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A Algorithm of Domain Shift Detection

Algorithm 1 Domain Shift Detection Mechanism
Require: DA loss for the current batch LBt

DA, short-term window Ws with length p,
long-term window Wl with length q, threshold factor ⌧

1: if len(Wl) < q then
2: Append LBt

DA to Wl

3: Ws = Ws[�(q � 1) :] + [LBt
DA] {Maintain Ws size by sliding}

4: else
5: Compute average DA loss over Wl as avg_l
6: Compute average DA loss over Ws as avg_s
7: if avg_s > ⌧ · avg_l then
8: Reset Wl and Ws to contain only the current LBt

DA

9: Reset affine layers to initial parameters
10: Reset normalization layers using Eq.6, Eq.7
11: else
12: Wl = Wl[1 :] + [LBt

DA] {Update Wl by sliding}
13: Ws = Ws[1 :] + [LBt

DA] {Update Ws by sliding}
14: end if
15: end if

B More Dataset Details

CIFAR10/100-C, ImageNet-C. CIFAR10-C, CIFAR100-C, and ImageNet-C
datasets are from the RobustBench 1 benchmark. These datasets are derived by
introducing various corruptions to the images in validation sets of the CIFAR10,
CIFAR100, and ImageNet datasets. We summarize the corruption types in Fig. 7,
including brightness, frosted glass blur, JPEG compression, contrast, defocus
blur, impulse noise, motion blur, snow, zoom blur, frost, pixelation, Gaussian
noise, elastic transformation, shot noise, and fog. The aim of these corruptions is
to mimic a range of natural environmental conditions that may be encountered
during deployment.

Although these 15 corruption domains stem from 4 categories of corruptions
(weather, noise, blur, digital), there is a noticeable domain shift from the source
domain (clean) to each of the 15 corruption domains. In the continual TTA
setting (Tab. 4), to create a sequence of 15 continual domain shifts, we mix the
4 categories of corruptions in the target domain sequence.

ImageNet-D/R. ImageNet-D is re-proposed from DomainNet and includes
six image styles: Clipart, Real, Infograph, Painting, Quick-draw, and Sketch.
1 https://github.com/RobustBench/robustbench
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Brightness Frosted Glass Blur JPEG Contrast Defocus Blur

Impulse Noise Motion Blur Snow Zoom Blur Frost

Pixelate Gaussian Noise Elastic Shot Noise Fog

Fig. 7: Examples of corruption types in ImageNet-C.

We do not include Quick-draw as a target domain in the experiment because
the source model completely fails in this domain, with an error rate greater
than 99% [46], which might be attributed to the noisy labels and classes in
this domain2. ImageNet-R contains various renditions of 200 ImageNet classes,
including art, cartoons, deviantart, graffiti, embroidery, graphics, origami, paint-
ings, patterns, plastic objects, plush objects, sculptures, sketches, tattoos, toys,
and video games. Figure 8 exemplifies different renditions of the same class.

C More Implementation Details

C.1 Illustration of Non-I.I.D. Data Streams

As outlined in Sec. 4.2, we use the Dirichlet distribution for generating the
non-i.i.d. data streams. We visualize the non-i.i.d. data streams with different
Dirichlet parameters � from the CIFAR10-C dataset in Fig. 9. A lower � value
indicates a higher degree of non-i.i.d. characteristics, manifesting as increased
temporal correlation.

2 Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain
adaptation via minimax entropy. In: ICCV. pp. 8050–8058 (2019)
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DeviantArt Painting Embroidery

Art Sketch VideoGame

Fig. 8: Different renditions in ImageNet-R.

C.2 Implementation Details on ImageNet-D/R/A

ImageNet-D. The classes in ImageNet-D do not have a one-to-one class map-
ping relationship with ImageNet. Therefore, we adopt the source model with a
1000-class classifier to directly carry out the TTA process on this dataset. This
presents a greater challenge for TTA methods because the model has an addi-
tional 537 class options (1000 � 463 = 537) that are not present in the target
dataset.

ImageNet-R/A. Following [11], we wrap the source model with a 1000-to-200
class mapping mask because ImageNet-R/A comprises 200 classes out of the
1000 from ImageNet, with a one-to-one mapping relationship.

D Hyper-Parameter Details

During the test-time adaptation process, the batch size is consistently set to
64 across all datasets and methods, where applicable. Following MEMO [71],
we use the remaining four corruptions, excluding the 15 used for testing in
CIFAR10/100-C and ImageNet-C, to select hyper-parameters. We adopt the
Adam optimizer and set the learning rate to 1 ⇥ 10�4 for WideResNet-28 and
ResNeXt-29, and 1 ⇥ 10�5 for ResNet-50/18. The parameter ↵ is set to 0.5 for
CIFAR10/100-C and 0.75 for ImageNet-C/R/D/A. The confidence threshold ✓

in EM loss is fixed at 0.8 for all datasets, except for ImageNet-A, where ✓ is set
to 0.4 to account for the significantly decreased confidence in the source model
caused by adversarial attacks.

In the continual TTA setting, the hyper-parameters ⌧ , p, and q for the do-
main shift detection mechanism are fixed at 1.1, 3, and 15, respectively. We set
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Fig. 9: Illustration of non-independent and identically distributed (non-i.i.d.) data
streams with varying Dirichlet parameters �. Each color represents a different category.

(a) (b)

Fig. 10: (a) Influence of varying window sizes (p, q) with the threshold factor fixed at
1.1. (b) Influence of the varying threshold factor ⌧ with window sizes (p, q) fixed at
(3, 15).

the batch size to 40 for our method in the experiments. Here, we examine the
sensitivity of adaptation performance to the three hyper-parameters (⌧ , p, q) in
the domain shift detection mechanism. Specifically, we investigate the influence
of varying window sizes (p, q) with the threshold factor fixed at 1.1 in Fig. 10a.
In Fig. 10b, we assess the influence of varying the threshold factor ⌧ with the
window sizes (p, q) held constant at (3, 15). The results indicate that the adap-
tation performance is relatively insensitive to changes in these hyper-parameters
of the domain shift detection mechanism within a certain range.

E Source of Experimental Codes

The results of other methods are obtained by running their codes. For NOTE [16]
and DELTA [73] methods, we conduct the evaluation experiments based on
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their official codes, available at NOTE 3 and DELTA 4 respectively. For other
methods, including TTBN [39], MEMO [71], LAME [3], CoTTA [50], EATA [40],
RoTTA [69], RMT [11], and SAR [41], we utilize the Online Test-time Adaptation
integrated repository,5 developed by the authors of RMT [11]. Code for our
method is available at github.com/WZq975/DA-TTA.

It is worth noting that we use uniform pre-trained source models for our eval-
uations, which differ from those adopted in the NOTE paper [16], therefore, the
reported results vary from those in the NOTE paper. For a faithful comparison,
we also evaluate our method using the same pre-trained model (ResNet-18) as
used in NOTE, as described in Appendix F.1.

F Additional Results

F.1 Comparison with NOTE and BUFR Using ResNet-18

Table 6: Comparison with NOTE and BUFR using a ResNet-18 pre-trained model.
Error rates (in %) are reported. In the table, numbers in red indicate performance
degradation after adaptation.

Method
Non-I.I.D I.I.D

CIFAR10-C CIFAR100-C ImageNet-C CIFAR10-C CIFAR100-C ImageNet-C

Source 40.6 66.3 85.4 40.6 66.3 85.4

BUFR [12] 76.1 84.2 - 15.1 53.0 -

NOTE [16] 21.1 47.0 80.6 20.1 46.4 70.3

DA-TTA(ours) 23.1 46.6 72.0 18.7 43.8 69.3

We additionally evaluate our method using ResNet-18 as the pre-trained
source model, which is also adopted in the NOTE [16] and BUFR [12] pa-
pers. Specifically, we utilize ResNet-18 models pre-trained on CIFAR10/100,
provided by NOTE, and ResNet-18 pre-trained on ImageNet for evaluations on
CIFAR10/100-C and ImageNet-C, respectively. In Tab. 6, the results for NOTE
are sourced from its paper, while the results for BUFR are obtained by run-
ning its code.6 BUFR, as an SFDA method, succeeds in adapting to i.i.d. online
streams but fails to adapt to non-i.i.d streams. Our method demonstrates better
overall performance compared to these two methods.

F.2 Results under I.I.D. Assumption

In this work, we focus on fully test-time adaptation on practical scenarios where
the test data stream is non-i.i.d.. Nonetheless, we also provide the evaluation re-
sults under i.i.d. assumption in Tab. 7. These results are on the same CIFAR10-C,
3 https://github.com/TaesikGong/NOTE
4 https://github.com/bwbwzhao/DELTA
5 https://github.com/mariodoebler/test-time-adaptation
6 https://github.com/cianeastwood/bufr

https://github.com/WZq975/DA-TTA
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Table 7: Fully test-time adaptation under i.i.d. assumption. We report the average
classification error rates (%) for 15 target domains within each of the CIFAR10-C,
CIFAR-100-C, and ImageNet-C datasets, respectively.

Method CIFAR10-C CIFAR100-C ImageNet-C

Source 43.5 46.5 82.0

LAME [3] 57.7 73.8 93.4

RoTTA [69] 21.5 42.0 69.3

TTBN [39,48] 20.8 36.3 68.6

CoTTA [50] 18.5 35.0 68.1

RMT [11] 17.5 33.9 63.5

TENT [55] 18.7 32.7 65.3

SAR [41] 20.7 32.5 65.3

EATA [40] 18.2 31.5 60.4
Ours 20.0 31.2 65.3

CIFAR100-C, and ImageNet-C datasets as those discussed in Tab. 1 for non-i.i.d.
streams. The results show that LAME [3] underperforms in i.i.d. streams com-
pared to non-i.i.d. scenarios. Conversely, our method demonstrates consistent
accuracy across both i.i.d. and non-i.i.d. streams, ensuring comparable perfor-
mance under i.i.d. assumption and marked improvements in non-i.i.d. scenarios
compared to the state-of-the-art methods.

G Additional Ablation Studies

Table 8: Effects of optimizing the DA loss via updating different layers in the network.
We consider four different variants: (A) Optimizing all the convolution blocks before the
classifier. (B) Optimizing the last convolution block before the classifier. (C) Optimizing
additional affine layers before BN layers. (D) optimizing additional affine layers after
BN layers.

Variant CIFAR10-C CIFAR100-C ImageNet-C

A 90.5 98.7 95.4
B 56.7 98.6 99.9
C 24.4 32.1 67.7
D 24.3 31.8 65.7

Ours 24.3 31.6 64.8

The objective of the (Distribution Alignment) DA loss is to recalibrate the
test-time features, aligning them closer to the source domain. This alignment
helps mitigate domain shift, thereby enhancing performance. Specifically, we fo-
cus on optimizing the affine layers within Batch Normalization (BN) layers. The
rationale is that these affine layers can linearly adjust the statistical properties
(mean and variance) of the feature distributions. This enables transformation
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of the distributions while preserving the representational capacity of the source
model’s convolution layers. Despite this focus, we also conduct an ablation study
exploring the effects of applying DA loss optimization to convolution layers. As
shown in Tab. 8, when optimizing all convolution blocks or the last convolution
block before the classifier with DA loss (variants A and B), we can observe a
detrimental effect on performance, contravening the DA loss’s objective.

In our method, optimizing affine layers in BN layers aims to steer the feature
distributions closer to those of the source domain. Theoretically, however, these
affine layers are not confined to BN layers alone. To verify this, we introduce
two additional variants, (C) and (D), incorporating extra affine layers into the
source model. In these variants, all source model parameters, including the BN
layers, remain frozen. The results, detailed in Tab. 8, reveal that both variants
achieve performance comparable to our final version.

H Limitations

Like most existing fully TTA methods, DA-TTA needs to continually optimize
the source model with online data streams. This might be impractical for applica-
tions on edge devices, given that current foundation models are becoming larger
and larger. Furthermore, in certain industry scenarios, source models cannot be
modified and are provided only as a black box. In such cases, modifications in
intermediate BN layers are not feasible. Other model reprogramming operations
should be considered to address this issue.
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