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Abstract. In this work, we present denoiSplit, a method to tackle a
new analysis task, i.e. the challenge of joint semantic image splitting
and unsupervised denoising. This dual approach has important appli-
cations in fluorescence microscopy, where semantic image splitting has
important applications but noise does generally hinder the downstream
analysis of image content. Image splitting involves dissecting an image
into its distinguishable semantic structures. We show that the current
state-of-the-art method for this task struggles in the presence of im-
age noise, inadvertently also distributing the noise across the predicted
outputs. The method we present here can deal with image noise by in-
tegrating an unsupervised denoising subtask. This integration results in
improved semantic image unmixing, even in the presence of notable and
realistic levels of imaging noise. A key innovation in denoiSplit is the
use of specifically formulated noise models and the suitable adjustment
of KL-divergence loss for the high-dimensional hierarchical latent space
we are training. We showcase the performance of denoiSplit across mul-
tiple tasks on real-world microscopy images. Additionally, we perform
qualitative and quantitative evaluations and compare the results to ex-
isting benchmarks, demonstrating the effectiveness of using denoiSplit: a
single Variational Splitting Encoder-Decoder (VSE) Network using two
suitable noise models to jointly perform semantic splitting and denoising.

1 Introduction

Fluorescence microscopy remains a cornerstone in the exploration of cellular
and sub-cellular structures, enabling scientists to visualize biological processes
at a remarkable level of detail [9, 22]. However, the ability to distinguish and
analyze multiple structures within a single sample requires a multiplexed imaging
protocol that requires extra time and effort [22]. To address these downsides and
enable for more efficient and new types of investigation, a powerful method for
semantic image splitting was recently introduced [1].

Building on this previous work [1], we address a key challenge that persisted:
noise in microscopy images and its adverse effect on the quality of image-splitting
predictions. Recognizing the need for a method capable of handling noisy input
images while maintaining the integrity of the semantic splitting task, we intro-
duce a technique that not only builds on the strengths of µSplit [1] but also

https://orcid.org/0000-0003-3778-0576
https://orcid.org/0000-0002-8499-5812


2 Ashesh, F. Jug

Fig. 1: Teaser Figure. In this work we use a variational encoder-decoder network
to jointly solve an usupervised denoising and image splitting task and show that our
approach outperforms existing baselines.

incorporates unsupervised denoising capabilities, for example as in [15, 19–21].
Figure 1 outlines the overall approach we are proposing.

Together, these ingredients lead to a new method denoiSplit. It refines the
process of image decomposition, ensuring that even under high levels of pixel
noises present in the entire body of available training data, the semantic in-
tegrity of the semantically split image components (the predictions) is well pre-
served. Additionally, denoiSplit can assess data uncertainty by sampling from
the learned posterior of possible splitting solutions, followed by evaluating the
inter-sample variability. In Section 4, we show how to use this possibility to
predict the expected error denoiSplit makes on a given input.

In summary, we believe that this work will open new avenues for the efficient
and detailed analysis of complex biological samples, for example, in the context
of fluorescent microscopy.

2 Related Work

2.1 Image Denoising

Image denoising is a task that has a long and exciting history. Classical methods,
such as Non-Local Means [5] or BM3D [6], were frequently and very successfully
used before neural network based approaches have been introduced towards the
end of the last decade [14,25–27].

The advent of deep learning saw people exploit different aspects of noise
and the way networks learn to enable denoising. Noise, while usually unde-
sired, is simultaneously much harder to predict, as was elegantly demonstrated
in [24], leading to a zero-shot denoiser. In the case specific to pixel noises, i.e.
all forms of noise that are independent per image pixel (given the signal at that
pixel) [22], the impossibility to predict the noise was exploited in various ways,
leading to important contributions such as Noise2Void [14], Noise2Self [3], or
Self2Self [13]. Another well known approach close to this family of approaches
is Noise2Noise [16], capable of denoising even more complex noises that can
correlate beyond the confines of single pixels.

To further improve denoising performance, Probabilistic Noise2Void [15, 21]
introduced, and DivNoising [20] and Hierarchical DivNoising (HDN) [19] reused
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the idea of suitably measured or trained pixel noise models. Such noise models
are, in essence, a collection of probability distributions mapping from a true pixel
intensity to observed noisy pixel measurements (and vice versa).

2.2 Image Decomposition

Image decomposition is the inverse problem of splitting a given input image that
is the superposition (i.e. the pixel-wise sum) of two constituent image channels.
While the sum of two values is not uniquely invertible, if for each summand
a prior on its value exists, even a unique solution can exist. In a similar vein,
having learned structural priors of the appearance of the two constituent image
channels, an input image (a grid of observed pixels that are each a sum of two
values) can be split into two pixel grids such that each one satisfies the respective
structural prior. In computer vision, reflection removal, dehazing, deraining etc.
are some of the applications [2, 4, 7, 8] for which image splitting can be used.

More recently, image splitting in fluorescence microscopy was receiving height-
ened attention, probably because of the direct applicability and potential util-
ity that a well-working approach can bring to this microscopy modality, which
finds wide-spread use in biological investigations. In particular, a method called
µSplit [1] demonstrated impressive image splitting performance on several datasets,
suggesting that it is ready to be used in biological research projects.

However, µSplit requires relatively noise-free data for training and prediction,
which limits its potential utility (see also Section 5 or Figure 2).

2.3 Uncertainty Calibration

The ability to correctly assess the quality of predictions is naturally useful. Ide-
ally, a predictive system capable of co-predicting a confidence value has the
property that the predicted confidence scales with the average error of the pre-
diction. If the relationship between error and confidence is close to the identity,
we call the uncertainty predictions of this system calibrated.

Early works tried to use the deviation of the prediction as a proxy of the net-
work’s confidence in the prediction [26]. Other works tried to calibrate the pre-
dicted standard deviation with the expected error (i.e. the RMSE) [17]. Earlier
calibration works were mainly concerned with classification tasks [18]. However,
in [17], these approaches were reformulated in the context of regression.

In [17], the authors propose a way to evaluate calibration. They train a
separate branch to predict a standard deviation per pixel that expresses its pre-
diction uncertainty. For evaluating the calibration quality, the authors clustered
examples on the basis of the predicted standard deviation values. Within each
cluster, the predicted uncertainty is then compared with the empirical uncer-
tainty (RMSE loss). To further improve the calibration, the authors propose
a simple, yet effective scaling methodology wherein they learn a scalar param-
eter on re-calibration data, i.e. a subset of data not included in the training
data. (In our experiments, we use the validation data for this purpose.) This
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scalar gets multiplied to the predicted uncertainty values, which then reduces
the calibration error.

3 Problem Formulation

Lets denote a noise free dataset containing n pairs of images as D = (C1, C2),
with each Ci containing n images Ci = (ci,j |1 ≤ j ≤ n). Lets define a corre-
sponding set of images X = (xj |1 ≤ j ≤ n), such that all xj = c1,j + c2,j are the
pixel-wise sum of the two corresponding channel images.

Although D is typically not available (or even observable), in practice we
can only observe noisy data, denoted here by DN = (CN

1 , CN
2 ). Analogously to

before, we define XN = (xN
j |1 ≤ j ≤ n), such that xN

j = cN1,j + cN2,j are the
pixel-wise sum of the noisy channel observations.

Given one xN
j ∈ XN of DN , the task at hand is to predict the noise free and

unmixed tuple (c1,j , c2,j). We shall denote the predictions made by a trained
denoiSplit network by (ĉ1,j , ĉ2,j).

Whenever above notions are used in a context that makes the j in the sub-
script redundant, we allow ourselves to omit them for brevity and readability.

For evaluation purposes, we will in later sections use high-quality microscopy
datasets that contain minimal levels of noise as surrogates for D, X, C1, and
C2, but we never use them during training, and only their noisy counterparts
are used.

4 Our Approach

In the following sections we describe the main ingredients of denoiSplit, namely
the hierarchical network structure we use (Section 4.1), the changed loss term for
variational training of the splitting task (Section 4.2), the noise models we em-
ploy to enable the joint unsupervised denoising (Section 4.3), and an uncertainty
calibration methodology allowing us to estimate the prediction error introduced
by aleatoric uncertainty in a given input image (Section 4.4).

4.1 Network Architecture and Training Objective

In this work, we employ an altered Hierarchical VAE (HVAE) network archi-
tecture. HVAEs were originally described in [23] and later adapted for image
denoising in [19] and for image splitting in [1]. In general terms, HVAEs learn a
hierarchical latent space, with the lowest hierarchy level encoding detailed pixel-
level structure, while higher hierarchy levels capture increasingly larger scale
structures in the training data.

For denoiSplit, we modify the HVAE architecture so that it no longer re-
mains an autoencoder. Instead, our outputs are the two unmixed channel images
(ĉ1, ĉ2), motivating us to call the resulting architecture a Variational Splitting
Encoder-Decoder (VSE) Network (see Fig. 1).
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Our objective is to maximize the likelihood over the noisy two channel dataset
we train on, i.e., finding decoder parameters θ such that

θ = argmax
θ

∑
1≤j≤n

logP (cN1,j , c
N
2,j ;θ). (1)

Using the modified evidence lower bound (ELBO), as proposed in [1] and
assuming conditional independence of the two predictions (ĉ1, ĉ2) given the latent
space embedding, we maximize

Eq(z|x;ϕ)[logP (cN1 |z;θ) + logP (cN2 |z;θ)]−KL(q(z|x;ϕ), P (z)), (2)

where q(z|x;ϕ) is the distribution parameterized by the output of the encoder
network Encϕ(x), P (cNi |z;ϕ) is the distribution parameterized by the output of
the decoder network Decθ(z) and KL() denotes the Kullback-Leibler divergence
loss. As in [1], P (z) factorizes over the different hierarchy levels in the network.
Details about training, hyperparameters, µSplit, and its relationship with HDN
and denoiSplit can be found in Supp. Sec. 2.

Similar to the way noise models had been employed in the context of denois-
ing [19], we model the two log likelihood terms logP (cN1 |z;θ) and logP (cN2 |z;θ)
using noise models which we describe in detail in Section 4.3 and our open code
repository1.

4.2 Hierarchical KL Loss Weighing for Variational Training

In µSplit, the authors showed SOTA performance on a multitude of splitting
tasks. However, used datasets were close to noise-free, making the task at hand
simpler then the one we outlined in Section 3. When µSplit is trained on noisy
datasets, the resulting channel predictions are themselves noisy. After analyzing
this matter, we concluded that a modified KL loss can help reduce the amount
of noise reconstructed by the decoder.

In more technical terms, let Z be a hierarchical latent space and Z[i] denote
the latent space embedding at i-th hierarchy level, having shape (c, hi, wi), with
c being channel dimension, and hi, wi the height and width of the latent space
embedding. Now let KLi denote the KL-divergence loss tensor computed on Z[i],
which has the same shape as Z[i] itself.

In µSplit, the corresponding scalar loss term kli is defined as kli = α ·∑
j,h,w

KLi[j,h,w]
hi·wi

, with α being a suitable constant. Observe that the denomi-
nator makes each kli be the average of all values in KLi, making the respective
values not scale with the size of Z[i], even though lower hierarchy levels (Z[i]
for smaller i) have more entries. However, this also means that the KL loss for
the individual pixels in these lower hierarchy levels is given less weight. Hence,
smaller structures, such as noise itself, can more easily seep through such pixel-
near hierarchy levels.

1 https://github.com/juglab/denoiSplit
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In this work, we diverge from this formulation and return to a more classical
setup where we compute the scalar loss term for the i-th hierarchy level Z[i] as

kli = α ·
∑
j,h,w

KLi[j, h, w]. (3)

The decisive difference is that this changed formulation gives more weight
to the KL loss at lower hierarchy levels, leading to more strongly enforcing the
Gaussian nature the KL loss enforces, and therefore hindering noise from being as
easily represented during training. We refer to this architecture as Altered µSplit
and show qualitative and quantitative results in Section 5 and Tables 1.

The next section extends on Altered µSplit by adding unsupervised denoising,
adding the last ingredient to the denoiSplit approach we present in this work.

4.3 Adding Suitable Pixel Noise Models

As briefly introduced in Section 2, pixel noise models are a collection of proba-
bility distributions mapping from a true pixel intensity to observed noisy pixel
measurements (and vice-versa) [15]. They have previously been successfully used
in the context of unsupervised denoising [19, 20] and we intend to employ them
for this purpose also in the setup we are presenting here. We use the fact that,
given a measured (noisy) pixel intensity, a pixel noise model returns a distri-
bution over clean signal intensities and their respective probability of being the
underlying true pixel value.

We incorporate this likelihood function into the loss of our overall setup,
encouraging denoiSplit to predict pixel intensities that maximize this likelihood
and thereby values that are consistent with the noise properties of the given
training data.

Since denoiSplit, in contrast to existing denoising applications, predicts two
images (the two unmixed channels), we employ two noise models and add two
likelihood terms to our overall loss.

More formally, in VAEs [12] and HVAEs, the generative distribution over
pixel intensities is modeled as a Gaussian distribution with its variance either
clamped to 1 or also learned and predicted. We change our VSE Network to
only predict the true pixel intensity and replace the Gaussian distribution men-
tioned above by the distributions defined in two noise models Pnm

1 (cN1 |c1) and
Pnm
2 (cN2 |c2), one for each respective unmixed output channel. These noise models

are pixel-wise independent, i.e.,

Pi
nm(cNi |ci) =

∏
k

Pnm
i (cNi [k]|ci[k]), i ∈ {1, 2}, (4)

where cNi [k] is the noisy pixel intensity for the k-th pixel and ci[k] the corre-
sponding noise-free intensity value. This independence makes them particularly
suitable for microscopy data where Poisson and Gaussian noise are the predom-
inant pixel noises one desires to remove.
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Since we now directly predict the noise-free pixel values, the output of the
decoder can directly be interpreted as Decθ(z) = (ĉ1, ĉ2) and the total loss for
denoiSplit now becomes

Eq(z|x;ϕ)[logP
nm(cN1 |ĉ1) + logP nm(cN2 |ĉ2)]−KL(q(z|x;ϕ), P (z)). (5)

In [20], two ways for the creation of noise models are described, and the
decision to pick which method depends upon whether or not one has access to
the microscope from which data was acquired. In Supp. Sec. 5, we describe the
process of noise model generation and also compare performance between these
two methodologies.

4.4 Computing Calibrated Data Uncertainties

The idea of calibration is for those network setups that produce both prediction
and a measure of uncertainty for the prediction.

Networks that can co-assess the uncertainty of their predictions are called
calibrated, when the predicted uncertainties are in line with the measured pre-
diction error. To improve the calibration of a given system, one can find a suit-
able transformation from uncertainty predictions to measured errors (e.g ., the
RMSE). After such a transformation is found, an ideal calibrated plot would be
tightly fitting y = x, with y and x being the error and estimated uncertainty,
respectively. See, for example, Figure 3. Since VSE networks, similar to VAEs,
are variational inference systems, we can sample from their latent encoding and
thereby sample from an approximate posterior distribution of possible solutions
giving us the data uncertainty. In this section, our intention is to utilize this
ability to predict a reliable uncertainty term for our results.

For this, we adapt the calibration methodology of [17]. In contrast to the
approach described there, we propose to use the variability in posterior samples
to estimate a pixel-wise standard deviation. More specifically, we sample k = 50
predictions for each input image and compute the pixel-wise standard deviations
σ1 and σ2 for the two predicted image channels ĉ1 and ĉ2, respectively. This gives
us uncertainty predictions.

Next, we calibrate these uncertainty predictions by scaling them appropri-
ately with the help of two learnable scalars, α1 and α2. Following [17], we as-
sume that pixel intensities come from a Gaussian distribution. The mean and
standard deviation of this distribution are the pixel intensities of the MMSE
prediction, i.e. the image obtained after averaging k = 50 predictions, and the
scaled σ, respectively. We learn the scalars α1 and α2 by minimizing the neg-
ative log-likelihood over the recalibration dataset. It is important to note that
the presented calibration procedure does not alter the original predictions but
instead learns a mapping that best predicts the measured error.

To evaluate the quality of the resulting calibration, we sort the scaled stan-
dard deviations σi ·si for each pixel in a predicted channel and build a histogram
over l = 30 equally sized bins Bj

i . We then compute the root mean variance
(RMV) and RMSE for each bin j and channel i as
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RMVi(j) =

√√√√ 1

|Bj
i |

∑
k∈Bj

i

(σk
i · αi)2 RMSEi(j) =

√√√√ 1

|Bj
i |

∑
k∈Bj

i

(ci[k]− ĉi[k])2

As in Section 3, ci[t] and ĉi[t] denote the noise-free pixel intensity and the corre-
sponding prediction for i-th channel. In Fig. 3, we plot the RMSE vs. RMV for
multiple tasks, observing that the plots closely resemble the identity y = x. Fol-
lowing [17], we use the validation dataset for recalibration and show calibration
plots on the test dataset.

5 Experiments and Results

5.1 Datasets

BioSR dataset We work primarily with BioSR dataset [11], a comprehensive
dataset comprising fluorescence microscopy images of multiple cell structures.
For our experiments, we have picked four structures, namely clathrin-coated
pits (CCPs), microtubules (MTs), endoplasmic reticulum (ER), and F-actin.

Since the raw data quality is very high and only a small amount of image
noise is present in the individual micrographs, we add Gaussian noise and Poisson
noise of various levels to these raw data. The artificially noisy images are used
to train denoiSplit, while the raw data is shown to convince the reader of the
validity of our approach and to compute evaluation metrics (see Figs. 2 and 4
and Tab. 1).

Hagen et al. Actin-Mitochondria Dataset We picked the noisy Actin and Mi-
tochondria channels from Hagen et al. [10], channels having real microscopy
noise. For evaluation, we use the corresponding high-SNR (noise-free) channels
provided in the dataset.

Synthetic Noise Levels We work with 4 levels of zero-mean Gaussian noise and
two levels of Poisson noise. For Gaussian noise, we compute the standard de-
viation of the input data XN for each of the tasks and scale the noise relative
to one standard deviation. Specifically, the 4 scaling factors are {1, 1.5, 2, 4}. In
cases where Poisson noise is added, and since it is already signal dependent, we
use a constant factor of 1000 to hit a realistic-looking level of Poisson noise. We
also consider the case where Poisson noise is not added, which we denote by the
Poisson level of 0 in Tab. 1. To remove any remaining room for misinterpreta-
tions, we provide a pseudo-code for the synthetic noising procedure in the Supp.
Sec. 2.

5.2 Baselines

We conducted all experiments with two baseline setups, µSplit and HDN⊕µSplit.
In the original µSplit work [1], the authors introduce three architectures, each
with a different trade-off between GPU efficiency, speed and performance. We
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Fig. 2: Qualitative Results. We show examples of noisy inputs, individual noisy
channel training data (GT), and predictions by one of the baselines (µSplit) and our
own results obtained with denoiSplit for four tasks (A: MT vs. CCPs, B: ER vs. CCPs,
C: MT vs. ER, and D: F-actin vs. ER). We show high SNR channel images (not
used during training) and show PSNR values w.r.t. these images. Additionally, we plot
histograms of various panels for comparison (see legend on the right). The bottom
cell in the first column of each panel shows the used noise models (see main text for
details). The superimposed plots (green) show the distribution of noisy observations
(cNi ) for two clean signal intensities.
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High SNRMMSES1 - S2Sample 2Sample 1GTInput
A

B

C

Fig. 3: Variational Sampling and Calibration. The VSE Network in denoiSplit is
capable of sampling from a learned posterior. Here we show cropped inputs (256×256),
two corresponding prediction samples, the difference between the two samples (S1−S2),
the MMSE prediction, and otherwise unused high SNR microscopy for three tasks,
namely ER vs. CCPs, ER vs. MT, and CCPs vs. MT. The MMSE predictions are
computed by averaging 50 samples. As before, we show PSNR w.r.t. high SNR patches.
The dot plots in the first column show are calibration plots, showcasing that the error
estimate we propose works well (see main text).

pick the most balanced variant, HVAE + Regular-LC , which we refer to as
µSplit.

The second baseline, to which we refer to as HDN⊕µSplit, is a sequential
application of Hierarchical DivNoising (HDN), one of the leading unsupervised
denoising methods for microscopy datasets [19], and the µSplit setup from above.
We first denoise all input images xN

i and the respective two channel images
cN1,j , c

N
2,j . Note that each set of the three kinds of image are denoised with a

separately and specifically trained HDN.
Next, we use the denoised predictions of XN , CN

1 , CN
2 to train a µSplit net-

work as we did for the first baseline. The expectation from this baseline is to give
denoised splitting results, which we also show in Fig. 4. We show the denoised
HDN predictions in the supplement.
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High SNRdenoiSplitHDN⊕µSplitGTInput
A

B

C

Fig. 4: Comparison to Sequential Baseline. For each panel (ER vs. CCPs, CCPs
vs. MT, and ER vs. MT) we show the full input image and its (256×256) inset crop, cor-
responding noisy training data crops (GT), the results of the sequential denoising and
splitting baseline (HDN⊕µSplit) and our end-to-end results obtained with denoiSplit.
All predictions show the MMSE, obtained by averaging 50 sampled predictions. We
show a few zoomed-in locations where the baseline under-performs. Note that such
small differences might contribute little to evaluations via PSNR, but can make a huge
difference for the downstream analysis of investigated biological structures contained
in such microscopy data.
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Task Model training
Noise level parameters

λ = 0 λ = 1000
[h] σ = 1 1.5 2 4 σ = 1 1.5 2 4

T1

µSplit 7 30.3 28.4 27.4 25.9 29.4 28.1 27.3 25.9
0.853 0.748 0.66 0.42 0.844 0.750 0.667 0.437

HDN⊕µSplit 11 37.3 34.9 33.8 29.4 36.3 34.3 33.3 29.4
0.982 0.969 0.959 0.872 0.978 0.965 0.954 0.874

Altered µSplit (ours) 1.3 38.9 36.7 34.4 30.9 36.9 35.5 34.8 31.1
0.988 0.980 0.965 0.909 0.982 0.974 0.968 0.912

denoiSplit (ours) 1.5 39.7 36.8 35.4 31.1 37.9 36.3 35.0 31.2
0.989 0.978 0.969 0.912 0.984 0.977 0.967 0.912

T2

µSplit 6.3 26.0 23.9 22.7 21.0 25.2 23.7 22.7 21.1
0.800 0.699 0.593 0.356 0.780 0.691 0.613 0.386

HDN⊕µSplit 10 30.1 28.4 27.6 25.3 29.6 28.4 27.4 25.2
0.909 0.873 0.845 0.731 0.904 0.874 0.835 0.738

Altered µSplit (ours) 1.5 30.4 28.8 26.9 23.4 29.9 27.4 27.9 24.4
0.915 0.879 0.809 0.620 0.903 0.833 0.845 0.677

denoiSplit (ours) 1.6 30.5 29.2 28.2 25.1 29.9 29.0 27.0 24.8
0.916 0.886 0.860 0.714 0.901 0.885 0.815 0.702

T3

µSplit 7.2 30.5 28.3 27.3 25.6 29.6 28.1 27.2 25.6
0.880 0.793 0.713 0.46 0.877 0.800 0.722 0.476

HDN⊕µSplit 11 38.4 35.9 34.3 29.3 36.8 34.9 33.8 29.3
0.981 0.966 0.951 0.844 0.975 0.962 0.948 0.843

Altered µSplit (ours) 1.4 38.9 35.8 35.0 30.4 37.4 35.6 34.3 30.4
0.985 0.968 0.960 0.867 0.979 0.968 0.953 0.865

denoiSplit (ours) 1.6 40.1 37.3 35.7 30.6 38.1 36.6 35.2 30.7
0.986 0.973 0.962 0.872 0.981 0.971 0.958 0.872

T4

µSplit 7 25.9 24.3 23.6 22.4 25.2 24.2 23.5 22.4
0.777 0.664 0.556 0.331 0.729 0.640 0.554 0.321

HDN⊕µSplit 10.7 28.8 27.9 27.4 25.8 28.2 27.6 27.2 25.7
0.852 0.817 0.790 0.725 0.840 0.810 0.787 0.716

Altered µSplit (ours) 1.3 29.4 28.5 27.5 25.9 29.0 27.8 27.3 25.8
0.858 0.824 0.786 0.718 0.849 0.794 0.780 0.710

denoiSplit (ours) 1.5 29.6 28.7 27.6 26.0 29.0 28.5 27.9 26.1
0.868 0.835 0.787 0.725 0.854 0.828 0.799 0.727

Table 1: Quantitative Results. We show quantitative evaluations for joint denoising
and splitting experiments. The four corresponding tasks are abbreviated as T1: ER vs.
CCPs; T2: ER vs. MT; T3: CCPs vs. MT, T4: F-actin vs. ER. For all experiments, we
show the PSNR (sub-row 1) and MS-SSIM (sub-row 2) metrics across 8 noise levels:
Gaussian noise levels of σ ∈ {1, 1.5, 2, 4} and Poisson noise levels of λ ∈ {0, 1000}.
The best performance per task and noise level is shown in bold. The third column
additionally shows the training time on a single Tesla-V100 GPU (in hours). Not only
does denoiSplit perform best, it does at the same time require considerably less training
time.
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High SNRdenoiSplitµSplitGTInput Model Eval.

µSplit 26.5
0.872

HDN⊕µSplit 28.1
0.887

Altered µSplit 31.1
0.936

denoiSplit 31.0
0.935

Fig. 5: Results on Actin vs. Mito Task: (Left) Here, qualitative evaluation of the
different models on Hagen et al. [10] is shown. We also show High SNR channel images
(not used during training) in last column and we show PSNR w.r.t. them. Noise models
are shown in column one, second row. (Right) Quantitative evaluation of denoiSplit
along with the baselines using PSNR (line 1) and range invariant MS-SSIM [26] (line
2, also see Supp. Sec. 2 for details on the MS-SSIM variant). Note that HDN training
in HDN⊕µSplit was quite unstable and so, we had to train it with a lower hierarchy
count (3 as opposed to default 6).

5.3 Qualitative and Quantitative Evaluation of Results

We show the quality of results our methods can obtain in Figs. 2 to 5.
In Fig. 2, we show predictions on full input images (960×960 pixels). We can

see that µSplit does unmix the given inputs and even partially reduces the noise.
Still, the results by denoiSplit have a much higher resemblance to the high-SNR
microscopy images shown in the rightmost column, even though they have never
been presented during training (which was conducted only on noisy images, as
shown in the second column). In Fig. 5, we show the results on Hagen et al. [10]
dataset. Again, we observe denoiSplit outperforming µSplit and HDN⊕µSplit.
Please refer to Supp. Sec. 2 for more details.

In Fig. 3, we show zoomed 256× 256 portions of full predictions to allow the
reader to also appreciate the prediction quality of smaller structures contained
in the data. Furthermore, we show two posterior samples (S1 and S2) and their
highlighted differences (S1 − S2). The second to last column shows the average
of 50 posterior samples (the approximate MMSE [20]). We show the calibration
plot in the second row, first column of every panel where we can see a clear
predictive (and close to linear) behavior of RMSE from RMV.

In Fig. 4, we also show 256×256 insets on inputs and results by HDN⊕µSplit
and denoiSplit, showing that the fine details are better preserved by our proposed
method. Note that these very details make all the difference when such methods
are used on fluorescence microscopy data for the sake of downstream analysis.

For quantitative quality evaluations, we use the well known and established
PSNR and MS-SSIM metrics [22] to evaluate all the results of our experiments
and report these results in Tab. 1. These quantitative evaluations clearly show
that our proposed methods improve considerably over µSplit and the sequential
denoising and splitting baseline HDN⊕µSplit. In Supp. Sec. 1 and 8, we provide
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results on more splitting tasks, including one failure mode. In Supp. Sec. 3, we
show a proof-of-concept application to de-hazing and de-raining tasks.

6 Discussion and Conclusion

We present denoiSplit, the first method that takes on the challenge of joint
semantic image splitting and unsupervised denoising. This advancement in han-
dling noise is crucial, considering the limitations microscopists face in acquiring
high-SNR images, often due to practical constraints such as sample sensitivity
and limitations in imaging technology. Unlike in a sequential approach of image
denoising followed by training and applying µSplit on denoised data, denoiSplit
streamlines the process into a single end-to-end model, which on the one hand
reduces the complexity and computational resources required for training and
inference, and on the other hand leads to better results.

One of our methodological contributions is integrating noise models, origi-
nally developed for unsupervised denoising task, into the image-splitting setup.
Given the fact that different microscope configurations produce images with dif-
ferent noise levels and Noise models can be made specific to each microscope
configuration, the integration of noise models in our setup can go a long way in
allowing a microscope-specific denoiSplit setup thereby producing high-quality
denoised and split predictions. Our work has additional interesting features,
which we believe will improve its adoption among microscopists, i.e., it supports
variational sampling and calibration, allowing microscopists to observe multi-
ple solutions for a given input and also to have an estimate of error for every
predicted pixel.

In the future, we want to work on domain adaptation techniques to fine-
tune existing models on noisy data from slightly different image domains or
microscopy modalities. This will further ease the applicability of denoiSplit for
biomedical researchers. This continuous development aims to bridge the gap
between computational imaging methods and the practicalities and limitations
of modern microscopy, benefiting our overall goal of elevating the rate of scientific
discovery in the life sciences by conducting cutting-edge methods research.
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