inside our ‘in-set’
activities. As a result, both ours and the two states of the arts find it more
difficult to correctly distinguish between these activities. The breakdown results
(ours with S1) on HAR as the confusion matrix is shown in Fig. 6. As we can
see, our HAR network achieves a relatively high accuracy value on the bowing
activity since it has apparently different motion patterns from others. However,
the accuracy values on other activities are not as satisfactory as on bowing. For
example, 42% leg swing samples are wrongly predicted as the arm & leg swing
activity. This further justifies our explanation that some activities are so similar
and thus can easily confuse our HAR networks in classification.
HP Evaluation Human parsing aims to parse human semantic body segments
(head, arms, torso, etc.) from sensor data. With radar point clouds as input,
our objective of HP is to identify the body parts that correspond to each point.
To evaluate the effectiveness of scene flow on this task, we also designed a base
network for this downstream task using key components from Sec. 3.4. Both two
scene flow application strategies proposed for the HAR above are also used here
for the HP task. The number of body segments for parsing is 6, encompassing
two arms, two legs, head and torso. As seen in Tab. 5, leveraging scene flow in
two strategies also contributes to better performance on the HP task. Directly
applying scene flow to points (S1) yields better results than using latent feature
recycling (S2), as the former provides explicit per-point motion information. In
contrast, latent features are less direct and require additional processing. Some
examples of our HP results (with Strategy 1) are exhibited in Fig. 7. Thanks
to the enhancement by the scene flow, our method can accurately parse radar
point clouds into different body parts, close to the ground truth results.
HBPT Evaluation. Given the initial position of a human body part, our human
body part tracking task aims to track its movement in subsequent frames. With
point-level scene flow estimation, we first group Nt radar points that can be
assigned to the skeleton needed to be tracked (cf . Fig. 3). Then we generate
natural correspondences {pi, pi + fi}Nt

i=1 using their scene flow and apply the
classical Kabsch algorithm [42] to solve the rigid skeleton transformation based
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Fig. 7: Human parsing results visualization.

on them. This updates the endpoints’ positions, allowing for tracking of the
human body part across frames without additional training, relying only on a
pre-trained scene flow network. For evaluation, we select the sequences of arm
swing, leg swing and arm & leg swing activities in the testing set and take the
two arms, legs and both of them respectively as our tracking targets.
For implementation, we divide the long sequences into short clips with a length of
5 frames and track the body parts within each clip. After initializing the ground
truth positions in the first frame, we aim to track each skeleton for the next four
frames. The HBPT results at different tracking lengths on three activities are
reported in Fig. 6. With accurate scene flow estimation, we can effectively track
multiple body parts together for different activities. For one-frame tracking, our
method achieves an average mJE of <3cm on three activities, demonstrating the
capability of scene flow to enable the HBPT task. However, the errors become
larger as the tracking length increases, which indicates the happening of the
tracking drift. This is inevitable for our method as more radar points associated
with other skeletons will be wrongly induced for transformation calculation when
the tracking continues. We also observe that the performance on the arm & leg
swing activity is worse than the other two activities. This is reasonable as we
need to track twice the skeletons in this activity as others, where more skeletons
may interfere with each other during tracking.

5 Conclusion

In this paper, we introduce milliFlow, a deep learning framework designed to es-
timate scene flow for enhancing 3D mmWave radar point clouds in human motion
sensing. Addressing mmWave’s inherent instability and sparsity, milliFlow inte-
grates multi-scale local and global features with temporal data. We also develop
an automated labeling method to reduce the need for costly manual annotation.
Extensive testing on our dataset and three downstream tasks shows milliFlow ’s
effectiveness, suggesting its potential as a valuable component in human motion
sensing systems, significantly improving their performance.
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