
1

Generative Camera Dolly: Extreme
Monocular Dynamic Novel View Synthesis

Supplementary Material

A Overview

The appendix is structured as follows: in Section B, we analyze what the equiv-
alent number of source views given to HexPlane would have to be to match
our method’s performance, as well as our model’s metrics as a function of the
geometric “difficulty” of the camera controls. In Section C, we elaborate on imple-
mentation details in terms of the model architecture, how training is done, how
datasets are processed, how evaluations are performed, and how the baselines
are adapted. In Section D, we discuss failure cases. To view video visualiza-
tions of extra qualitative results, we recommend viewing gcd.cs.columbia.edu in
a modern web browser.

B More quantitative evaluations

B.1 Comparison to multi-view methods

Our method is able to synthesize novel views of a dynamic scene from just a
single-viewpoint input video. One other hand, the results from per-scene opti-
mization methods (e.g., HexPlane [3]) get better with an increasing number of
input views. A natural question is that how many input views are needed for
those methods in order to obtain similar performance as compared to ours from
a single view. We try to answer this question by training HexPlane per scene

1 view 4 views 8 views 16 views 32 views
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
S

IM

0.409
0.380

0.414

0.567

0.766

0.608

HexPlane
Ours

Fig. 1: Comparative study over num-
ber of views. We plot the SSIM over the
test set as a function of the number of input
views that HexPlane uses for training. The
numbers are averaged over 20 scenes.

https://gcd.cs.columbia.edu/

2

20 40 60 80 100 120 140 160
Relative azimuth angle [°]

10

12

14

16

18

20

22

24
PS

NR
 [d

B]

Fig. 2: Comparative study over cam-
era rotation magnitude in Kubric-4D.
Note that PSNR is measured at the last
output frame, because only then the desired
horizontal azimuth angle has been reached.
We conclude that the main difficulty in per-
forming dynamic view synthesis comes from
handling roughly the first 80 degrees, after
which the performance stays mostly flat.

with K training views (i.e., K input videos), with K ∈ {1, 4, 8, 16, 32}. As shown
in Figure 1, our results (from a single input view) give rise to even better quality
than HexPlane’s results from 16 input views.

B.2 Error as a function of rotation angle

In Figure 2, we plot the average PSNR over the test set as a function of how
significantly the final destination (target) camera pose differs from the source
(input) camera pose. Specifically, we evaluate the Kubric-4D (gradual, max 180°,
finetuned) model on a sequence of horizontal rotations to the right of varying
amounts between 0° and 180°. The elevation angle θ is held constant at 10°, to
encourage obstructed objects from the input view, and the radius r at 15m.

x

y

z

r

θ
φ

(r, θ, φ)
Fig. 3: Spherical coordinate
system. Models trained on Kubric-
4D accept an azimuth ϕ, elevation
θ, and radius r as input to condi-
tion the video generation process.
(Illustration adapted from [11].)

3

C Implementation details

C.1 Training

We adopt the SVD variant that predicts T = 14 frames, but due to computa-
tional constraints, we downscale the input and output resolution to W × H =
384 × 256. This allows us to scale the batch size up to 56 when training with
Kubric-4D on 7x A100 GPUs with 80 GB VRAM each. We finetune all mod-
els for 10k iterations using the Adam optimizer, which takes roughly 3 days.
On ParallelDomain-4D, we instead finetune models for 13k iterations with an
effective batch size of 24 through a gradient accumulation factor of 4 on 3x
A6000 GPUs with 48 GB VRAM each, which also takes roughly 3 days. The
network ϵ does not predict noise directly, instead adopting v-parameterization
for preconditioning [9].

C.2 Inference

We generate conditional samples from the resulting diffusion model by running
the EDM sampler [5] for 25 steps. SVD uses classifier-free guidance [4] at test
time with a guidance strength w that linearly increases as a function of the
video frame index (not the diffusion timestep) from start to end within the
range [1, 2.5] by default [1], but we found better performance by adjusting this
range to [1, 1.5] instead. Producing one output video takes roughly 10 seconds.

C.3 Coordinate system

We use a spherical coordinate system, where (ϕ, θ, r) represents the azimuth
angle, elevation angle, and radial distance respectively. Note that as shown in
Figure 3, θ is the elevation angle as measured starting from the XY-plane, which
is not the same as the inclination angle as measured starting from the Z-axis.

C.4 Architecture

Figure 4 describes the model architecture in more detail. It is based on SVD [1],
which in turn is based on Video LDM [2], modified for camera pose conditioning.
The U-Net ϵ accepts input feature maps of dimensionality 2D×T×H

F ×W
F , where

D and F are the VAE embedding size and downsampling factor respectively, and
produces output feature maps of dimensionality D × T × H

F × W
F that represent

a less noisy sample. It consists of a factorized 3D U-Net that interleaves convo-
lutional, spatial, and temporal blocks, of which the latter two establish corre-
spondences between features across locations (per frame), and across time (per
spatial position) respectively. Spatiotemporal attention can consequently take
place between all pairs of input and output frames, as well as any pair of regions
within both videos. Moreover, there are now T = 14 different CLIP embeddings
{c(xt)} that condition the U-Net layers at each matching frame. Specifically,
these CLIP embeddings are fed to the network via multiple spatial (S-Attn)

4

Noisy Sample

Output Video

FPS Motion

Latent
Encoder

Latent
Decoder

CLIP

Input Video

C
onv

T-A
ttn

S-A
ttn

C
onv

T-A
ttn

S-A
ttn

Denoising U-Net

Fig. 4: Network architecture. Our model performs diffusion in latent space [6, 8].
The input video is encoded by a KL-VAE, and then channel-concatenated with the
noisy sample. At training time, the output video is estimated and supervised; at in-
ference time, multiple denoising steps are performed. In both cases, per-frame CLIP
embeddings condition the U-Net by means of cross-attention, and and other relevant
pieces of information (frame rate, desired camera pose transformation, and motion
value) condition the U-Net by adding their embeddings onto the feature vectors in-
between convolutions.

and temporal (T-Attn) cross-attention blocks throughout the network. Sepa-
rately, the micro-conditioning mechanism takes place to pass the embeddings of
the diffusion timestep, frame rate, camera transformation, motion bucket value,
and conditioning augmentation strength to the network by summing it together
with feature channels at various residual blocks placed throughout the network,
with additional linear projections in-between to accommodate varying embed-
ding sizes. Concretely, assuming the camera always looks at the same location in
3D space for simplicity,1 the relative extrinsics matrix ∆E is parameterized and
given as (∆ϕ,∆θ,∆r). The angles are subsequently encoded with Fourier posi-
tional encoding before being embedded through an MLP. Note that the input
camera poses are not required to be known – only the desired relative transfor-
mation should be given.

C.5 Data and training

In Kubric-4D, pairs of input and output video clips are always temporally syn-
chronized, but with T = 14 frame indices sampled randomly within the 60
available frames from the dataset. The original FPS is 24, and since the frame
stride is randomly uniformly sampled among {1, 2, 3, 4}, the actual FPS when
finetuning therefore belongs to {6, 8, 12, 24}. In ParallelDomain-4D, each scene
has 50 frames available at 10 FPS, from which we randomly subsample clips but
only at a frame stride in {1, 2} determined by a coin flip, which implies an FPS
value in {5, 10}.
1 This is (0, 0, 1), i.e. 1m above the center of the ground plane, in Kubric-4D.

5

In Kubric-4D, the camera pose P = (ϕ, θ, r) respects the following bounds
(both across time and across input/output) with respect to the spherical coordi-
nate system: azimuth angle ϕ1...T ∈ [0◦, 360◦], elevation angle θ1...T ∈ [0◦, 50◦],
radial distance r1...T ∈ [12, 18].2 The target camera pose transformation for the
default model (max 90°) has a limited maximum transformation “strength” in
the sense that from start to end, the azimuth, elevation, and radius all vary
within the following bounds: |∆ϕ| ≤ 90◦, |∆θ| ≤ 30◦, |∆r| ≤ 3. The horizontal
field of view is 53.1° everywhere.

For the more extreme view synthesis variant (max 180°), the bounds are:
ϕ1...T ∈ [0◦, 360◦], θ1...T ∈ [0◦, 90◦], r1...T ∈ [12, 18], |∆ϕ| ≤ 180◦, |∆θ| ≤ 60◦, |∆r| ≤
3.

The trajectories are typically uniformly sampled, except for the elevation
angle θ; in this case, uniform sampling for the starting point happens in terms
of sin θ instead of the angle θ directly. This is done in order to ensure an equal
spread over (i.e. a uniform distribution on the surface of) the (relevant subset
of the) unit sphere. The input camera extrinsics Esrc,t is static, and the output
camera extrinsics Edst,t interpolates linearly over time in pose description space,
i.e. in spherical coordinates with α = t

T−1 .
In ParallelDomain-4D, the source viewpoint is a forward-facing camera mounted

on the virtual ego car at a fixed position of (1.6, 0, 1.55) in 3D world space, where
X points forward and Z points up. For simplicity, the camera pose is not con-
trollable in the experiments described in our paper – instead, the destination
viewpoint is fixed at (−8, 0, 8), looking forward and down at (5.6, 0, 1.55). To
maximize the temporal smoothness of the generated video, the camera trajec-
tory is interpolated in Euclidean space, not linearly but rather according to a sine

wave function, i.e. following α =
1−cos(t

π(T−1))
2 , assuming t increases step-wise

from 0 to T − 1. The horizontal field of view is 85° everywhere.
Early on in our experiments, we observed that synchronizing the motion

bucket value, which conditions the model, with the strength of the camera trans-
formation leads to better performance. Therefore, for Kubric-4D, we linearly
scale this value along with the magnitude of the relative camera rotation (specif-
ically, the L2 norm of (∆ϕ,∆θ)) where the minimum value corresponds to 0 and
the maximum value corresponds to 255. This indication of camera motion hints
the model that it should generate a video with a high degree of optical flow when
the relative angles are high and vice versa.

We keep conditioning augmentation [2] enabled with a noise strength of 0.02.

C.6 Loss

We apply a focal L2 loss function between the estimated and ground truth la-
tent feature maps, which focuses on the top fraction of embeddings incurring
2 Since the dataset is synthetic and the radius r does not have an inherent meaning,

it is worth nothing that the average diameter of an object is 1.88m, and that all
objects are randomly spawned within these bounds in Euclidean coordinates: x ∈
[−7, 7], y ∈ [−7, 7], z ∈ [0, 7] (where Z is up).

6

the biggest mismatch. This fraction linearly decreases from 100% to 10% in
the first 5000 iterations, and then remains constant at 10%. In addition, for
semantic completion in ParallelDomain-4D, we weight the categories involving
vehicles (i.e. Bus, Car, Caravan/RV, ConstructionVehicle, Bicycle, Motorcycle,
OwnCar, Truck, WheeledSlow) and people (i.e. Animal, Bicyclist, Motorcyclist,
OtherRider, Pedestrian) to be respectively 3× and 7× as important as other
categories, by multiplying the loss values at the corresponding spatial positions
with the appropriate scaling factor before averaging. We observe that this strat-
egy tends to reduce false negative prediction rates, especially for visually smaller
objects occupying fewer pixels.

C.7 Evaluation

For each dataset separately, all models and all variants are evaluated on the
same test split. For each scene, we randomly sample a subclip within the available
video with T = 14 frames and a variable frame rate chosen within the same range
as during training time. Then, for Kubric-4D, four different target camera poses
(with angles up to azimuth ±90◦ for Kubric-4D) are randomly sampled once. To
encourage difficult input videos with higher than average degrees of occlusion,
we set the starting elevation angle to be always θ1 = 5◦, but all other angles are
chosen randomly within the same ranges as during training. These randomization
parameters at test time are only chosen once and then fixed across all evaluation
experiments. We let probabilistic (i.e. diffusion) models (Ours, Vanilla SVD,
ZeroNVS) generate four samples for each of these trajectories, averaging results,
but the other methods (HexPlane, 4D-GS, DynIBaR) are only executed once for
each scene and for each set of output camera angles.

C.8 Baselines

Vanilla SVD [1]. Since Stable Video Diffusion’s last training stage involved
finetuning at a resolution of 1024×576, and changing the resolution at test time
gives rise to artefacts, it is probably optimal to evaluate the model at its original
resolution. We center crop and resize all input images and target videos as needed
to 1024 × 576 when evaluating this baseline. We keep the motion bucket at its
default value of 127.

ZeroNVS [10]. Like Zero-1-to-3 [7], ZeroNVS was trained only on square images
of resolution 256 × 256. Similarly to Vanilla SVD, we center crop and resize
all input and ground truth frames accordingly. Moreover, since ZeroNVS learns
a scale-invariant means of transforming camera poses in a way that depends
on estimated depth maps, the translation component of the relative camera
extrinsics matrix E−1

src · Edst fed to the model can incur variable meanings with
respect to absolute 3D space depending on the observed scene. A scale parameter
is hence tuned visually for each video separately until the output qualitatively
aligns with the ground truth.

7

Fig. 5: Failure cases. We show inputs and predictions of real-world examples. Since
deformable objects are not present in our Kubric-4D finetuning set, our model occa-
sionally struggles with reconstructing their shape, appearance, and motion correctly.
This can sometimes lead to objects becoming vague or blending in with each other.
Similarly, videos in the bottom two rows are possibly related to them bordering on
being out-of-distribution with respect to ParallelDomain-4D.

D Failure cases

Our model exhibits strong performance in many cases, but also fails to accurately
generalize to some real-world videos, especially those involving humans, animals,
or deformable objects. In Figure 5, we show representative failure cases. In (a),
while the general layout is somewhat preserved, the people themselves become
blurry. In (b), the robot arm gets cut off when performing view synthesis from the
top, presumably because Kubric-4D does not contain robots or robotic motion
patterns. In (c), the model appears to be confused as to what the initial camera
pose is, and interprets it as a top-down rather than a sideways perspective of
an aquarium, which leads to a roll effect when rotating the azimuth. In (d), the
highway sign gets missed. In (e), the overpasses are not reconstructed, which
seems to cause blurriness in the rest of the prediction. In (f), (g), and (h),
both shape and dynamics are not well-respected. In (i), the perceived depth of
the large blue truck is wrong. In (j), there are an unusually large amount of
pedestrians crossing the street, which the model groups into “cars”.

References

1. Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D., Kilian, M., Lorenz, D.,
Levi, Y., English, Z., Voleti, V., Letts, A., et al.: Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127
(2023)

8

2. Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S.W., Fidler, S., Kreis,
K.: Align your latents: High-resolution video synthesis with latent diffusion models.
In: CVPR (2023)

3. Cao, A., Johnson, J.: Hexplane: A fast representation for dynamic scenes. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 130–141 (2023)

4. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598 (2022)

5. Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems 35,
26565–26577 (2022)

6. Ling, H., Kim, S.W., Torralba, A., Fidler, S., Kreis, K.: Align your gaussians: Text-
to-4d with dynamic 3d gaussians and composed diffusion models. arXiv preprint
arXiv:2312.13763 (2023)

7. Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov, S., Vondrick, C.: Zero-
1-to-3: Zero-shot one image to 3d object. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. pp. 9298–9309 (2023)

8. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. pp. 10684–10695 (2022)

9. Salimans, T., Ho, J.: Progressive distillation for fast sampling of diffusion models.
arXiv preprint arXiv:2202.00512 (2022)

10. Sargent, K., Li, Z., Shah, T., Herrmann, C., Yu, H.X., Zhang, Y., Chan, E.R.,
Lagun, D., Fei-Fei, L., Sun, D., et al.: Zeronvs: Zero-shot 360-degree view synthesis
from a single real image. arXiv preprint arXiv:2310.17994 (2023)

11. Wikipedia contributors: Spherical coordinate system — Wikipedia, the free en-
cyclopedia (2024), https://en.wikipedia.org/wiki/Spherical_coordinate_
system, [Online; accessed 2024]

https://en.wikipedia.org/wiki/Spherical_coordinate_system
https://en.wikipedia.org/wiki/Spherical_coordinate_system

