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Table 1: Quantitative Results. We show quantitative evaluations for two more
tasks which are abbreviated as T5: F-actin vs. MT and T6: F-actin vs CCPs. For all
experiments, we show the PSNR (sub-row 1) and MS-SSIM (sub-row 2) metrics across
8 mnoise levels: Gaussian noise levels of o € {1,1.5,2,4} and Poisson noise levels of
A € {0,1000}. The best performance per task and noise level is shown in bold. The
third column additionally shows the training time on a single Tesla-V100 GPU (in
hours).

1 Performance on more splitting tasks

In this section, we train our models and baselines on four more tasks. We train
two tasks from the BioSR dataset. Specifically, we add F-actin vs. CCPs and
F-actin vs. Microtubules tasks. In Tab. |1l we present the quantitative evaluation
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on these two tasks. Similar to the results from Table 1 of the main manuscript,
here as well, we find our methods, specifically denoiSplit to outperform others
in most cases.

We worked on three additional joint denoising-splitting tasks from two other
datasets which we describe next.

Hagen et al. Actin-Mitochondria Dataset We picked the high-resolution Actin
and Mitochondria channels from Hagen et al. [3] which were also used in [1].
Similar to our tasks from BioSR dataset, we added Gaussian and Poisson noise.

PaviaATN dataset [1] We worked with the Actin and Tubulin channel provided
by the dataset. It is worth noting that in terms of PSNR, we picked the hardest
of the three tasks worked upon by Ashesh et al. [1|. This is the task on which
denoiSplit and all the baselines perform poorly. We discuss more on these results
in Sec.

We provide the results on tasks generated from PaviaATN and Hagen et al.
datasets in Tab. ]l We show the full-frame predictions for tasks not shown in
the main manuscript in Figs. [f] to

2 Details on architecture, hyperparameters, training and
evaluation

As stated in the main manuscript, our denoiSplit and Altered pSplit are built on
top of uSplit architecture. In addition to the major changes that are discussed
in the main manuscript, we have enabled free bits 5| parameter and have set
free bits = 1. But similar to |1], we also upper bounded the log of variance of
the latent space to 20 across all hierarchy levels for stability in training.

denoiSplit, Altered pSplit and HDN have been trained with the learning rate
of 0.001, batch size of 32, patch size of 128, max epoch of 400 and with 16 bit
precision. For every task, 80% of the data was allocated as training data, 10% of
the data as validation data, and 10% as the test data. For uSplit baseline and for
uSplit used as part of HDN®uSplit, we use the same training configuration as
mentioned in |1]. For PSNR, we use the range invariant PSNR formulation which
is commonly used in this field [114]. When working with Actin vs Mito task (Fig.
5 of the main text), we first scale the predictions in a way described in |14] and
then use the Multiscale SSIM metric between the high-SNR groundtruth and the
scaled prediction. The scaling is necessary because the high-SNR groundtruth
has much higher pixel intensties than the low-SNR data on which the models are
trained. Due to this the predictions also have lower pixel intensity values. We
do not need to do this for PSNR separately because the version we use already
does the scaling.

We have provided code with this supplement where information about how
Poisson noise is added is present in the file vanilla_ dloader.py:L175. Specifically,
we use numpy python package to add Poisson noise as

data = np.random.poisson(data / poisson_factor) * poisson_factor
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We use poisson_factor = 1000. Finally, in Tab. 5| we provide the actual o values
which were used to add Gaussian noise in different tasks.

For the calibration plot shown in Figure 3 of the main text, 50 samples were
used to estimate the RMV (Root mean variance).

2.1 Architecture details of uSplit

For completeness, here we describe all relevant aspects of uSplit |1, the work
that we built upon. pSplit was built by modifying a HVAE framework and
therefore inherited multiple hierarchy levels of latent spaces and the loss com-
prised of KL divergence and log-likelihood. In pSplit, Ashesh et al. |1] removed
the auto-encoding nature of the HVAE framework by making the network pre-
dict two-channel output with input being a single channel. They therefore had
two components in their log-likelihood loss, one for each output channel. In the
log-likelihood loss of uSplit, a pixel-wise variance was predicted along with the
split prediction for each channel. Note that in HVAE implementations, variance
in the log-likelihood loss component is typically set to 1. uSplit’s prediction, on
the other hand, is a 4-channel tensor, two channels being the prediction and the
other two being the predicted pixel-wise log-variance. As discussed in the main
manuscript, one of our key contributions is that we integrated Noise models, orig-
inally developed for unsupervised denoising into the image decomposition task.
We therefore did not need to predict the pixelwise log-variance. Next, compared
to the classical HVAE formulation [10] of KL divergence loss, Ashesh et. al [1]
relax the weights given to KL divergence loss components across different hier-
archy levels, arguably to get better high-frequency details in the prediction. In
our work, however, we find that this leads to a loss of denoising and sampling
properties of the network, properties which HVAES typically have. Therefore,
as discussed in the main manuscript, we changed the KL loss weighting scheme
used in pSplit and adopted the formulation used in [10]. Ashesh et al. [1] also
showed the theoretical soundness of their approach by deriving the ELBO loss
for the image decomposition setup. Please refer to [1] for the proof. Finally,
one of their main contributions was the introduction of lateral contextualization
(LC) wherein additional low-resolution images centered on the primary input
patch, but covering larger spatial regions, were fed to the network through sep-
arate input branches. This enabled GPU-memory efficient assimilation of the
information about the surrounding spatial context of the input patch. Since we
primarily worked with the BioSR dataset which did not have as large structures
as the ones used in [1], we disabled the LC module and instead doubled the input
patch size.

3 Applications on natural images

While this work focuses on microscopy data, in this section, we briefly explore
the utility of uSplit to tasks on natural images. Specifically, we look at de-
raining and de-hazing tasks. For de-hazing, we used HazedK dataset 8] and for
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de-raining, we used Rain100H dataset . We worked with the original version
of Rainl00H dataset containing 1800 clean/rainy training image pairs and 100
clean/rainy testing image pairs. Due to the absence of pixel-independent noise
in these datasets, we disabled the noise model in denoiSplit.

We present qualitative and quantitative results in Figure [I] and Tab. In
the de-raining task, it was encouraging to observe that while training was done
on images with synthetic rain, denoiSplit was able to remove rain from real rainy
images as well.

Hazy Input Prediction Target

Fig. 1: Qualitative results of denoiSplit on De-hazing (Haze4K dataset) and De-raining
(Trained on Rainl100H dataset) tasks.

| ID [4] |LP [7]|DSC [9]| JORDER-R [15]|denoiSplit
PSNR/| 14.02 ‘ 14.26‘ 15.66 ‘ 23.45 26.2

SSIM |0.5239(0.4225| 0.5444 0.7490 0.758
Table 2: Quantitative results on Rain100H dataset for De-raining task. Due to
the absence of noise, we disabled the noise model in our denoiSplit. Metric values of
all other methods have been taken from .

It should be noted that the absence of noise in these datasets did not allow
the primary feature of our approach, unsupervised denoising using noise models,
to be used in these tasks. However, we believe our approach holds more promise
on tasks on natural images having a significant amount of noise.
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|[DM?F-Net [2||FFA-Net [12]|DA [13]|[DMT-Net [8||denoiSplit
PSNR 24.61 26.97 24.03 28.53 27.1
SSIM 0.92 0.95 ‘ 0.90 ‘ 0.96 0.90
Table 3: Quantitative results on HazedK dataset [8] for De-hazing task. Due to the
absence of noise, we disabled the noise model in our denoiSplit. Metric values of all
other methods have been taken from [§].

4 Practical relevance of denoiSplit

Here, we outline the intended usecase for our work. Similar to [1], our work
also aims to enable microscopists to extract multiple structures using a single
fluorescence marker. There are two important practical considerations which our
work addresses.

Firstly, different microscopy projects, depending upon the nature of under-
lying specimen and microscope type, have different tolerances for the amount
of laser power and the dwell time that can be used during acquisition. This
roughly translates to the amount of noise that will be present in the acquired
micrographs. In this work, we cater to this necessity by working with different
noise levels.

Secondly, in most cases, there will be a need to purchase a single fluorescent
marker that can bind to both cellular structure types one is interested in. Ad-
ditionally, even after the purchase, it might still be challenging to get a decent
staining of both structures with the marker. An imperfect staining can lead to
under-expression of one of the two structure types in the imaged micrographs.
Therefore, there is also an investment of time and expertise in getting a proper
staining. That being the case, it makes sense to first inspect the feasibility of
the approach before making the investment of buying a new marker followed by
getting the staining correct. Our method provides a way to get proof-of-concept
splitting without making any of these investments.

We envision that microscopists should image individual channels in the same
noise regime as is permitted in their project. They should then train the denoiSplit
and inspect the prediction quality. If there is room for adjustment in power and
dwell time, they can re-acquire in a different noise regime and train the denoiSplit
again. Note that this acquisition can be done with a single-color setup and there-
fore can be done using their existing microscope configuration.

In case they find the model performance satisfactory in some feasible noise
regime, they can then order the relevant fluorescent marker and can subsequently
label their structures with it to get superimposed images. Finally, they need to
finetune the trained network to this slightly different input data and then they
can start using denoiSplit. This problem of finetuning the model is outside the
scope of this work and will be taken up in our future work.

denoiSplit also enables sampling which, as stated in the main manuscript,
will enable microscopists to inspect the predictions to get a visual feeling about
uncertain areas in prediction. To showcase this, we provide with this supplement,
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a sampling.gif file where one could see 50 samples on a randomly choosen input
from MT vs. ER task.

5 Noise model generation

Depending upon the physical availability of the microscope, [11] described two
ways in which the noise model can be generated. In this section, our motivation
is to assess the performance difference that one should expect between these two
ways. We find that different choices of noise model generation do not lead to
very different performances. This result enables denoiSplit to be used across a
wide variety of scenarios.

5.1 Physical availability of Microscope

The simpler and the better case is when we have access to the microscope which
generated the noisy data. In this case, one needs to image the same content
N times which would result in acquisition of N noisy versions of the same un-
derlying specimen. The high SNR version is then computed by simply taking
the pixel-wise average of these noisy samples. In this situation, for every clean
signal value, one has NN noisy intensities. This data is then used to train the
Gaussian-mixture based noise model.

To simulate this condition, for every intensity value in the range [0,65535],
we obtain multiple noisy intensity values by adding the noise (Gaussian and/or
Poisson) multiple times independently.

5.2 Physical unavailability of Microscope

In case the microscope is not available, which is true for all publicly available
microscopy datasets, [11] proposed a bootstrap noise model approach. In this
method, the idea was to denoise the noisy data using some unsupervised/self-
supervised denoising technique and use the noisy data and the predicted denoised
data to generate the noise model.

To simulate this condition, we added noise to the noise free training data.
This gave us the noisy data and clean data pair which we used to train the noise
model. To showcase the applicability of our method to all publicly available
datasets, we have generated all noise models using this approach.

It is worth noting that in the way described above, there is a source of error
which has not been captured. This is the error introduced by the denoising
process for getting the clean data from its noisy counterpart. To assess the effect
of denoising, we generate the noise model in yet another way. In this way, we
added the noise to the noise free training data. We then use N2V [6], an off-the-
shelf denoiser to denoise the images. We use the noisy data and the denoised
images to generate the noise model.
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Fig. 2: Quantitative comparison of different noise model generation method-
ologies: Here, we compare three ways in which noise models can be generated. (a)
denoiSplit+Ss: When for every clean pixel intensity, one has access to multiple noisy
intensities. This corresponds to the case when one has access to the microscope which
has generated the data. (b) denoiSplit+S1: This corresponds the case when one has
access to clean data and its corresponding noisy data. (c¢) denoiSplit+/N2V: This cor-
responds to the case when one has access to just noisy data. We use N2V to denoise
them which we use as clean data. We compare denoiSplit trained using each of the
three noise model variants. We show PSNR performance on two tasks.

5.3 Performance comparison among different noise model
generation procedures

To assess how performance varies depending upon the methodology used for
noise model creation which have been described above subsections, we train
denoiSplit three times, each time with its noise model computed using a different
way. In Fig. 2] we show the performance comparison. denoiSplit+S,, simulates
the case when one has access to a microscope. For every clean pixel, one has
multiple corresponding noisy pixels. denoiSplit+S51 denotes the case when one
works with a noisy and the corresponding clean data pair. Note that, unlike the
previous case, for every clean pixel, there is exactly one noisy pixel.

denoiSplit+ N2V denotes the case when one obtains the clean data after
denoising with N2V. We train them on two tasks namely ER vs. CCPs and ER
vs. MT over four Gaussian noise levels with Poisson noise (A = 1000) enabled.
As can be observed from the plots, we don’t see a large difference between the
three approaches.

This performance evaluation encourages denoiSplit to be used on publicly
available datasets and for proof-of-concept evaluations since it shows that having
access to the microscope does not give large performance improvements and the
bottleneck in denoising-splitting is essentially the splitting task.
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Fig. 3: Problem comparison: Joint Denoising-Splitting vs. Denoising In this
figure, we compare the PSNR with respect to high-SNR micrographs for two image
restoration tasks: (a) Self-supervised denoising for which we use HDN and (b) joint
denoising-splitting where denoiSplit is used. We evaluate the two models over multiple
noise levels of Gaussian noise (x-axis) with Poisson(A = 1000) noise present in all
cases. For denoiSplit, we use three tasks namely: ER vs. MT, CCPs vs. ER and CCPs
vs MT. We show one plot for each structure type (ER, Microtubules and CCPs). Two
things are evident: (a) Judging just from PSNR numbers, we can say that Denoising
is a simpler task than joint Denoising-Splitting. (b) Performance of denoiSplit for one
channel depends on the other channel as well. For example, for denoiSplit, PSNR on
ER channel (first plot) is higher when the task is CCPs vs. ER (green) as opposed to
ER vs. MT (orange) task.

6 Quantifying model uncertainty

In this section, we quantify how much the performance varies between multiple
models trained independently on the same task under identical configuration.
For this, we picked ER vs MT task from BioSR dataset with ¢ = 1, A\ = 1000.
We trained the model 10 times and computed the PSNR and SSIM metrics
on the test data. The mean and standard deviation of the PSNR values across
different runs came out to be 29.84+0.18 dB with individual PSNR values lying
in [29.7,30.3] dB. For SSIM, it was 0.905 + 0.004. Due to computing limitations,
all the main text and the supplement tables use a single trained model per
configuration to generate the metric values.

7 Comparison between denoising task and splitting task

In this section, we compare between two computer vision tasks which are of
relevance to us: (a) unsupervised denoising and (b) joint denoising-splitting.
From Fig. [3] we observe that unsupervised denoising is arguably a simpler task
when compared to joint denoising-splitting. The PSNR between the prediction
and high SNR micrographs is much better for HDN as compared to denoiSplit
for most cases. We note that it is expected because in joint denoising-splitting,
besides denoising, which is the sole task in unsupervised denoising, one needs to
additionally do the job of image decomposition. But more interestingly, we ob-
serve that the prediction quality of one channel depends upon the other channel.



denoiSplit 9

1.25 ;
1.00 --mmmmmmmbm e A e
| MMSE=2 |
A 0.75 MMSE=5
= —
Z 50 MMSE=10 |
MMSE=15
0.25 1 MMSE=50 |
MMSE-200
0.00 i
0.0 0.5 1.0 1.5 2.0 2.5 3.0

RMV

Fig. 4: In this figure, we show that as we increase the sample count to get the uncali-
brated estimate of pixelwise uncertainty, the calibration diagram as shown in this plot
becomes better and better, i.e., gets more and more closer to y = x.

We note that this observation is of considerable importance because it opens
up the question of best pairing strategy: which two structures should be imaged
by a single color fluorescent marker? This will be part of our future work.

8 On usefulness of using sampling for calibration

In this section, we investigate our choice for estimating un-calibrated uncertainty
using sampled predictions. For this, we estimate the uncalibrated pixelwise un-
certainty using varying number of samples. We then follow our calibration pro-
cedure and learn the channelwise scalar to get the calibration plot. As can be
observed in Fig. [d] as we increase the number of samples, the calibrated plot also
improves thereby validating our choice.

9 Qualitative evaluation of HDIN denoising

Here, we qualitatively evaluate the denoising behaviour of HDN. We show three
random input patches and the corresponding channel first and channel second
crops from 6 different splitting tasks in Figs. [9] to We show the results on
noisy dataset having Poisson(A = 1000) noise and Gaussian noise of relative scale
1.5. Since main manuscript also shows the qualitative figures on this noise level,
we believe this can be used together with the figures present in main manuscript
to better understand the behaviour of HDN@uSplit.

10 Failure cases: Avenues for future work

In this section, we inspect the worse performing cases in our work. One clear
example is Actin vs. Tubulin task from PaviaATN [1] dataset whose quantitative
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evaluation is present in Tab. [dl However, as can be seen from Fig. we find
performance of both HDN@uSplit and denoiSplit to be unsatisfactory for it to
be used by microscopists. We note a striking difference of this task with the tasks
from BioSR dataset. Looking at 128 x 128 input patches for tasks from BioSR
data, one could visually form an opinion about which structures in the input
patch should belong to first channel and which to the second channel. In case of
Actin vs. Tubulin task, we observe that making this opinion is much more diffi-
cult since local structures are much less discriminative. It is only when looking
at a larger context, one can form some opinion about which structures should
be present in which channel. There seems to be another factor related to the
nature of the structures which the channels are composed of. Informally speak-
ing, individual channels have a "surface" like structure in Actin and Tubulin
images of PaviaATN dataset as opposed to "curved lines", "mesh" and "dots"
like structures in BioSR dataset.

Between denoiSplit and HDN&®uSplit, we observe that for this task, denoiSplit
has more tiling artefacts. It is not surprising for that to be the case because
in [1], the Lateral contextualization (LC) approach which incorporates con-
text in a memory efficient way, worked well on Actin vs. Tubulin. Compared
to HDN@uSplit, our model is naturally at disadvantage because we have dis-
abled the LC module but HDN@uSplit uses it. We believe that increasing the
patch size can help our denoiSplit reduce the tiling artefacts.

In general, we also find cases where uSplit has retained some fine structures,
albeit with noise, which the denoising based approaches have omitted from the
prediction. We argue this to be a natural consequence of restricting the expres-
sivity of latent spaces with KL divergence loss, which is pivotal for denoising.

As joint denoising-Splitting is a new task, there is much that needs to be
done. We humbly acknowledge the challenges mentioned above which we hope
to tackle in our future works.

Tasks
Model T7 T8 ]

T [15] 2[4 115]2]4
22.6(21.1(20.2(19.1(28.7]27.0]26.2|25.2
0.555(0.442(0.361/0.189[0.905|0.825[0.747|0.489
27.8127.3(27.0(26.4| - - - -
0.880(0.871|0.865|0.843| - - - -
26.3(26.2(25.9(25.2(34.7134.2133.632.3
0.838(0.826|0.820|0.807[0.975|0.971{0.966|0.951
26.4126.1(26.0(25.2(35.5[33.7|33.5[32.2
0.835(0.827|0.825|0.807[0.979|0.974]0.968|0.951
Table 4: T7: Actin vs Tubulin from PaviaATN dataset, T8: Actin vs Mito High-SNR.
For T8, HDN training was quite unstable and crashed multiple times due to NaNs.
Due to this reason, there are no entries for HDN@®uSplit for the task T8. Note that
Actin vs Mito los-SNR task, which is present in the main text, also had trouble training
HDN.

nSplit

HDN&uSplit

(Ours) Altered pSplit

(Ours) denoisplit
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denoiSplit High SNR

Fig.5: Qualitative Results Actin vs. Mito: In this figure, we show full frame
prediction on Actin vs. Mitochondria task. Here, the noise in the target channels is not
synthetic but is real microscopy noise. We show noisy input (column one), individual
noisy channel training data (column two), and predictions by one of the baselines
pSplit (column three) and our own results obtained with denoiSplit (column four).
Additionally we show high SNR channel images (not used during training) as the last
column and show PSNR values w.r.t. these images. Additionally, we plot histograms
of pixel intensities various panels for comparison (see legend on the right). The second
row, first column shows the used noise models. The superimposed plots (green) show
the distribution of noisy observations (¢ ) for two clean signal intensities.

Task oc=1lc =1.5|c =2|c =4
ERws. CCPs 3400 | 5100 | 6800 (13600
ER vs. MT 4450 | 6675 | 8900 |17800

CCPs vs. MT 3150 | 4725 | 6300 (12600

F-actin vs. ER 4450 | 6675 | 8900 (17800

F-actin vs. CCPs| 3050 | 4575 | 6100 |[12200

F-actin vs. MT | 4300 | 6450 | 8600 [17200
Table 5: Gaussian o values for the different tasks. Note that they have been estimated
by computing the standard deviation on the input images of these tasks.
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Input GT uSplit denoiSplit High SNR

Fig. 6: Qualitative Results F-actin vs. ER: In this figure, we show full frame
prediction on F-actin vs. ER task. We show noisy input (column one), individual
noisy channel training data (column two), and predictions by one of the baselines
pSplit (column three) and our own results obtained with denoiSplit (column four).
Additionally we show high SNR channel images (not used during training) as the last
column and show PSNR values w.r.t. these images. Additionally, we plot histograms
of pixel intensities various panels for comparison (see legend on the right). The second
row, first column shows the used noise models. The superimposed plots (green) show
the distribution of noisy observations (cfv ) for two clean signal intensities.

denoiSplit High SNR

Fig. 7: Qualitative Results F-actin vs. MT: In this figure, we show full frame
prediction on F-actin vs. MT task. We show noisy input (column one), individual
noisy channel training data (column two), and predictions by one of the baselines
wSplit (column three) and our own results obtained with denoiSplit (column four).
Additionally we show high SNR channel images (not used during training) as the last
column and show PSNR values w.r.t. these images. Additionally, we plot histograms
of pixel intensities various panels for comparison (see legend on the right). The second
row, first column shows the used noise models. The superimposed plots (green) show
the distribution of noisy observations (¢ ) for two clean signal intensities.
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Fig. 8: Qualitative Results F-actin vs. CCPs: In this figure, we show full frame
prediction on F-actin vs. CCPs task. We show noisy input (column one), individual
noisy channel training data (column two), and predictions by one of the baselines
uSplit (column three) and our own results obtained with denoiSplit (column four).
Additionally we show high SNR channel images (not used during training) as the last
column and show PSNR values w.r.t. these images. Additionally, we plot histograms
of pixel intensities various panels for comparison (see legend on the right). The second
row, first column shows the used noise models. The superimposed plots (green) show
the distribution of noisy observations (cfv) for two clean signal intensities.

Denoised High SNR i Denoised High SNR i Denoised High SNR

Fig. 9: Qualitative performance of HDN on ER ws. CCPs task input and its two
constituent channels. Left panel shows the denoising performance on input for our
splitting task and central and right panel shows its denoising performance on its two
constituent channels. Within each panel, we show three random patches (rows) of size
256 x 213. Specifically, we show the input (first column), denoised predictions (second
column) and high SNR patch (last column).



14 Ashesh, F. Jug

Denoised High SNR i Denoised High SNR i Denoised High SNR

Fig. 10: Qualitative performance of HDN on ER ws. MT task input and its two con-
stituent channels. Left panel shows the denoising performance on input for our splitting
task and central and right panel shows its denoising performance on its two constituent
channels. Within each panel, we show three random patches (rows) of size 256 x 213.
Specifically, we show the input (first column), denoised predictions (second column)
and high SNR patch (last column).

Denoised High SNR i Denoised High SNR

Fig. 11: Qualitative performance of HDN on CCPs vs. MT task input and its two
constituent channels. Left panel shows the denoising performance on input for our
splitting task and central and right panel shows its denoising performance on its two
constituent channels. Within each panel, we show three random patches (rows) of size
256 x 213. Specifically, we show the input (first column), denoised predictions (second
column) and high SNR patch (last column).
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Fig. 12: Qualitative performance of HDN on F-actin vs. CCPs task input and its two
constituent channels. Left panel shows the denoising performance on input for our
splitting task and central and right panel shows its denoising performance on its two
constituent channels. Within each panel, we show three random patches (rows) of size
256 x 213. Specifically, we show the input (first column), denoised predictions (second
column) and high SNR patch (last column).
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Fig. 13: Qualitative performance of HDN on F-actin vs. MT task input and its two
constituent channels. Left panel shows the denoising performance on input for our
splitting task and central and right panel shows its denoising performance on its two
constituent channels. Within each panel, we show three random patches (rows) of size
256 x 213. Specifically, we show the input (first column), denoised predictions (second
column) and high SNR patch (last column).



16 Ashesh, F. Jug

Denoised High SNR Denoised High SNR Noisy Denoised High SNR

i i i
4 V : . |
75 F

Fig. 14: Qualitative performance of HDN on F-actin vs. ER task input and its two
constituent channels. Left panel shows the denoising performance on input for our
splitting task and central and right panel shows its denoising performance on its two
constituent channels. Within each panel, we show three random patches (rows) of size
256 x 213. Specifically, we show the input (first column), denoised predictions (second
column) and high SNR patch (last column).
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Fig.15: PaviaATN Actin wvs. Tubulin task Here, we show performance of
denoiSplit and HDN®pSplit for six random input patches of size 500 x 500 in six pan-
els. Within each panel, we show the full input frame and its crop for which we do the
predictions (column one). Next two columns have the predictions of HDN@uSplit and
denoiSplit respectively. The last column is the high SNR ground truth. We observe that
the splitting performance of both HDN@pSplit and denoiSplit does not reach the qual-
ity at which microscopists would find it useful. Between HDN@uSplit and denoiSplit,
we see more tiling artefacts for denoiSplit.
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