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Fig. 1. Visualization of prototypes. We visualize the 25 space-time tubes with the highest sim-
ilarity to a particular prototype inside a video. For simplicity, we visualize the first patch inside
the space-time tube. We observe that different prototypes attend to particular semantic parts of
the video, as prototype 1 corresponds to the blue parts of the car.

1 Visualization of Prototypes

In this section, we analyze the prototypes learned by our method. For that, we use
SIGMA pretrained on Kinetics and using DINO as a projection network. We visualize
the 25 space-time tubes inside videos from DAVIS that have the highest similarity with
a given prototype in Fig. 1 and Fig. 2. For simplcity, we visualize the first patch in time
of the space-time tube. We observe in Fig. 1 that the patches for a particular prototype
are semantically similar, as prototype 6 captures the tree parts in the background, while
prototype 7 captures faces/persons in the video. Similarly in Fig. 2 where a different
set of prototypes are visualized which correspond to the white background, one to the
person in white, and one to the clothing of the runner.
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Fig. 2. Visualization of prototypes (2). We visualize the 25 space-time tubes with the highest
similarity to a particular prototype inside a video. For simplicity, we visualize the first patch
inside the space-time tube. We observe that different prototypes attend to particular semantic
parts of the video, for example, prototype 1 corresponds to the person(s) in white.

2 Dataset details

In this section, we list the details of the datasets used in our experiments.

Something-Something V2 (SSv2) [13] contains 220K videos with 174 action classes
and is considered motion-heavy because of its focus on motion and directional aspects
inherent to the actions. Example classes are: Pushing something from left to right,
Pulling something from right to left, Putting something down etc.

Kinetics-400 (K400) [16] is a dataset for recognizing actions in videos, which com-
prises realistic action videos gathered from YouTube. The dataset contains 306,245
short-trimmed videos, covering 400 action categories, making it one of the largest and
most extensively used datasets for evaluating state-of-the-art video action recognition
models. Some example classes are: Bungee jumping, Cutting pineapple, Doing aero-
bics.

DAVIS [23] includes 150 videos, with 60 allocated for training, 30 for validation, and
60 for testing. All the validation videos for this dataset include full-frame annotations
as opposed to the test set. Therefore, we use the validation split to test our object seg-
mentation performances.

YTVOS [38] is a larger video object segmentation dataset compared to DAVIS, com-
prises 4,453 videos, each annotated under one of 65 object categories. Like DAVIS,
YTVOS provides ground truth masks only for the first frames in both the test and vali-
dation sets. Therefore, a random subset of 20% of the training set is used for evaluations.
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Table 1. Benchmark Details for the downstream evaluation setup, experiments, and datasets we
use. For that, we use the SEVERE benchmark [32].

Evaluation Setup Experiment Dataset Task #Classes #Finetuning #Testing Eval Metric
Domain Shift SSv2 Something-Something [13] Action Recognition 174 168,913 24,777 Top-1 Accuracy
Gym99 FineGym [25] Action Recognition 99 20,484 8,521 Top-1 Accuracy
Sample Efficienc UCF (103) UCF 101 [27] Action Recognition 101 1,000 3,783 Top-1 Accuracy
P Y Gym (10°) FineGym [25] Action Recognition 99 1000 8,521 Top-1 Accuracy
Action Granularit FX-S1 FineGym [25] Action Recognition 11 1,882 777 Mean Class Acc
¥ UB-S1 FineGym [25] Action Recognition 15 3,511 1,471 Mean Class Acc

Task Shift UCF-RC UCFRep [41] Repetition Counting - 421 105 Mean Error

Charades Charades [26] Multi-label Recognition 157 7,985 1,863 mAP

Also, the meta-information provided by datasets is used to ensure that objects within
the same category have consistent class IDs.

UCF101 [27] The dataset comprises of 13,320 video clips that are divided into 101 cat-

egories. These 101 categories are further grouped into 5 types - Body motion, Human-

human interactions, Human-object interactions, Playing musical instruments, and Sports.
The combined duration of these video clips is over 27 hours. All the videos were

sourced from YouTube and have a fixed frame rate of 25 FPS, with a resolution of

320 x 240. Some example classes are: Handstand Pushups, Billiards, Band Marching.

HMDB-51 [19] is a dataset designed for action recognition, which has been gath-
ered from multiple sources including movies and public databases such as the Prelinger
archive, YouTube, and Google videos. The dataset contains 6,766 clips that have been
categorized into 51 different action categories, each of which contains at least 100 clips.
Some example classes are: Ride Horse, Shoot Gun, Turn.

ImageNet1K [5] is often used to train deep learning models for computer vision tasks.
The ImageNetl1K dataset consists of 1000 object classes, and it includes 1,281,167
training images, 50,000 validation images.

CIFAR-100 [18] is composed of 32x32 color images and includes 100 classes that are
divided into 20 superclasses. Each class has 600 images.

SEVERE Benchmark [32] encompasses eight different experimental settings from
4 different datasets. The setup for each subset in SEVERE-Benchmkark is listed in
Table 1.

3 Evaluation details

Linear We follow the linear evaluation setup from MME [28] and the used setup in
Table 2.

Full finetuning We follow the default setup from [33] for full finetuning and the
specifics are listed in Table 3.

Unsupervised segmentation We obtain video clips of size [T, 3,224, 224] from two
datasets: DAVIS [23] and YTVOS [38]. For DAVIS [23], we use clips of length T = 16,
and for YTVOS [38], the length is T = 4. Each clip is paired with its corresponding
ground truth and fed into the model to extract final dense features of size [%, d, 14,14],
where d represents the dimension of the encoder.
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Table 2. Linear-Evaluation setting.

config SSv2 K400 IN-1K Others
optimizer AdamW [21]

base learning rate l.e-3

weight decay 0.05

optimizer momentum B, B2 = 0.9,0.999
layer-wise Ir decay [1] 0.75

batch size 128

learning rate schedule cosine decay

training epochs 30 40 30 100
flip augmentation no yes yes yes

Table 3. Full finetuning evaluation setup.

config SSv2 K400 SEVERE
optimizer AdamW

base learning rate 1.0e-3

weight decay 0.05
optimizer momentum | [, 52 = 0.9,0.999
layer-wise Ir decay [1] 0.75

batch size 32 16 16
learning rate schedule cosine decay
warmup epochs 5

training epochs 50 75 100
flip augmentation no yes yes
RandAug [4] (9,0.5)

label smoothing [30] 0.1

mixup [40] 0.8

cutmix [39] 1.0

drop path 0.1

Next, we resize the ground truth and feature maps to size 28 using nearest neighbor
and linear interpolation, respectively. We then cluster the feature maps with different
granularity values of K. We set K to the ground truth object counts for clustering, and
three times higher than the average object counts per clip, which is 6, for overclustering
evaluations. This results in clustering and overclustering maps. Finally, we repeat every
cluster map two times and group the clusters into ground-truth classes by matching
them either by pixel-wise precision or Hungarian matching on merged cluster maps,
similar to [24].

Severe benchmark

For action recognition tasks in SEVERE benchmark (GYM99, UCF, FX-S1 and
UBS1) we follow the finetuning setup from Table 3.

For the Repetition Counting Task (denoted as UCF-RC), we adhere to the imple-
mentation details specified in the original work [41] on repetition counting. From the
annotated video dataset, we construct 2 million sequences, each consisting of 32 frames
with a spatial resolution of 224 x 224 pixels. These sequences serve as the input to our



SIGMA: Sinkhorn-Guided Masked Video Modeling 5

model. The training process spans over 100 epochs with a batch size of 32, utilizing the
Adam [17] optimizer. The learning rate is set to 5 x 10~°. For the evaluation phase, we
follow [41] to report the mean counting error.

For the Multi-label classification on Charades, we employ [10] to incorporate a per-
class sigmoid output layer for multi-class prediction. In the training phase, we sample
16 frames with a stride of 8 from each video. The frames are resized to a spatial reso-
lution of 224 x 224 pixels. We apply several data augmentation techniques, including
random short-side scaling, random spatial cropping, and horizontal flipping. The model
is trained over 57 epochs, utilizing a batch size of 16 and a learning rate of 1 x 104
For the evaluation phase, spatiotemporal max-pooling is executed over 10 distinct clips
from each video to aggregate the predictions. The performance is quantified using the
mean Average Precision (mAP) across all classes.

4 Extended comparison for full finetuning on SSv2 and K400

We provide an extended version of comparison with state-of-the-art for full finetuning
in Tab. 4 and Tab. 5. As is shown, SIGMA improves VideoMAE [34] baseline by 0.8%
and 1.3% on SSv2(Tab. 5) when pretrained on K400 or SSv2 using an MLP projec-
tion network. Using a pretrained DINO [3] model as the projection network results in
even larger improvement, reaching 1% and 1.8% across different pretrainings, getting
state-of-the-art results across the models trained for the same number of epochs. For
K400 we observe similar results. As shown in Tab. 4, SIGMA considerably improves
VideoMAE [34] baseline and sets a new state-of-the-art for 800 training epochs.

MVD [36] achieves good performance while using a computationally expensive
approach requiring longer pretraining. First, a video model, following VideoMAE [34],
is trained on K400 for 1600 epochs. Then, an image model, following MAE [14], is
trained on ImageNet [5] for 1600 epochs. Finally, the VidleoMAE and MAE models
are kept frozen and serve as the teachers for the main video model which is trained
via distillation for 400 epochs. This complex and multi-step training process makes it
hard to provide a one-to-one comparison between this and other methods. MGM [6]
and MME [29] are two other models that have been trained with a higher number of
epochs, yet they still perform comparably to our model which was trained with half the
number of epochs, based on the K400 benchmark.



6 Mohammadreza Salehi et al.

Table 4. Benchmark I: Comparison for full finetuning on Kinetics 400 (K400). We compare
against all previous methods for pretraining the ViT-Base backbone on K400 and subsequently,
fully finetuning the backbone with the K400 labels. M. Guid. denotes motion guidance such as
optical flow used e.g. reconstructing targets or masking.

Method M. Guid. Backbone Epochs Extra data Frames Params Top-1
supervised
SlowFast [9] ResNet101 - - - 16+64 60 79.8
MViTv1 [8] - MViTv1-B - - 32 37 802
TimeSformer [2] - ViT-B - IN-21K 96 430 80.7
VideoSwin [20] - Swin-L - IN-21K 32 197  83.1
self-supervised
VideoMAE [33] X ViT-S 1600 - 16 87 79.0
MVD [37] X ViT-S 1600 + 400 IN-1K 16 22 80.6
SIGMA-DINO (ours) X ViT-S 800 IN-1K 16 87 794
VIMPAC [31] X ViT-L 100 HowTolOOM+DALL-E 10 307 774
VideoMAE [33] X ViT-B 800 - 16 87 80.0
& VideoMAE [33] X ViT-B 1600 - 16 87  80.9
:5 OmniMAE [12] X ViT-B 800 IN-1K 16 87  80.8
,::) ST-MAE [11] X ViT-B 1600 - 16 87 81.3
g5 MME [28] v ViT-B 1600 - 16 87 81.8
g MVD [37] X ViT-B 1600 + 400 IN-1K 16 87 82.7
§ CMAE-V [22 X ViT-B 800 - 16 87 80.2
CMAE-V [22] X ViT-B 1600 - 16 87 80.9
MGM [7] v ViT-B 800 - 16 87 80.8
MGM [7] v ViT-B 1600 - 16 87 81.7
MGMAE [15] v ViT-B 800 - 16 87 812
SIGMA-MLP (ours) X ViT-B 800 - 16 90 802
SIGMA-DINO (ours) X ViT-B 800 IN-1K 16 87 81.6
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Table 5. Benchmark I: Comparison for full finetuning on Something-Something V2 (SSv2).
The top part compromises supervised methods while the remaining methods are pretrained in a
self-supervised manner. The middle section evaluates models trained on Kinetics 400 (K400) data
for pretraining whereas the bottom part mainly uses SSv2 data. We compare against all previous
methods pretrained on the ViT-Base backbone. M. Guid. denotes motion guidance such as optical
flow used e.g. reconstructing targets or masking.

Method M. Guid. Backbone Epochs Extra data Frames Params Top-1
supervised baselines
SlowFast [9] X ResNet101 - K400 8+32 53  63.1
MViTvl [8] X MViTv1-B - K400 64 37 617
TimeSformer [2] X ViT-B - IN-21K 8 121 595
VideoSwin [20] X Swin-B - IN-21K 32 88  69.6
self-supervised
MVD [37] X ViT-S 1600 + 400 IN-1K+K400 16 22 70.7
SIGMA-DINO (ours) X ViT-S 800 IN-1K+K400 16 25 68.7
2 BEVT [35] X Swin-B 150 IN-1K+K400 32 88 67.6
IE BEVT [35] X Swin-B 150  IN-1K+K400+DALL-E 32 88  70.6
E VIMPAC [31] X ViT-L 100 HowTolOOM+DALL-E 10 307 68.1
5, OmniMAE [12] X ViT-B 800 IN-1K+K400 16 86  69.0
S  VideoMAE [33] X ViT-B 800 K400 16 87 685
E VideoMAE [33] X ViT-B 2400 K400 16 87 69.7
MME [28] v ViT-B 800 K400 16 87 705
MVD [37] X ViT-B 1600 + 400 IN-1K+K400 16 87 72.5
SIGMA-MLP (ours) X ViT-B 800 K400 16 90 69.8
SIGMA-DINO (ours) X ViT-B 800 IN-1K+K400 16 87 711
VideoMAE [33] X ViT-S 2400 - 16 22 66.8
SIGMA-DINO (ours) X ViT-S 2400 IN-1K 16 22  68.6
OmniMAE [12] X ViT-B 800 IN-1K 16 86  69.5
VideoMAE [33] X ViT-B 800 - 16 87  69.6
2 VideoMAE [33] X ViT-B 2400 - 16 87 708
:E CMAE-V [22] X ViT-B 800 - 16 87  69.7
5 CMAE-V [22] X ViT-B 1600 - 16 87 705
g SIGMA-MLP (ours) X ViT-B 800 - 16 87 704
X SIGMA-DINO (ours) X ViT-B 800 IN-1K 16 87 709
2 MME [28] v ViT-B 800 - 16 87 70.0
MGM [7] v ViT-B 800 - 16 87  70.6
MGM [7] v ViT-B 1200 - 16 87 71.6
MGM [7] v ViT-B 1600 - 16 87 71.8
MGMAE [15] v ViT-B 800 - 16 87 710
SIGMA-MLP (ours) v ViT-B 800 - 16 87 71.2
SIGMA-DINO (ours) v ViT-B 800 IN-1K 16 87 712
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